首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 666 毫秒
1.
The species richness and density of lianas (woody vines) in tropical forests is determined by various abiotic and biotic factors. Factors such as altitude, forest patch size and the degree of forest disturbance are known to exert strong influences on liana species richness and density. We investigated how liana species richness and density were concurrently influenced by altitude (1700–2360 m), forest patch size, forest patch location (edge or interior) and disturbance intensity in the tropical montane evergreen forests, of the Nilgiri and Palni hills, Western Ghats, southern India. All woody lianas (≥1 cm dbh) were enumerated in plots of 30 × 30 m in small, medium and large forest patches, which were located along an altitudinal gradient ranging from 1700 to 2360 m. A total of 1980 individual lianas were recorded, belonging to 45 species, 32 genera and 21 families, from a total sampling area of 13.86 ha (across 154 plots). Liana species richness and density decreased significantly with increasing altitude and increased with increasing forest patch size. Within forest patches, the proportion of forest edge or interior habitat influenced liana distribution and succession especially when compared across the patch size categories. Liana species richness and density also varied along the altitudinal gradient when examined using eco-physiological guilds (i.e. shade tolerance, dispersal mode and climbing mechanism). The species richness and density of lianas within these ecological guilds responded negatively to increasing altitude and positively to increasing patch size and additionally displayed differing sensitivities to forest disturbance. Importantly, the degree of forest disturbance significantly altered the relationship between liana species richness and density to increasing altitude and patches size, and as such is likely the primary influence on liana response to montane forest succession. Our findings suggest that managing forest disturbance in the examined montane forests would assist in conserving local liana diversity across the examined altitudinal range.  相似文献   

2.
Aim Lianas are abundant and diverse throughout the world and constitute an important structural and functional component of tropical forests. This study aims to investigate liana diversity, abundance and their functional traits in Indian tropical dry evergreen forest (TDEF).Methods A total of ten 1-ha plots, one each in 10 Indian TDEF sites were demarcated. Each 1-ha plot was divided into one-hundred 10- × 10-m quadrats to facilitate woody species inventory. All lianas ≥1cm diameter measured at 130cm from the rooting point and all trees ≥10-cm girth at breast height (gbh) were recorded from the study sites to analyze the patterns of liana diversity and abundance and also to compare the contribution of lianas to the total woody species richness, density and basal area. Liana variables across the study sites were compared using one-way analysis of variance. The qualitative functional traits of inventoried lianas and trees were assessed on the field and referring to pertinent field manuals.Important findings A total of 9237 liana individuals (ranged from 408–1658 individuals ha-1) representing 52 species, 45 genera and 28 families were encountered from the 10 study sites. Liana species richness ranged from 11–31 species ha-1 in 10 sites, which averaged 23.4 (±5.7) species ha-1. The total basal area of lianas in the study sites was 7. 3 m 2 (0.20–1.76 m 2 ha-1). There was a significant variation in liana species richness, density and basal area across the studied sites. On the whole, lianas contributed 52%, 49.3% and 4.1% to the total woody species (lianas and trees) richness, density and basal area, respectively. Liana trait analysis revealed the majority (50%) of lianas belonged to brevi-deciduous type. Stem twining was the chief climbing mechanism, exhibited by 21 species (52.6% of total abundance). More than half of the liana species (34 species; 6925 individuals) had microphyllous leaves. Fleshy-fruited lianas mostly bearing berries and drupes constituted the major fruit type in the studied sites. Zoochory was the predominant dispersal mode observed in 63.4% of species. Considering the ecological and functional role of lianas in Indian TDEF, the need for conservation is emphasized.  相似文献   

