首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
The genetic diversity of Frankia populations in soil and in root nodules of sympatrically grown Alnus taxa was evaluated by rep-polymerase chain reaction (PCR) and nifH gene sequence analyses. Rep-PCR analyses of uncultured Frankia populations in root nodules of 12 Alnus taxa (n?=?10 nodules each) growing sympatrically in the Morton Arboretum near Chicago revealed identical patterns for nodules from each Alnus taxon, including replicate trees of the same host taxon, and low diversity overall with only three profiles retrieved. One profile was retrieved from all nodules of nine taxa (Alnus incana subsp. incana, Alnus japonica, Alnus glutinosa, Alnus incana subsp. tenuifolia, Alnus incana subsp. rugosa, Alnus rhombifolia, Alnus mandshurica, Alnus maritima, and Alnus serrulata), the second was found in all nodules of two plant taxa (A. incana subsp. hirsuta and A. glutinosa var. pyramidalis), and the third was unique for all Frankia populations in nodules of A. incana subsp. rugosa var. americana. Comparative sequence analyses of nifH gene fragments in nodules representing these three profiles assigned these frankiae to different subgroups within the Alnus host infection group. None of these sequences, however, represented frankiae detectable in soil as determined by sequence analysis of 73 clones from a Frankia-specific nifH gene clone library. Additional analyses of nodule populations from selected alders growing on different soils demonstrated the presence of different Frankia populations in nodules for each soil, with populations showing identical sequences in nodules from the same soil, but differences between plant taxa. These results suggest that soil environmental conditions and host plant genotype both have a role in the selection of Frankia strains by a host plant for root nodule formation, and that this selection is not merely a function of the abundance of a Frankia strain in soil.  相似文献   

2.
In this study it was determined how different species ofAlnus (A. cordata, A. incana and A. glutinosa) responded tocolonisation by arbuscular mycorrhizal (AM) fungi (Glomusmosseae or Glomus intraradices) with regard togrowth and their ability to acquire and utilise nitrogen and phosphorus.Non-mycorrhizal plants but with phosphorus added, were used as control. InA. glutinosa the application of 75 ppm P hadsimilar effect on growth and P acquisition as did AM. Nevertheless,A.cordata and A. incana grew poorly when suppliedwith 75 ppm of P and required AM symbiosis for optimum growth andNand P uptake. The percentage increases in shoot dry biomass in AM colonised ascompared with P-fertilised plants were 441 (A. cordata)and644 (A. incana) whilst AM-colonised A.glutinosa matched P-fertilised plants. Plant shoot N/P ratioincreased in response to AM-colonisation indicating that mycorrhizal effects onN uptake are greater than on P uptake. Information concerning the directinfluence of AM on N acquisition and nutrient use efficiency byAlnus species is important. AM-colonisation provides anexcellent biological mechanism by which Alnus plantsbecamemore efficient P-users. That Alnus sp. are highlymycorrhizal-dependent plants was apparent because AM-colonisation was criticalfor growth of A. incana and A.cordata. In this respect, for maximizing the efficient uptake anduseof N and P, under the growth conditions provided, Alnusplants need to be mycorrhizal. AM symbiosis seems decisive for the successfulestablishment of Alnus sp. in revegetation strategies. Thelow N and P availability in soils where Alnus species areuseful candidates in any recolonisation and reclamation process emphasises theneed to investigate systems by which N and P uptake byAlnus plants can be enhanced.  相似文献   

3.
Nucleotide sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA and 5.8S gene were used to infer the phylogeny of Tilia species (represented by 13 distinct populations) growing in different geographical areas of Hyrcanian forests in northern Iran. Four well-supported lineages were revealed, including that of a new species, T. hyrcana, with stellate trichomes on both sides of the leaves and petiole. T. hyrcana is a well-supported cladospecies, with the ITS sequence and secondary structure following the diagnosable phylogenetic species concept, and is also characterized by a distinct morphology. A controversial species is Tilia rubra subsp. caucasica, with three different forms—an assemblage of taxa characterized by a lack of stellate trichomes on leaves—while Tilia begonifolia is distinguished by stellate trichomes on the underside of both leaves and petiole. The fourth lineage group, T. dastyla, is characterized by the presence of trichomes on the style. A single taxon found in the west of the Hyrcanian forest region is similar to T. begonifolia, but due to the former being located in a distinct group, a reassessment of the diagnostic morphology is recommended. ITS sequence data also suggested a closer relationship between T. rubra and T. begonifolia. Compensatory base change analysis was not strong enough to separate individual species within the Tilia genus. In general, the study supports the utility of ITS sequence data and secondary structure as accessory taxonomic characteristics with which to help clarify the systematics of the Tilia genus.  相似文献   

