首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
Membrane microdomains with distinct lipid compositions, called lipid rafts, represent a potential mechanism for compartmentalizing cellular functions within the plane of biological membranes. SPFH domain-containing proteins are found in lipid raft microdomains in diverse cellular membranes. The functions of these proteins are just beginning to be elucidated. Recent advances in the understanding of structural features and their roles within lipid rafts include a potential function for SPFH proteins in the formation of membrane microdomains and lipid raft-associated processes, such as endocytosis and mechanosensation.  相似文献   

2.
Advances in cell biology and biophysics revealed that cellular membranes consist of multiple microdomains with specific sets of components such as lipid rafts and TEMs (tetraspanin‐enriched microdomains). An increasing number of enveloped viruses have been shown to utilize these microdomains during their assembly. Among them, association of HIV‐1 (HIV type 1) and other retroviruses with lipid rafts and TEMs within the PM (plasma membrane) is well documented. In this review, I describe our current knowledge on interrelationships between PM microdomain organization and the HIV‐1 particle assembly process. Microdomain association during virus particle assembly may also modulate subsequent virus spread. Potential roles played by microdomains will be discussed with regard to two post‐assembly events, i.e., inhibition of virus release by a raft‐associated protein BST‐2/tetherin and cell‐to‐cell HIV‐1 transmission at virological synapses.  相似文献   

3.
Lipid rafts play an important role in cell signalling, cell adhesion and other cellular functions. Compositional heterogeneity of lipid rafts provides one mechanism of how lipid rafts provide the spatial and temporal regulation of cell signalling and cell adhesion. The constitutive presence of some signalling receptors/molecules and accumulation of others in the lipid raft allows them to interact with each other and thereby facilitate relay of signals from the plasma membrane to the cell interior. Devising a method that can analyze these lipid microdomains for the presence of signalling receptors/molecules on an individual raft basis is required to address the issue of lipid raft heterogeneity. SDS-PAGE analysis, currently used for analyses of detergent-resistant lipid rafts, does not address this question. We have designed a cell-free assay that captures detergent-resistant lipid rafts with an antibody against a raft-resident molecule and detects the presence of another lipid raft molecule. Our results suggest that detergent-resistant lipid rafts, also known as detergent-resistant membranes, are heterogeneous populations on an immortalized mouse T-cell plasma membrane with respect to antigen receptor/signalling complex and other signalling/adhesion proteins. This cell-free assay provides a simple and quick way to examine the simultaneous presence of two proteins in the lipid rafts and has the potential to estimate trafficking of molecules in and out of the lipid microdomains during cell signalling on a single detergent-resistant lipid raft basis.  相似文献   

4.
Lipid rafts are defined as microdomains within the lipid bilayer of cellular membranes that assemble subsets of transmembrane or glycosylphosphatidylinisotol-anchored proteins and lipids (cholesterol and sphingolipids) and experimentally resist extraction in cold detergent (detergent-resistant membrane). These highly dynamic raft domains are essential in signaling processes and also form sorting platforms for targeted protein traffic. Lipid rafts are involved in protein endocytosis that occurs via caveolae or flotillin-dependent pathways. Non-constitutive protein components of rafts fluctuate dramatically in cancer with impacts on cell proliferation, signaling, protein trafficking, adhesion and apoptosis. This article focuses on the identification of candidate cancer-associated biomarkers in carcinoma cells using state-of-the-art proteomics.  相似文献   

5.
Abstract

Free fatty acids released during intralumenal digestion of dietary fat must pass through the enterocyte brush border membrane before triacylglycerol reassembly and subsequent chylomicron delivery to the lymph system. In the present work fluorescent BODIPY fatty acid analogs were used to study this membrane passage in organ cultured intestinal mucosal explants. We found that in addition to a rapid uptake into the cytoplasm, a fraction of the fatty acid analogs were inserted directly into the brush border membrane. Furthermore, a brief exposure of microvillar membrane vesicles to a fat mixture mimicking a physiological solution of dietary mixed micelles, rearranged the lipid raft microdomain organization of the membranes. Thus, the fat mixture generated a low-density subpopulation of microvillar detergent resistant membranes (DRMs) highly enriched in alkaline phosphatase (AP). Since this GPI-linked enzyme is the membrane protein in the brush border with the highest affinity for lipid rafts, this implies that free fatty acids selectively insert stably into these membrane microdomains. We have previously shown that absorption of dietary lipids transiently induce a selective endocytosis of AP from the brush border, and from work by others it is known that fat absorption is accompanied by a rise in serum AP and secretion of surfactant-like particles from enterocytes. We propose that these physiological processes may be triggered by the sequestering of dietary free fatty acids in lipid raft microdomains of the brush border.  相似文献   