3.
Changes in tree, liana, and understory plant diversity and community composition in five tropical rain forest fragments varying in area (18–2600 ha) and disturbance levels were studied on the Valparai plateau, Western Ghats. Systematic sampling using small quadrats (totaling 4 ha for trees and lianas, 0.16 ha for understory plants) enumerated 312 species in 103 families: 1968 trees (144 species), 2250 lianas (60 species), and 6123 understory plants (108 species). Tree species density, stem density, and basal area were higher in the three larger (> 100 ha) rain forest fragments but were negatively correlated with disturbance scores rather than area per se. Liana species density, stem density, and basal area were higher in moderately disturbed and lower in heavily disturbed fragments than in the three larger fragments. Understory species density was highest in the highly disturbed 18‐ha fragment, due to weedy invasive species occurring with rain forest plants. Nonmetric multidimensional scaling and Mantel tests revealed significant and similar patterns of floristic variation suggesting similar effects of disturbance on community compositional change for the three life‐forms. The five fragments encompassed substantial plant diversity in the regional landscape, harbored at least 70 endemic species (3.21% of the endemic flora of the Western Ghats–Sri Lanka biodiversity hotspot), and supported many endemic and threatened animals. The study indicates the significant conservation value of rain forest fragments in the Western Ghats, signals the need to protect them from further disturbances, and provides useful benchmarks for restoration and monitoring efforts.  相似文献   

4.
Yi Ding  Runguo Zang 《Biotropica》2009,41(5):618-624
Lianas are an integral part of tropical forest ecosystems, which usually respond strongly to severe disturbances, such as logging. To compare the effect of different logging systems on the lianas diversity in tropical rain forest, we recorded all lianas and trees ≥1 cm dbh in two 40-year-old forest sites after clear cutting (CC) and selective cutting (SC) as well as in an old-growth (OG) lowland tropical rain forest on Hainan Island in south China. Results showed that OG contained fewer liana stems and lower species richness (stems: 261, richness: 42 in 1 ha) than CC (606, 52) and SC (727, 50). However, OG had the highest Fisher's α diversity index (17.3) and species richness per stem (0.184). Species composition and dbh class distribution of lianas varied significantly with different logging systems. The mean liana dbh in OG (22.1 cm) were higher than those in CC (7.0 cm) and SC (10.4 cm). Stem twining was the most frequent climbing mechanism represented in the forest, as shown by the greatest species richness, abundance, basal area, and host tree number with this mechanism. The percent of host tree stems ≥4 cm dbh hosting at least one liana individual in SC (39%) was higher than CC (23%) and OG (19.5%). Large host trees (dbh≥60 cm) were more likely to be infested by lianas in SC and OG. Our study demonstrated that logging disturbance could significantly change the composition and structure of liana communities in the lowland tropical rain forest of south China.
  相似文献   

5.
In tropical evergreen forest in the Kolli Hills of the Indian Eastern Ghats, four 2 ha (100 m × 200 m) replicate plots (two plots each in undisturbed and human-impacted sites), were inventoried for species diversity of lianas 5 cm girth at breast height (g.b.h.) and their relationships with 30 cm g.b.h. host trees. Liana diversity included 26 species from 18 families and 24 genera. The population density and basal area of lianas in the study plots were 48 individuals ha–1 and 0.23 m2 ha–1, respectively, while those of the trees were 478 stems ha–1 and 43.6 m2 ha–1, respectively. As the lianas and their hosts had often been cut in the disturbed sites, their diversity was less there than in the undisturbed sites. Five (19%) liana species were common to all four sites. Three lianas, Hiptage benghalensis (Malpighiaceae), Elaeagnus indica (Elaeagnaceae) and Gnetum ula (Gnetaceae) were dominant. The twining mechanism (54% of liana species and 71% of individuals) and zoochorous diaspores (73% of species and 77% of individuals) predominated. A total of 336 trees from 39 species, 34 genera and 22 families hosted 345 lianas. The ratio of liana : host for species was 1 : 1.5 and for individuals was 1 : 1. Liana preferences for certain host trees, host girth classes and trellis heights were evident.  相似文献   

