首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT

Major histocompatibility complex class I (MHC-I) is a key molecule in anti-tumor adaptive immunity. MHC-I is essential for endogenous antigen presentation by cancer cells and subsequent recognition and clearance by CD8+ T cells. Defects in MHC-I expression occur frequently in several cancers, leading to impaired antigen presentation, immune evasion and/or resistance to immune checkpoint blockade (ICB) therapy. Pancreatic ductal adenocarcinoma (PDAC), a deadly malignancy with dismal patient prognosis, is resistant to ICB and shows frequent downregulation of MHC-I independent of genetic mutations abrogating MHC-I expression. Previously, we showed that PDAC cells exhibit elevated levels of autophagy and lysosomal biogenesis, which together support the survival and growth of PDAC tumors via both cell-autonomous and non-cell-autonomous mechanisms. In our recent study, we have identified NBR1-mediated selective macroautophagy/autophagy of MHC-I as a novel mechanism that facilitates immune evasion by PDAC cells. Importantly, autophagy or lysosome inhibition restores MHC-I expression, leading to enhanced anti-tumor T cell immunity and improved response to ICB in transplanted tumor models in syngeneic host mice. Our results highlight a previously unknown function of autophagy and the lysosome in regulation of immunogenicity in PDAC, and provide a novel therapeutic strategy for targeting this deadly disease.  相似文献   

2.
Objectives

Epitope-driven vaccines carrying highly conserved and immunodominant epitopes have emerged as promising approaches to overcome human immunodeficiency virus-1 (HIV-1) infection.

Methods

Two multiepitope DNA constructs encoding T cell epitopes from HIV-1 Gag, Pol, Env, Nef and Rev proteins alone and/or linked to the immunogenic epitopes derived from heat shock protein 70 (Hsp70) as an immunostimulatory agent were designed. In silico analyses were applied including MHC-I and MHC-II binding, MHC-I immunogenicity and antigen processing, population coverage, conservancy, allergenicity, toxicity and hemotoxicity. The peptide-MHC-I/MHC-II molecular docking and cytokine production analyses were carried out for predicted epitopes. The selected highly immunogenic T-cell epitopes were then used to design two multiepitope fusion constructs. Next, prediction of the physicochemical and structural properties, B cell epitopes, and constructs-toll-like receptors (TLRs) molecular docking were performed for each construct. Finally, the eukaryotic expression plasmids harboring totally 12 cytotoxic T Lymphocyte (CTL) and 10 helper T lymphocytes (HTL) epitopes from HIV-1 proteins (i.e., pEGFP-N1-gag-pol-env-nef-rev), and linked to 2 CTL and 2 HTL epitopes from Hsp70 (i.e., pEGFP-N1-hsp70-gag-pol-env-nef-rev) were generated and transfected into HEK-293 T cells for evaluating the percentage of multiepitope peptides expression using flow cytometry and western blotting.

Results

The designed DNA constructs could be successfully expressed in mammalian cells. The expression rates of Gag-Pol-Env-Nef-Rev-GFP and Hsp70-Gag-Pol-Env-Nef-Rev-GFP were about 56–60% as the bands of?~?63 and?~?72 kDa confirmed in western blotting, respectively.

Conclusion

The combined in silico/in vitro methods indicated two multiepitope constructs can be produced and used as probable effective immunogens for HIV-1 vaccine development.

  相似文献   

3.
Immunotherapies provide effective treatments for previously untreatable tumors and identifying tumor-specific epitopes can help elucidate the molecular determinants of therapy response. Here, we describe a pipeline, ISOTOPE (ISOform-guided prediction of epiTOPEs In Cancer), for the comprehensive identification of tumor-specific splicing-derived epitopes. Using RNA sequencing and mass spectrometry for MHC-I associated proteins, ISOTOPE identified neoepitopes from tumor-specific splicing events that are potentially presented by MHC-I complexes. Analysis of multiple samples indicates that splicing alterations may affect the production of self-epitopes and generate more candidate neoepitopes than somatic mutations. Although there was no difference in the number of splicing-derived neoepitopes between responders and non-responders to immune therapy, higher MHC-I binding affinity was associated with a positive response. Our analyses highlight the diversity of the immunogenic impacts of tumor-specific splicing alterations and the importance of studying splicing alterations to fully characterize tumors in the context of immunotherapies. ISOTOPE is available at https://github.com/comprna/ISOTOPE.  相似文献   

4.
Introduction: Resistance to chemotherapy and development of specific and effective molecular targeted therapies are major obstacles facing current cancer treatment. Comparative proteomic approaches have been employed for the discovery of putative biomarkers associated with cancer drug resistance and have yielded a number of candidate proteins, showing great promise for both novel drug target identification and personalized medicine for the treatment of drug-resistant cancer.