6.
《Molecular membrane biology》2013,30(4-6):170-177
Abstract

The apical surface of the enterocyte is sculpted into a dense array of cylindrical microvillar protrusions by supporting actin filaments. Membrane microdomains (rafts) enriched in cholesterol and glycosphingolipids comprise roughly 50% of the microvillar membrane and play a vital role in orchestrating absorptive/digestive action of dietary nutrients at this important cellular interface. Increased membrane thickness is believed to be a morphological characteristic of rafts. Thus, we investigated whether the high contents of lipid rafts in the microvillar membrane is reflected in local variations in membrane thickness. We measured membrane thickness directly from electron micrographs of sections of fixed mucosal tissue. Indeed, mapping of the microvillar membrane revealed a biphasic distribution of membrane thickness. As a point of reference the thickness distribution of the basolateral membrane was clearly monophasic. The encountered domains of increased thickness (DITs) occupied 48% of the microvillar membrane and from the data we estimated the area of a single DIT to have a lower limit of 600 nm2. In other experiments we mapped the organization of biochemically defined lipid rafts by immunogold labeling of alkaline phosphatase, a well documented raft marker. Strikingly, the alkaline phosphatase localized to distinct regions of the membrane in a pattern similar to the observed distribution of DITs. Although we were unable to measure membrane thickness directly on the immunogold labeled specimens, and thereby establish an unequivocal connection between DITs and rafts, we conclude that the brush border membrane of the enterocyte contains microdomains distinguishable both by membrane morphology and protein composition.  相似文献   

7.
Lipid rafts are membrane microdomains rich in cholesterol and glycosphingolipids that have been implicated in the regulation of intracellular protein trafficking. During exocytosis, a class of proteins termed SNAREs mediate secretory granule-plasma membrane fusion. To investigate the role of lipid rafts in secretory granule exocytosis, we examined the raft association of SNARE proteins and SNARE complexes in rat basophilic leukemia (RBL) mast cells. The SNARE protein SNAP-23 co-localized with a lipid raft marker and was present in detergent-insoluble lipid raft microdomains in RBL cells. By contrast, only small amounts (<20%) of the plasma membrane SNARE syntaxin 4 or the granule-associated SNARE vesicle-associated membrane protein (VAMP)-2 were present in these microdomains. Despite this, essentially all syntaxin 4 and most of VAMP-2 in these rafts were present in SNARE complexes containing SNAP-23, while essentially none of these complexes were present in nonraft membranes. Whereas SNAP-23 is membrane anchored by palmitoylation, the association of the transmembrane protein syntaxin 4 with lipid rafts was because of its binding to SNAP-23. After stimulating mast cells exocytosis, the amount of syntaxin 4 and VAMP-2 present in rafts increased twofold, and these proteins were now present in raft-associated phospho-SNAP-23/syntaxin 4/VAMP-2 complexes, revealing differential association of SNARE fusion complexes during the process of regulated exocytosis.  相似文献   

8.
Membrane microdomains, e.g., lipid rafts and caveolae, are crucial cell surface organelles responsible for many cellular signaling and communication events, which makes the characterization of their proteomes both interesting and valuable. They are large cellular complexes comprised of specific proteins and lipids, yet they are simple enough in composition to be amenable to modern LC/MS/MS methods for proteomics. However, the proteomic characterization of membrane microdomains by traditional qualitative mass spectrometry is insufficient for distinguishing true components of the microdomains from copurifying contaminants or for evaluating dynamic changes in the proteome compositions. In this review, we discuss the contributions quantitative proteomics has made to our understanding of the biology of membrane microdomains.  相似文献   