6.
Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community composition, diversity, abundance, and spatial distribution – critical components for measuring the contribution of lianas to forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas ≥1 cm rooted in a 50-ha plot on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for stems ≥1 cm diameter and nearly 140% for stems ≥5 cm diameter, while tree density on BCI decreased 11.5%; a finding consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps, and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and other neotropical forests.  相似文献   

7.
Liana diversity was inventoried in four tropical dry evergreen forest sites that are characterized by numerous trees, of short stature and small diameter, and a varying degree of anthropogenic disturbance, on the Coromandel coast of south India. A 1-ha plot was established in each of the four sites and was subdivided into 100 quadrats of 10 m× 10 m. All lianas 1 cm diameter at breast height (dbh) rooted within the plot were enumerated. The species richness and density of lianas, with respect to site disturbance and forest stature, varied across the sites. Liana density totaled 3307 individuals (range 497–1163 individuals ha–1) and species richness totaled 39 species (range 24–29 species ha–1) representing 34 genera and 24 families. Combretaceae, Asclepiadaceae, Capparaceae and Vitaceae were the well-represented families. The top five species Strychnos minor, Combretum albidum, Derris ovalifolia, Jasminum angustifolium and Reissantia indica contributed 55% of total density. The slopes of the species–area curves were different for each of the four sites and the curve stabilized in only one site. Of the four climbing modes recognized among the total 39 species, 18 were twiners (56% of the total density). Eight species (24% of density) were tendril climbers and 12 species (16% of density) were scramblers. Hugonia mystax was the only hook climber. All the 39 species and 88% of liana density were encountered within a category of 6 cm dbh or less, and a similar pattern prevailed in the individual sites. Of the three diaspore dispersal modes found among the 39 liana species, animal (64%) and wind (23%) dispersal were predominant over the autochorous mode (13%). Liana diversity and distribution in dry forest communities appear to be influenced by forest stature and site disturbance levels. In the light of the extent of liana diversity and sacred grove status of the study sites, the need for forest conservation, involving local people, is emphasized.  相似文献   

8.
In this study we attempted to explore patterns of diversity, abundance, climbing and dispersal mode of lianas in relation to disturbance in 40 Indian subtropical dry forests. The sites were selected to represent four disturbance categories: relatively undisturbed, moderately disturbed, much disturbed and heavily disturbed. All lianas ≥1 cm dbh were counted, which resulted in a total amount of 5689 individuals of lianas, representing 77 species in 62 genera and 32 families. Liana species richness and abundance increased with forest disturbance, but the liana basal area values showed an opposite trend, with high scores in undisturbed sites. Twining was the main climbing mechanism (61.3%) and zoochory (59.6%) was the main dispersal mode in all the four forest categories. Application of Bray–Curtis cluster analysis produced three distinct clusters in which the much disturbed category was more distant from the others. High abundance of large lianas in undisturbed sites and that of the invasive Lantana camara in heavily disturbed site signals the conservation significance of the less disturbed study sites. The predominance of zoochorous dispersal indicates the faunal dependence of lianas, besides of host trees, thus underlining the need for a holistic approach in biodiversity conservation of this and similar tropical forests.  相似文献   

9.
Aim Lianas differ physiologically from trees, and therefore their species‐richness patterns and potential climate‐change responses might also differ. However, multivariate assessments of spatial patterns in liana species richness and their controls are lacking. Our aim in this paper is to identify the environmental factors that best explain the variation in liana species richness within tropical forests. Location Lowland and montane Neotropical forests. Methods We quantified the contributions of environmental variables and liana and tree‐and‐shrub abundance to the species richness of lianas, trees and shrubs ≥ 2.5 cm in diameter using a subset of 65 standardized (0.1 ha) plots from 57 Neotropical sites from a global dataset collected by the late Alwyn Gentry. We used both regression and structural equation modelling to account for the effects of environmental variables (climate, soil and disturbance) and liana density on liana species richness, and we compared the species‐richness patterns of lianas with those of trees and shrubs. Results We found that, after accounting for liana density, dry‐season length was the dominant predictor of liana species richness. In addition, liana species richness was also related to stand‐level wood density (a proxy for disturbance) in lowland forests, a pattern that has not hitherto been shown across such a large study region. Liana species richness had a weak association with soil properties, but the effect of soil may be obscured by the strong correlation between soil properties and climate. The diversity patterns of lianas and of trees and shrubs were congruent: wetter forests had a greater species richness of all woody plants. Main conclusions The primary association of both liana and tree‐and‐shrub species richness with water availability suggests that, if parts of the Neotropics become drier as a result of climate change, substantial declines in the species richness of woody plants at the stand level may be anticipated.  相似文献   