4.
We investigated 39 previously developed Betula, Alnus, and Corylus simple sequence repeat (SSR) markers for their utility in the cross-generic amplification of two European alder species, i.e., Alnus glutinosa and A. incana. Of these markers, ten loci had successful amplification within Alnus species. Finally, we designed two multiplexes composed of eight and nine loci for A. glutinosa and A. incana, respectively. Multiplexes were tested on 100 samples from five different populations of each species across Europe. The majority of loci had a relatively high genetic diversity, were in Hardy–Weinberg equilibrium, and showed low error rates and low occurrence of null alleles. By comparing sequences of source species and both Alnus species, we concluded that repeat motifs of five of these ten loci differed from those described for the source species. These differences represent mainly the modifications of the original motifs and affected compound or interrupted repeats as well as pure ones. The repeat motifs of three loci of the two alder species also differed. These mutations could lead to erroneous estimates of allele homology, because alleles with identical lengths will not have the same number of repeat units. Hence, before using microsatellite markers in studies comparing two or more species, they should be carefully examined and sequenced to ensure that allele homology is really stable and not affected by various inserts that change the sequence.  相似文献   

5.
All Taphrina species are dimorphic with a mycelium stage biotrophic on vascular plants and a saprophytic yeast stage. European species of Taphrina on Alnus species (Betulaceae) were identified using morphological, physiological and molecular characteristics, the latter including determination of PCR fingerprints and of nucleotide sequences from selected nuclear ribosomal DNA regions. PCR fingerprinting gives a good overview of species identification, as do nucleotide sequences, which in addition, help to clarify phylogenetic relationships. Taphrina alni is a homogeneous species that exhibited more than 50% similarity in PCR fingerprinting with three different primers. Morphologically, it produces tongue-like outgrowths from female catkins of Alnus incana. Taphrina robinsoniana from A. rugosa and A. serrulata in North America is phylogenetically closely related to T. alni, but the two species could be separated by their PCR fingerprints, partial sequences of 26S rDNA (D1/D2) and ITS1/ITS2 sequences. T. epiphylla and T. sadebeckii are two phylogenetically closely related species. T. epiphylla causes witches brooms in crowns of A. incana. In addition, T. epiphylla forms slightly yellow white-grey leaf spots in midsummer on A. incana. Yellow white-grey leaf spots up to 10 mm on A. glutinosa are characteristic for T. sadebeckii. Both species can be separated well by PCR fingerprinting. Different from T. epiphylla, T. sadebeckii is genotypically more heterogeneous. Only two out of three different primers showed similarity values above 50% in different European strains of T. sadebeckii. Although genetic variability was not detected in complete sequences of the 18S ribosomal DNA of T. sadebeckii, ITS1/ITS2 sequences appeared to be more heterogeneous, too. Taphrina tosquinetii is a genotypically homogeneous species causing leaf curl on Alnus glutinosa. It was not possible to distinguish the yeast phases from different Taphrina species on Alnus using morphological and physiological characteristics only. Dedicated to Prof. Dr. Hanns Kreisel on the occasion of his 70th birthday  相似文献   