9.
The lipid phosphatidylinositol 4,5-bisphosphate (PIP2) is critical for a number of physiological functions, and its presence in membrane microdomains (rafts) appears to be important for several of these spatially localized events. However, lipids like PIP2 that contain polyunsaturated hydrocarbon chains are usually excluded from rafts, which are enriched in phospholipids (such as sphingomyelin) containing saturated or monounsaturated chains. Here we tested a mechanism by which multivalent PIP2 molecules could be transferred into rafts through electrostatic interactions with polybasic cytoplasmic proteins, such as GAP-43, which bind to rafts via their acylated N-termini. We analyzed the interactions between lipid membranes containing raft microdomains and a peptide (GAP-43P) containing the linked N-terminus and the basic effector domain of GAP-43. In the absence or presence of nonacylated GAP-43P, PIP2 was found primarily in detergent-soluble membranes thought to correspond to nonraft microdomains. However, when GAP-43P was acylated by palmitoyl coenzyme A, both the peptide and PIP2 were greatly enriched in detergent-resistant membranes that correspond to rafts; acylation of GAP-43P changed the free energy of transfer of PIP2 from detergent-soluble membranes to detergent-resistant membranes by −1.3 kcal/mol. Confocal microscopy of intact giant unilamellar vesicles verified that in the absence of GAP-43P PIP2 was in nonraft microdomains, whereas acylated GAP-43P laterally sequestered PIP2 into rafts. These data indicate that sequestration of PIP2 to raft microdomains could involve interactions with acylated basic proteins such as GAP-43.  相似文献   

10.
Membrane microdomains denoted commonly as lipid rafts (or membrane rafts) have been implicated in T-cell receptor (TCR), and more generally immunoreceptor, signaling for over 25 years. However, this area of research has been complicated by doubts about the real nature (and even existence) of these membrane entities, especially because of methodological problems connected with possible detergent artefacts. Recent progress in biophysical approaches and functional studies of raft resident proteins apparently clarified many controversial aspects in this area. At present, the prevailing view is that these membrane microdomains are indeed involved in many aspects of cell biology, including immunoreceptor signaling. Moreover, several other types of raft-like microdomains (perhaps better termed nanodomains) have been described, which apparently also play important biological roles.  相似文献   

11.
Lipid rafts are characterized by their insolubility in nonionic detergents such as Triton X-100 at 4 degrees C. They have been studied in mammals, where they play critical roles in protein sorting and signal transduction. To understand the potential role of lipid rafts in lepidopteran insects, we isolated and analyzed the protein and lipid components of these lipid raft microdomains from the midgut epithelial membrane of Heliothis virescens and Manduca sexta. Like their mammalian counterparts, H. virescens and M. sexta lipid rafts are enriched in cholesterol, sphingolipids, and glycosylphosphatidylinositol-anchored proteins. In H. virescens and M. sexta, pretreatment of membranes with the cholesterol-depleting reagent saponin and methyl-beta-cyclodextrin differentially disrupted the formation of lipid rafts, indicating an important role for cholesterol in lepidopteran lipid rafts structure. We showed that several putative Bacillus thuringiensis Cry1A receptors, including the 120- and 170-kDa aminopeptidases from H. virescens and the 120-kDa aminopeptidase from M. sexta, were preferentially partitioned into lipid rafts. Additionally, the leucine aminopeptidase activity was enriched approximately 2-3-fold in these rafts compared with brush border membrane vesicles. We also demonstrated that Cry1A toxins were associated with lipid rafts, and that lipid raft integrity was essential for in vitro Cry1Ab pore forming activity. Our study strongly suggests that these microdomains might be involved in Cry1A toxin aggregation and pore formation.  相似文献   

12.
《Molecular membrane biology》2013,30(5-8):189-197
Abstract

Outer layer of cellular membrane contains ordered domains enriched in cholesterol and sphingolipids, called ‘lipid rafts’, which play various biological roles, i.e., are involved in the induction of cell death by apoptosis. Recent studies have shown that these domains may constitute binding sites for selected drugs. For example alkylphosphocholines (APCs), which are new-generation antitumor agents characterized by high selectivity and broad spectrum of activity, are known to have their molecular targets located at cellular membrane and their selective accumulation in tumor cells has been hypothesized to be linked with the alternation of biophysical properties of lipid rafts. To get a deeper insight into this issue, interactions between representative APC: erucylphosphocholine, and artificial lipid raft system, modeled as Langmuir monolayer (composed of cholesterol and sphingomyelin mixed in 1:2 proportion) were investigated. The Langmuir monolayer experiments, based on recording surface pressure-area isotherms, were complemented with Brewster angle microscopy results, which enabled direct visualization of the monolayers structure. In addition, the investigated monolayers were transferred onto solid supports and studied with AFM. The interactions between model raft system and erucylphosphocholine were analyzed qualitatively (with mean molecular area values) as well as quantitatively (with ΔGexc function). The obtained results indicate that erucylphosphocholine introduced to raft-mimicking model membrane causes fluidizing effect and weakens the interactions between cholesterol and sphingomyelin, which results in phase separation at high surface pressures. This leads to the redistribution of cholesterol molecules in model raft, which confirms the results observed in biological studies.  相似文献   