10.
Lianas (woody climbers) are structural parasites of trees that compete with them for light and below‐ground resources. Most studies of liana–tree interactions are based on ground‐level observations of liana stem density and size, with these assessments generally assumed to reflect the amount of liana canopy cover and overall burden to the tree. We tested this assumption in a 1‐ha plot of lowland rainforest in tropical Australia. We recorded 1072 liana stems (≥1 cm diameter at breast height {dbh}) ha?1 across all trees (≥10 cm dbh) on the plot and selected 58 trees for detailed study. We estimated liana canopy cover on selected trees that hosted 0–15 liana individuals, using a 47‐m‐tall canopy crane. Notably, we found no significant correlations between liana canopy cover and three commonly used ground‐based measurements of liana abundance as follows: liana stem counts per tree, liana above‐ground biomass per tree and liana basal area per tree. We also explored the role of tree size and liana infestation and found that larger trees (≥20 cm dbh) were more likely to support lianas and to host more liana stems than smaller trees (≤20 cm dbh). This pattern of liana stem density, however, did not correlate with greater liana coverage in the canopy. Tree family was also found to have a significant effect on likelihood of hosting lianas, with trees in some families 3–4 times more likely to host a liana than other families. We suggest that local ground‐based measures of liana–tree infestation may not accurately reflect liana canopy cover for individual trees because they were frequently observed spreading through neighbouring trees at our site. We believe that future liana research will benefit from new technologies such as high‐quality aerial photography taken from drones when the aim is to detect the relative burden of lianas on individual trees.  相似文献   

11.
木质藤本植物是热带、亚热带山地森林重要的组分之一, 在森林动态、生态系统过程和森林生物多样性形成与维持等方面具有重要作用。本文调查了哀牢山中山湿性常绿阔叶林木质藤本植物的多样性及其在垂直和水平空间上的分布规律。在20个20 m × 50 m的样地中共调查到DBH≥0.2 cm的木质藤本植物1,145株, 隶属于19科25属29种, 其中物种最丰富的科为菝葜科(4种)和蔷薇科(3种), 但多度最高的科为葡萄科(363株, 占总株数的31.7%)。研究发现林下木质藤本(通常DBH < 1 cm)拥有较高的物种丰富度和多度, 对木质藤本植物多样性具有较大的贡献。有55.7%的个体分布在林下层, 林冠层占28.8%, 亚冠层只有15.5%。木质藤本的垂直空间分布在不同径级、不同攀援类型之间具有明显的差异。 从水平空间分布来看, 地形是影响木质藤本的一个重要因素: 沟谷木质藤本的物种丰富度、多度和基面积分别是坡面的171%, 420%和606%; 有12个物种只分布在沟谷生境。这表明哀牢山中山湿性常绿阔叶林木质藤本植物对生境具有偏好性。  相似文献   