6.
The nuclear ITS region of 19 species of Alnus was amplified and sequenced. The inferred molecular phylogeny shows that all species of the genus Alnus form a monophyletic group close to Betula and that the fundamental dichotomy within the genus lies between the subgenera Alnaster and Gymnothyrsus, sensu Murai (1964). The subgenus Alnaster appears to be basal in the genus, based on archaism of morphological features, and branching close to the root of the trees due to low ITS divergence from genus Betula. The monophyly of the section Clethropsis is not supported by the present data: Alnus nepalensis is positioned in the subgenus Gymnothyrsus, away from A. nitida and A. maritima. Surprisingly, A. formosana sect. Japonicae is closely tied to A. maritima sect. Clethropsis, with which it shares few morphological traits, and is separate from A. japonica sect. Japonicae with which it shares many traits. An increase in substitution rate is noted in the group comprising A. formosana, A. maritima and A. nitida relative to the rest of the genus, which appears to have had, on the average, a very slow mutation rate. Alnus glutinosa, the designated type for the genus, appears to be representative of the genus both for morphological characters and evolutionary rate. North-East Asia is comforted in its position of origin of the genus since not only does it have the highest number of species and representatives in all deep branching lineages, there are also fewer transcontinental migrations when a North-East Asian ancestor is postulated than when a North American ancestor is postulated.  相似文献   

7.
Field performance of tissue cultured clones and seedlings of Alnus viridis ssp. crispa, A. glutinosa, A. incana, and A. japonica was assessed five years after outplanting in central Ontario. Half the individuals were inoculated with a mixture of four Frankia isolates prior to planting. Inoculation produced significant increases (25% to 33%) in biomass production of two clones of A. glutinosa and one of A. incana. Woody biomass increments for the first five years, averaged across all clones and seedlings, were highest in A. japonica and A. incana (4.3 and 3.7 Mg ha–1 yr–1, respectively). Individual tree growth improved markedly in lower slope positions, but total plot biomass did not show similar gains in downslope positions owing to higher mortality and aphid (Paraprociphilus tessellatus) infestation. Aphids occurred in 22% of Frankia-inoculated individuals, and 15% of non-inoculated individuals. The fastest growing species, A. incana and A. japonica, were most susceptible to aphid attack. Growth of the best clones of A. glutinosa and A. incana exceeded seedling growth by 51% and 76%, respectively. The high growth variation in clones of the same species with similar geographic origins and the excellent performance of tissue cultured stock suggest that rapid genetic gains in an Alnus breeding program might be obtained by clonal propagation.  相似文献   

8.
A new ectomycorrhizal species, Alpova komoviana, is described from several collections from Montenegro (south-eastern Europe), in association with Alnus incana ssp. incana (Betulaceae). Its interesting basal position in the strictly Alnus-associated Alpova lineage is discussed through morphology and phylogenetic analyses based on ITS, gpd and rpb2 nuclear DNA. ITS sequences of two other taxa are included in the analysis: Alpova rubescens and A. rubescens var. obscuratus; their identity and systematic positions are discussed.  相似文献   

9.
Species of Alnus (alders) have become invaders in several parts of the world. Here we report the presence of three naturalized alien species: A. glutinosa, A. incana and A. rubra from several populations in nature reserves of northwestern Patagonia, an area of remarkably high biodiversity. Alnus glutinosa had been cited previously for Chile and southern Argentina, but A. incana and A. rubra are here reported for the first time. As we found morphological variation within and among the populations of these introduced species that makes their discrimination difficult, we used chloroplast (trnH-psbA) and nuclear ribosomal (ITS) DNA sequences to confirm their identifications from morphological characteristics. Results from nuclear and chloroplast sequence data confirm the morphological tentative identification of the three species and remark the utility of molecular information together with morphology for the detection of introduced species of taxonomically difficult groups. The invasive characteristics of these alien tree species are discussed in relation to the conservation of the nature reserves where they are found.  相似文献   

10.
ABSTRACT

The main goals of this research were to reconstruct the infrageneric phylogeny of the genus Primula based on both nuclear and chloroplast DNA sequences, and to use the resulting phylogenies to elucidate the evolution of breeding systems, morphological characters, chromosome number, and biogeographic distribution in the genus. In this paper, the results of a pilot study based on the nuclear ribosomal Internal Transcribed Spacer (ITS) region are described. ITS sequences from 21 taxa produced a number of variable characters sufficient to resolve relationships among sections. The resulting phylogeny confirmed the monophyly of sections Auricula and Aleuritia. Sections Armerina, Proliferae, Crystallophlomis, Parryi, and Auricula, with a base chromosome number of x = 11, and sect. Aleuritia, with a base chromosome number of x = 9, formed two well supported clades. The ITS topology also suggested that leaves with revolute vernation, previously believed to be a derived state, might represent the ancestral condition in Primula, with later reversals to the involute condition. Finally, this initial ITS tree provides preliminary support to the proposed role of the widespread, diploid and heterostylous P. mistassinica as having given origin to the polyploid, homostylous P. incana and P. laurentiana.  相似文献   