13.
Gaining an understanding of the structural and functional roles of cholesterol in membrane lipid rafts is a critical issue in studies on cellular signaling and because of the possible involvement of lipid rafts in various diseases. We have focused on the potential of perfringolysin O (theta-toxin), a cholesterol-binding cytolysin produced by Clostridium perfringens, as a probe for studies on membrane cholesterol. We prepared a protease-nicked and biotinylated derivative of perfringolysin O (BCtheta) that binds selectively to cholesterol in cholesterol-rich microdomains of cell membranes without causing membrane lesions. Since the domains fulfill the criteria of lipid rafts, BCtheta can be used to detect cholesterol-rich lipid rafts. This is in marked contrast to filipin, another cholesterol-binding reagent, which binds indiscriminately to cell cholesterol. Using BCtheta, we are now searching for molecules that localize specifically in cholesterol-rich lipid rafts. Recently, we demonstrated that the C-terminal domain of perfringolysin O, domain 4 (D4), possesses the same binding characteristics as BCtheta. BIAcore analysis showed that D4 binds specifically to cholesterol with the same binding affinity as the full-size toxin. Cell-bound D4 is recovered predominantly from detergent-insoluble, low-density membrane fractions where raft markers, such as cholesterol, flotillin and Src family kinases, are enriched, indicating that D4 also binds selectively to lipid rafts. Furthermore, a green fluorescent protein-D4 fusion protein (GFP-D4) was revealed to be useful for real-time monitoring of cholesterol in lipid rafts in the plasma membrane. In addition, the expression of GFP-D4 in the cytoplasm might allow the investigations of intracellular trafficking of lipid rafts. The simultaneous visualization of lipid rafts in plasma membranes and inside cells might help in gaining a total understanding of the dynamic behavior of lipid rafts.  相似文献   

14.
Lipid composition of biological membranes is closely related to the function of the ATP-binding cassette (ABC) transporter P-Glycoprotein (Pgp). Herein, we studied how membrane physico-chemical properties affect Pgp-activity. We effectively modulated the cellular cholesterol content using methyl-beta-cyclodextrin (MbetaCD) and MbetaCD-cholesterol-inclusion complex. Pgp was not liberated from the plasma membrane during cholesterol modulation and functional inhibition of Pgp was related to varying cholesterol levels in the plasma membrane. Our data indicate that membrane fluidity does not solely account for cholesterol dependent modifications of Pgp-activity. Therefore, we isolated lipid rafts and examined distinct membrane microdomains. Both depletion and cholesterol enrichment induces a disassembly of lipid rafts. In cholesterol-depleted cell membranes a shift in the Pgp localisation to detergent soluble fractions was observed. Enrichment of membrane cholesterol changed lipid raft distribution but not the localisation of Pgp. From our data we conclude that Pgp-transport capacity depends on accurate lipid raft properties.  相似文献   

15.
Lipid rafts in plasma membranes are hypothesized to play key roles in many cellular processes including signal transduction, membrane trafficking and entry of pathogens. We recently documented the biochemical characterization of lipid rafts, isolated as detergent-insoluble membranes, from Medicago truncatula root plasma membranes. We evidenced that the plant-specific lipid steryl-conjugates are among the main lipids of rafts together with free sterols and sphingolipids. An extensive proteomic analysis showed the presence of a specific set of proteins common to other lipid rafts, plus the presence of a redox system around a cytochrome b561 not previously identified in lipid rafts of either plants or animals. Here, we discuss the similarities and differences between the lipids and proteins of plant and animal lipid rafts. Moreover we describe the potential biochemical functioning of the M. truncatula root lipid raft redox proteins and question whether they may play a physiological role in legume-symbiont interactions.Key Words: plasma membrane, Medicago, root, legume-Rhizobium symbiosis, redox, sterol, sphingolipid  相似文献   

16.
The Epstein-Barr virus (EBV) is an important human pathogen that is associated with multiple cancers. The major oncoprotein of the virus, latent membrane protein 1 (LMP1), is essential for EBV B-cell immortalization and is sufficient to transform rodent fibroblasts. This viral transmembrane protein activates multiple cellular signaling pathways by engaging critical effector molecules and thus acts as a ligand-independent growth factor receptor. LMP1 is thought to signal from internal lipid raft containing membranes; however, the mechanisms through which these events occur remain largely unknown. Lipid rafts are microdomains within membranes that are rich in cholesterol and sphingolipids. Lipid rafts act as organization centers for biological processes, including signal transduction, protein trafficking, and pathogen entry and egress. In this study, the recruitment of key signaling components to lipid raft microdomains by LMP1 was analyzed. LMP1 increased the localization of phosphatidylinositol 3-kinase (PI3K) and its activated downstream target, Akt, to lipid rafts. In addition, mass spectrometry analyses identified elevated vimentin in rafts isolated from LMP1 expressing NPC cells. Disruption of lipid rafts through cholesterol depletion inhibited PI3K localization to membranes and decreased both Akt and ERK activation. Reduction of vimentin levels or disruption of its organization also decreased LMP1-mediated Akt and ERK activation and inhibited transformation of rodent fibroblasts. These findings indicate that LMP1 reorganizes membrane and cytoskeleton microdomains to modulate signal transduction.  相似文献   