12.
Aim Due to the important role of lianas in the functioning of forest ecosystem, knowledge of the factors that affect them are important in the management of forests. Currently, there are conflicting reports on the response of liana communities to disturbance, calling for more research in the area. The present study was carried out to investigate the response of liana diversity and structure to human disturbance within two major forests in the Penang National Park, Malaysia. The study also looked at the implication of the findings for conservation.Methods A total of 15 40 × 40-m 2 (or 40-m × 40-m) plots each were randomly located across a range of habitats in a primary forest and disturbed secondary forest. Trees with diameter at breast height ≥10 cm were examined for lianas with diameter ≥2 cm. Both lianas and trees were enumerated and compared between the two forests. Diversity and structural variables of lianas were compared between the two forests using the t -test analysis. Tree abundance was also compared between the two forests with t -test, while linear regression analysis was run to determine the effects of tree abundance on liana abundance.Important findings A total of 46 liana species belonging to 27 genera and 15 families were identified in the study. Human disturbance significantly reduced liana species richness and species diversity in the secondary forest. Liana abundance remained the same in both forests whereas liana basal area was significantly higher in the primary forest. Twiners and hook climbers were significantly more abundant in the primary and secondary forest, respectively. Large diameter lianas were more abundant in the primary forest compared with the secondary forest. The diameter distribution of most families in the primary forest followed the inverted J-shaped curve whereas only a few of the families in the secondary forest did so. Tree abundance was significantly higher in the primary forest. The abundance of lianas significantly depended on tree abundance in all the forests. The study has provided evidence of negative effects of human disturbance on liana diversity and structure that does not auger well for biodiversity in the forest. In view of the critical role of lianas in maintaining biodiversity in the forest ecosystem, lianas in the national park should be protected from further exploitation.  相似文献   

13.
Abstract. Species richness, abundance, size-class distribution, climbing mode and spatial patterns of lianas were investigated in a 30-ha permanent plot of tropical evergreen forest at Varagalaiar in the Anamalais, Western Ghats, India. Each hectare was subdivided into 10 m × 10 m quadrats, in which all lianas ≥ 1 cm d.b.h. were measured, tagged and identified. The total liana density was 11, 200 individuals (373 ha–1) and species richness was 75 species, representing 66 genera and 37 families. The richness estimators employed for species and family accumulation curves after 100 times randomization of sample order, have stabilized the curves at 16th and 15th hectares, respectively. A greater proportion of lianas was twiners (55% of species and 44.4% of density) and root climbers (5% of species and 14% of density), and a few were tendril climbers, reflecting the late successional stage of the forest. In the size-class distribution, 82% of abundance and 97% of species richness fell within 1–3 cm diameter threshold. The dominance of succulent diaspore type signifies the faunal dependence of lianas on vertebrate frugivores for dispersal. The diversity, population density and family composition of lianas of our site is compared with those of other tropical forests. The need for biomonitoring of this synusia in the permanent plot for forest functioning is emphasized.  相似文献   

14.
Tropical secondary forests form an important part of the landscape. Understanding functional traits of species that colonize at different points in succession can provide insight into community assembly. Although studies on functional traits during forest succession have focused on trees, lianas (woody vines) also contribute strongly to forest biomass, species richness, and dynamics. We examined life history traits of lianas in a forest chronosequence in Costa Rica to determine which traits vary consistently over succession. We conducted 0.1 ha vegetation inventories in 30 sites. To examine the establishment of young individuals, we only included small lianas (0.5–1.5 cm diameter at 1.3 m height). For each species, we identified seed size, dispersal mode, climbing mode, and whether or not the seedling is self‐supporting. We found a strong axis of variation determined by seed size and seedling growth habit, with early successional communities dominated by small‐seeded species with abiotic dispersal and climbing seedlings, while large‐seeded, animal‐dispersed species with free‐standing seedlings increased in abundance with stand age. Contrary to previous research and theory, we found a decrease in the abundance of stem twiners and no decrease in the abundance of tendril‐climbers during succession. Seed size appears to be a better indicator of liana successional stage than climbing mode. Liana life history traits change predictably over succession, particularly traits related to seedling establishment. Identifying whether these trait differences persist into the growth strategies of mature lianas is an important research goal, with potential ramifications for understanding the impact of lianas during tropical forest succession.  相似文献   