11.
To examine the geographic patterns in Alnus-associated ectomycorrhizal (ECM) fungal assemblages and determine how they may relate to host plant biogeography, we studied ECM assemblages associated with two Alnus species (Alnus acuminata and Alnus jorullensis) in montane Mexico and compared them with Alnus-associated ECM assemblages located elsewhere in the Americas. ECM root samples were collected from four sites in Mexico (two per host species), identified with ITS and LSU rRNA gene sequences, and assessed using both taxon- (richness, diversity, evenness indices) and sequence divergence-based (UniFrac clustering and significance) analyses. Only 23 ECM taxa were encountered. Clavulina, an ECM lineage never before reported with Alnus, contained the dominant taxon overall. ECM assemblage structure varied between hosts, but UniFrac significance tests indicated that both associated with similar ECM lineage diversity. There was a strikingly high sequence similarity among a diverse array of the ECM taxa in Mexico and those in Alnus forests in Argentina, the United States, and Europe. The Mexican and United States assemblages had greater overlap than those present in Argentina, supporting the host–ECM fungi co-migration hypothesis from a common north temperate origin. Our results indicate that Alnus-associated ECM assemblages have clear patterns in richness and composition across a wide range of geographic locations. Additional data from boreal western North America as well as the eastern United States and Canada will be particularly informative in further understanding the co-biogeographic patterns of Alnus and ECM fungi in the Americas.  相似文献   

12.
Molecular phylogenetic analyses of the nuclear ribosomal DNA internal transcribed spacer (ITS 1 and ITS 2) and the 5.8S gene were used to infer a phylogeny among the ten recognized taxa of Froelichia in North America. Analyses using both maximum parsimony (MP) and maximum-likelihood (ML) depicted a low level of sequence divergence though it was sufficient in most cases to differentiate taxa. Froelichia xantusii, a species restricted to southern Baja California was shown to be the basalmost member of the group subtending three clades. Two of the clades received good bootstrap support in the MP analysis and corresponded to a genetically homogeneous F. interrupta, and a clade comprising the two species F. latifolia and F. texana. A third clade receiving low bootstrap support contained F. floridana, F. gracilis, F. arizonica, and F. drummondii. Species diversity within the genus was centered within the Tamaulipan Brushland region of north-east Mexico and the southern portion of the US state of Texas where taxa from two of the three principal clades occurred, indicating a region of high speciation and diversification within the genus.  相似文献   

13.
The Hyrcanian forest of northern Iran is considered one of the potential centres for the evolution and domestication of the genus Malus (Rosaceae). However, the biogeography, phylogenetic position, and taxonomic status of the Hyrcanian wild apples have never been evaluated. In our study, the nucleotide sequences of the internal transcribed spacer (ITS) and the trnH-psbA intergenic spacer region from 14 natural populations were analysed. Phylogenetic analysis based on the ITS and the Maximum-likelihood (ML) tree showed that all Hyrcanian samples were closely related to M. orientalis and M. asiatica and can be placed within section Malus and series Malus. Furthermore, based on a comparison of ITS2 secondary structures, the Hyrcanian samples were identical to M. orientalis and M. sieversii. Biogeographic scenarios constructed using Statistical Dispersal-Vicariance Analysis (S-DIVA) and the Bayesian Binary Method (BBM) indicated that the ancestor of Malus originated during the Eocene, ~53 million years ago (Ma), and that China played a vital role in the expansion of the range of the genus. The members of Malus colonized the Hyrcanian region from China during the Miocene, ~22-10?Ma.  相似文献   