17.
Many lines of evidence show that membranes contain microdomains, "lipid rafts", that are different from the rest of the membrane in specific lipid and protein composition. In several biological systems, they were shown to be necessary for trafficking and signal transduction. Here, we investigate if lipid rafts have a role in the regulation of the G protein-mediated pathway underlying vertebrate phototransduction. Photoreceptor membranes contain detergent-resistant membrane (DRM) rafts. Rhodopsin and cGMP phosphodiesterase are found in raft and nonraft portions of the membrane; guanylate cyclase is found exclusively in the raft. Distribution of these proteins does not change in the light or dark. In contrast, the G protein transducin, the RGS9-1-Gbeta5L complex, and the p44 isoform of arrestin undergo dramatic translocation to the raft upon illumination. Phosphorylation of RGS9-1 occurs exclusively in the raft. GTPgammaS or pertussis toxin prevent the light-mediated translocation of transducin and RGS9-1, whereas AlF(minus sign)(4) causes both proteins to move to the raft in the dark. This shows that the Galphat-RGS9-1-Gbeta5L complex has the highest affinity to rafts in the transition state of the GTPase. GTPgammaS binds to transducin at a significantly slower rate in the raft, indicating that this translocation results in a reduced rhodopsin-transducin coupling. Thus, an external signal can rearrange components of a G protein pathway in specific domains of the cell membrane, changing its signaling properties. These findings could reveal a novel mechanism utilized by the cells for regulation of G protein-mediated signal transduction.  相似文献   

18.
Biological membranes are compartmentalized into microdomains that exhibit particular lipid and protein compositions. Membrane microdomains, such as tetraspanin-enriched microdomains and lipid rafts, have been suggested to play a role in a variety of physiological and pathological processes. Therefore, the characterization of the protein compositions of these microdomains, which is the focus of this review, appears to be a crucial step to better understanding their function. Proteomics has recently allowed the characterization of tetraspanin-enriched microdomains in colon cancer cells. This demonstrated the presence of different categories of membrane proteins and suggested a variation in the composition of tetraspanin-enriched microdomains during tumor progression. On the other hand, proteomics has permitted the identification of hundreds of proteins in lipid rafts of different origins. However, the diversity of methodologies in sample preparation and of strategies in protein identification led to a broad variability in the data obtained. These methodological issues are discussed. Moreover, proteomics has revealed that different sets of proteins were present in tetraspanin-enriched microdomains as compared with lipid rafts, strengthening the idea that these microdomains are distinct structures.  相似文献   

19.
Lipid rafts display a lateral heterogeneity forming membrane microdomains that hold a fundamental role on biological membranes and are indispensable to physiological functions of cells. Oxidative stress in cellular environments may cause lipid oxidation, changing membrane composition and organization, thus implying in effects in cell signaling and even loss of homeostasis. The individual contribution of oxidized lipid species to the formation or disruption of lipid rafts in membranes still remains unknown. Here, we investigate the role of different structures of oxidized phospholipids on rafts microdomains by carefully controlling the membrane composition. Our experimental approach based on fluorescence microscopy of giant unilamellar vesicles (GUV) enables the direct visualization of the impact of hydroperoxidized POPC lipid (referred to as POPCOOH) and shortened chain lipid PazePC (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine) on phase separation. We found that the molecular structure of oxidized lipid is of paramount importance on lipid mixing and/or demixing. The hydrophobic mismatch promoted by POPCOOH coupled to its cylindrical molecular shape favor microdomains formation. In contrast, the conical shape of PazePC causes disarrangement of lipid 2D organized platforms. Our findings contribute to better unraveling how oxidized phospholipids can trigger formation or disruption of lipid rafts. As a consequence, phospholipid oxidation may indirectly affect association or dissociation of key biomolecules in the rafts thus altering cell signaling and homeostasis.  相似文献   

20.
Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号