15.
Landscape variation of liana communities in a Neotropical rain forest   总被引:4,自引:0,他引:4  
We studied local and landscape variation of liana communities across habitats differing in soil and topography in the Lacandon tropical rain forest, southeast Mexico. All liana stems 1 cm diameter breast height (DBH) were sampled within each one of eight 0.5 ha plots. Two plots were sampled in each of the following habitats: alluvial-terrace, flood plain, low-hill, and karst-range. In the whole sampled area, we recorded 2092 liana stems ha–1 representing a total basal area of 1.95 m2 ha–1 and 90 species within 34 families. Lianas showed a strong clumped spatial pattern and a high taxonomic diversity at the scale of 50 m2. On average (± s.e.), we found 10.4±0.6 stems, 4.4±0.2 species and 3.4±0.2 families per 50-m2 quadrat. Bignonaceae (19 species), Malpighiaceae (9), and Fabaceae (8) comprised about 40% of total number of recorded species, and almost 50% of the total liana biomass, as expressed by an importance value index that combines species relative abundance, spatial frequency and basal area. Nineteen families (56%) were represented by just one species and Cydista (Bignoniaceae) and Machaerium (Fabaceae) were the most diverse genera with four species each. In the landscape, lianas showed a geometric diversity-dominance relationship with only three species (Combretum argenteum, Hiraea fagifolia and Machaerium floribundum) accounting for more than 50% of total biomass. More than 30% of the species were rare (<15 stems ha–1) and showed low spatial frequency (recorded in just one of the eight plots). Liana communities differed in structure and composition among sites and habitats. Among sites, lianas exhibited four-fold variation both in stem density and basal area and two-fold variation in species richness. Liana density was significantly and positively correlated with treefall disturbance. Ordination analysis indicated a strong habitat differentiation of lianas at the family and species levels. Most species with non-random distribution among habitats (69% from 25 species) were significantly most abundant in low-hill or flood plain sites, and some (12%) were preferentially found at the karst-range sites. The karst-range habitat was well differentiated from the others in species composition and structure, and shared only 50% of common species with other habitats.Soil water availability, treefall dynamics, as well as tree host identity and abundance may play an important role in the organisation of the liana communities at the Lacandon forest.  相似文献   

16.
Liana dynamics in secondary and mature forests are well known in tropical areas dominated by native tree species. Outside the tropics and in secondary forests invaded by exotic species, knowledge is scarce. In this study, we compare liana communities between secondary and mature forests dominated by native species in a subtropical montane area of Sierra de San Javier, Tucuman, Argentina. Additionally, we evaluate changes of liana communities in secondary forests with increasing densities of Ligustrum lucidum and Morus alba, two of the most invasive exotic trees of the area. We surveyed liana species richness and density in three 30-year secondary patches, four 60-year secondary patches, and four mature patches dominated by native tree species, to analyze changes in liana communities with forest age. Within each patch, we sampled 10–25 20 × 20 m quadrats. Additionally, we surveyed liana density and species richness in secondary forest patches with different densities of L. lucidum and M. alba. In native-dominated forests, liana species richness increased and showed a tendency of increasing basal area from 30-year secondary forests to mature forests. Liana density was highly variable, and most of the species were shared between native-dominated secondary and mature forests. Liana density and species richness decreased with L. lucidum density, whereas in secondary forests highly dominated by M. alba, lianas increased in density. Overall, lianas followed different pathways influenced by native forest succession and exotic tree invasions.  相似文献   