14.
DNA barcoding of plants poses particular challenges, especially in differentiating, recently diverged taxa. The genus Gentiana (Gentianaceae) is a species-rich plant group which rapidly radiated in the Himalaya-Hengduan Mountains in China. In this study, we tested the core plant barcode (rbcL + matK) and three promising complementary barcodes (trnH-psbA, ITS and ITS2) in 30 Gentiana species across 6 sections using three methods (the genetic distance-based method, Best Close Match and tree-based method). rbcL had the highest PCR efficiency and sequencing success (100%), while the lowest sequence recoverability was from ITS (68.35%). The presence of indels and inversions in trnH-psbA in Gentiana led to difficulties in sequence alignment. When using a single region for analysis, ITS exhibited the highest discriminatory power (60%-74.42%). Of the combinations, matK + ITS provided the highest discrimination success (71.43%-88.24%) and is recommended as the DNA barcode for the genus Gentiana. DNA barcoding proved effective in assigning most species to sections, though it performed poorly in some closely related species in sect. Cruciata because of hybridization events. Our analysis suggests that the status of G. pseudosquarrosa needs to be studied further. The utility of DNA barcoding was also verified in authenticating ‘Qin-Jiao’ Gentiana medicinal plants (G. macrophylla, G. crassicaulis, G. straminea, and G. dahurica), which can help ensure safe and correct usage of these well-known Chinese traditional medicinal herbs.  相似文献   

15.
The food preference of the trichopteran shredder Anabolia nervosa from two streams with different food availability was studied in laboratory preference experiments. One stream was unshaded and had abundant growth of the submerged macrophyte Potamogeton perfoliatus. The other was shaded by trees (Alnus glutinosa) and had very sparse growth of submerged macrophytes. To test the food preference of Anabolia nervosa for terrestrial leaf litter and submerged plants we offered leaves of: conditioned Alnus glutinosa, fresh green Alnus, conditioned Fagus sylvatica, fresh green Fagus, and fresh submerged Potamogeton perfoliatus. For both larval populations conditioned Alnus was the most consumed food item, followed by Potamogeton. Larvae from the Alnus-shaded stream preferred conditioned Alnus over all other food items, while larvae from the macrophyte stream did not clearly discriminate between conditioned Alnus and Potamogeton. The three remaining food items were largely rejected. Food items were analyzed for dry matter, organic matter, fibre, nitrogen, phosphorus and toughness. Preference was not correlated to any of these food characteristics, but we suggest that they may still be important and influence food choice in a complex manner. The study indicates that the preference pattern of Anabolia nervosa is not clearly related to previous feeding habituation. The ability to feed on fresh Potamogeton is, therefore, not acquired by certain populations of larvae through long exposure to this resource in the field. The high preference for fresh Potamogeton suggests that Anabolia nervosa may actively select Potamogeton as food even when alternative food sources such as terrestrial leaf litter are abundant in the field.  相似文献   

16.
Evolutionary relationships within Astragalus L. (Fabaceae) were inferred from nucleotide sequence variation in nuclear ribosomal DNA of both New World and Old World species. The internal transcribed spacer regions (ITS) of 18S–26S nuclear ribosomal DNA from representatives of 26 species of Astragalus, three species of Oxytropis DC., and two outgroup taxa were analyzed by polymerase chain reaction amplification and direct DNA sequencing. The length of the ITS 1 region within these taxa varied from 221 to 231 bp, while ITS 2 varied in length from 207 to 217 bp. Of the aligned, unambiguous positions, approximately 34% were variable in each spacer region. In pairwise comparisons among Astragalus species and outgroup taxa, sequence divergence at these sites ranged from 0 to 18.8% in ITS 1 and from 0 to 21.7% in ITS 2. Parsimony analyses of these sequences resulted in a well-resolved phylogeny that is highly concordant with previous cytogenetic and chloroplast DNA evidence for a major phylogenetic division in the genus. These data suggest that the New World aneuploid species of Astragalus form a monophyletic but morphologically cryptic group derived from euploid species of Old World (Eurasian) origin, which are consequently paraphyletic.  相似文献   

17.
The efficiency of different FinnishFrankia strains as symbionts onAlnus incana (L.) Moench was evaluated in inoculation experiments by measuring nitrogen fixation and biomass production. Since all available pure cultures ofFrankia are of the Sp type (sporangia not formed in nodules), but the dominant nodule endophyte ofA. incana in Finland is of the Sp+ type (sporangia formed in nodules), crushed nodules of thisFrankia type were included. The Sp pure cultures, whether originating fromA. incana orA. glutinosa, produced with one exception, similar biomass withA. incana. The highest biomass was produced with an American reference strain fromA. viridis crispa. Using Sp+ nodule homogenates fromA. incana as inoculum, the biomass production was only one third of that produced by Sp pure cultures from the same host. Hence, through selection of the endophyte it is possible to exert a considerable influence on the productivity ofAlnus incana.  相似文献   

18.
Two major types of Frankia strains are usually recognized, based on the ability to sporulate in‐planta: spore‐positive (Sp+) and spore‐negative (Sp?). We carried out a study of Sp+ and Sp? Frankia strains based on nodules collected on Alnus glutinosa, Alnus incana and Alnus viridis. The nodules were phenotyped using improved histology methods, and endophytic Frankia strain genotype was determined using a multilocus sequence analysis approach. An additional sampling was done to assess the relation between Sp+ phenotype frequency and genetic diversity of Frankia strains at the alder stand scale. Our results revealed that (i) Sp+ and Sp? Alnus‐infective Frankia strains are genetically different even when sampled from the same alder stand and the same host–plant species; (ii) there are at least two distinct phylogenetic lineages of Sp+ Frankia that cluster according to the host–plant species and without regard of geographic distance and (iii) genetic diversity of Sp+ strains is very low at the alder stand scale compared with Sp? strains. Difference in evolutionary history and genetic diversity between Sp+ and Sp? Frankia allows us to discuss the possible ecological role of in‐planta sporulation.  相似文献   

19.
Frankia DNAs were isolated directly from root nodules of Alnus nepalensis and Alnus nitida collected from various natural sites in India. For comparison, a nodule sample from Alnus glutinosa was also collected from Tuebingen, Germany. Nucleotide sequence analyses of amplified 16S–23S ITS region revealed that one of the microsymbionts from Alnus nepalensis was closely related to the microsymbiont from Alnus glutinosa. A similar exercise on the host was also carried out. It was found that one sample of Alnus nepalensis was closely related to Alnus glutinosa sequence from Europe. Since both Frankia and the host sequences studied revealed proximity between Alnus glutinosa and Alnus nepalensis, it is hypothesised that the common progenitor of all the alders first entered into an association with Frankia, and the symbiotic association has evolved since.  相似文献   

20.
Aim To discover the pattern of relationships of areas of endemism for Australian genera in the plant family Rhamnaceae tribe Pomaderreae for comparison with other taxa and interpretation of biogeographical history. Location Australian mainland, Tasmania and New Zealand. Methods A molecular phylogeny and geographic distribution of species within four clades of Pomaderreae are used as a basis for recognition of areas of endemism and analysis of area relationships using paralogy‐free subtrees. The taxon phylogeny is the strict consensus tree from a parsimony analysis of 54 taxa, in four clades, and sequence data for the internal transcribed spacer regions of ribosomal DNA (ITS1‐5.8S‐ITS2) and the plastid DNA region trnL‐F. Results The biogeographical analysis identified five subtrees, which, after parsimony analysis, resulted in a minimal tree with 100% consistency and seven resolved nodes. Three sets of area relationships were identified: the areas of Arnhem and Kimberley in tropical north Australia are related based on the phylogeny of taxa within Cryptandra; the moister South‐west of Western Australia, its sister area the coastal Geraldton Sandplains, the semi‐arid Interzone region and arid Western Desert are related, based on taxa within Cryptandra, Spyridium, Trymalium and Pomaderris; and the eastern regions of Queensland, McPherson‐Macleay, south‐eastern New South Wales (NSW), Victoria, southern Australia, Tasmania and New Zealand are related based on Cryptandra, Pomaderris and Spyridium. Tasmania and NSW are related based entirely on Cryptandra, but the position of New Zealand relative to the other south‐eastern Australian regions is unresolved. Main conclusions The method of paralogy‐free subtrees identified a general pattern of geographic area relationships based on Australian Pomaderreae. The widespread distribution of clades, the high level of endemicity and the age of fossils for the family, suggest that the Pomaderreae are an old group among the Australian flora. Their biogeographical history may date to the early Palaeogene with subsequent changes through to the Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号