17.
Most studies have concluded that liana diversity and structure increase with disturbance. However, a contradictory pattern has emerged recently calling for more research in the area. Liana diversity and structure were investigated in three forest types that differ in disturbance intensity (nondisturbed, moderately disturbed and heavily disturbed forest: NDF, MDF and HDF, respectively) in the Atewa Range Forest Reserve, Ghana. In each forest type, 10 square plots of 0.25 ha were demarcated. Lianas with diameter ≥1 cm located on trees with diameter ≥10 cm were enumerated. A total of 429 individuals representing 40 species, 29 genera and seventeen families were identified in the study. Shannon diversity and species richness of lianas were significantly lower in the HDF (P < 0.05). Liana density and basal area differed significantly across all forest types (P < 0.0001). The importance value index (IVI) of most liana species varied greatly across the forest types. The current study has provided evidence to support the pattern of decreasing liana diversity and structure with disturbance in some tropical forests. Further studies are recommended to gain more understanding of the factors that are responsible for the divergent liana responses to disturbance in tropical forests.  相似文献   

18.
Lianas are woody vines that play an important role in forest dynamics in tropical and subtropical areas. Their relationship to various biotic and abiotic conditions is, however, not yet wholly clear. We explored how the size, climbing mechanisms, diversity and abundance of woody lianas is related to host plant size, environmental factors and topography. Liana assemblages were examined in twenty 20 × 20 m plots in each of three topographic sites (valley, slope and ridge) in a subtropical secondary forest in southeastern Taiwan. The valley site had the highest abundance and species richness of lianas. The abiotic factors, soil pH and rock cover, were related to different topographic sites. Larger lianas were always found on larger host trees, while smaller lianas were found in smaller trees; no lianas with a DBH greater than 10 cm were found. Significantly more adhesive lianas were found on larger trees whereas twining and leaning-hook lianas were found in smaller trees. In conclusion, this study demonstrates that the species of liana is associated with the size and type of tree growing under different topographic conditions.  相似文献   

19.
Lianas (woody vines) contribute substantially to the diversity and structure of most tropical forests, yet little is known about the importance of habitat specialization in maintaining tropical liana diversity and the causes of variation among forests in liana abundance and species composition. We examined habitat associations, species diversity, species composition, and community structure of lianas at Sepilok Forest Reserve, Sabah, Malaysia in northeastern Borneo among three soil types that give rise to three distinct forest types of lowland tropical rain forest: alluvial, sandstone hill, and kerangas (heath) forest. Alluvial soils are more nutrient rich and have higher soil moisture than sandstone soils, whereas kerangas soils are the most nutrient poor and drought prone. Lianas ≥0.5-cm in diameter were measured, tagged, and identified to species in three square 0.25-ha plots in each forest type. The number of lianas ≥0.5 cm did not differ significantly among forest types and averaged 1348 lianas ha−1, but mean liana stem diameter, basal area, estimated biomass, species richness, and Fisher’s diversity index were all greater for plots in alluvial than sandstone or kerangas forests. Liana species composition also differed greatly among the three habitats, with 71% of species showing significant positive or negative habitat associations. Sandstone forests were intermediate to alluvial and kerangas forests in most aspects of liana community structure and composition, and fewer species showed significant habitat associations with this forest type. Ranking of forest types with respect to liana density, biomass, and diversity matches the ranking in soil fertility and water availability (alluvial > sandstone hill > kerangas). These results suggest that edaphic factors play an important role in maintaining liana species diversity and structuring liana communities.  相似文献   

20.
陈亚军  文斌 《广西植物》2008,28(1):67-72
调查滇南勐宋山地雨林沟谷与坡地两种生境中木质藤本种的丰富度、径级分布、攀缘方式以及样地中被藤本缠绕的树木(dbh≥5cm)的数量和比率。结果表明:沟谷与坡地胸径≥1cm的木质藤本平均密度分别为95.7株/0.1hm2、57株/0.1hm2。调查样地内木质藤本共64种,隶属30个科。茎缠绕是最主要的攀缘方式,占总个体数的57%,卷须缠绕种所占比重最小,仅占3%;沟谷与坡地所调查树木被木质藤本缠绕的比例分别为43.7%和28.6%。与亚洲其它热带地区森林相比,勐宋地区藤本的多样性低,但是木质藤本的密度相当高,并且在一些样地中出现了大型木质藤本,这些可能与该地区森林的演替状态有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号