Areas covered: Herein, we review the recent advances and challenges in proteomics studies on cancer drug resistance with an emphasis on biomarker discovery, as well as understanding the interconnectivity of proteins in disease-related signaling pathways. In addition, we highlight the critical role that post-translational modifications (PTMs) play in the mechanisms of cancer drug resistance.

Expert opinion: Revealing changes in proteome profiles and the role of PTMs in drug-resistant cancer is key to deciphering the mechanisms of treatment resistance. With the development of sensitive and specific mass spectrometry (MS)-based proteomics and related technologies, it is now possible to investigate in depth potential biomarkers and the molecular mechanisms of cancer drug resistance, assisting the development of individualized therapeutic strategies for cancer patients.  相似文献   


5.
BackgroundMulti-drug resistance (MDR) is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Moreover, the tumor micro-environment is essential to the formation of drug resistant cancers. Recent evidence indicates that the tumor micro-environment is a critical regulator of cancer progression, distant metastasis and acquired resistance of tumors to various therapies. Despite significant advances in chemotherapy and radiotherapy, the development of therapeutic resistance leads to reduced drug efficacy.Scope of reviewThis review highlights mechanistic aspects of the biochemistry of the tumor micro-enviroment, such as the hypoglycaemia, reactive oxygen species (ROS), hypoxia and their effects in propagating MDR. This is achieved through: (A) increased survival via autophagy and failure of apoptosis; (B) altered metabolic processing; and (C) reduction in drug delivery and uptake or increased drug efflux.Major conclusionsThe development of MDR in cancer has been demonstrated to be majorly influenced by naturally occurring stressors within the tumor micro-environment, as well as chemotherapeutics. Thus, the tumor micro-environment is currently emerging as a major focus of research which needs to be carefully addressed before cancer can be successfully treated.General significanceElucidating the biochemical mechanisms which promote MDR is essential in development of effective therapeutics that can overcome these acquired defences in cancer cells.  相似文献   

6.
7.
ABSTRACT

Introduction: Nanoproteomics, which is defined as quantitative proteome profiling of small populations of cells (<5000 cells), can reveal critical information related to rare cell populations, hard-to-obtain clinical specimens, and the cellular heterogeneity of pathological tissues.

Areas covered: We present a brief review of the recent technological advances in nanoproteomics. These advances include new technologies or approaches covering major areas of proteomics workflow ranging from sample isolation, sample processing, high-resolution separations, to MS instrumentation.

Expert commentary: We comment on the current state of nanoproteomics and discuss perspectives on both future technological directions and potential enabling applications.  相似文献   

8.
The kinetics of peptide presentation by major histocompatibility complex class I (MHC-I) molecules may contribute to the efficacy of CD8+ T cells. Whether all CD8+ T-cell epitopes from a protein are presented by the same MHC-I molecule with similar kinetics is unknown. Here we show that CD8+ T-cell epitopes derived from SIVmac239 Gag are presented with markedly different kinetics. We demonstrate that this discrepancy in presentation is not related to immunodominance but instead is due to differential requirements for epitope generation. These results illustrate that significant differences in presentation kinetics can exist among CD8+ T-cell epitopes derived from the same viral protein.  相似文献   

9.
Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA694–702 peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA694–702 binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA694–702 peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherapy.  相似文献   

10.
Introduction: Despite extreme genetic heterogeneity, tumors often show similar alterations in the expression, stability, and activation of proteins important in oncogenic signaling pathways. Thus, classifying tumor samples according to shared proteomic features may help facilitate the identification of cancer subtypes predictive of therapeutic responses and prognostic for patient outcomes. Meanwhile, understanding mechanisms of intrinsic and acquired resistance to anti-cancer therapies at the protein level may prove crucial to devising reversal strategies.

Areas covered: Herein, we review recent advances in quantitative proteomic technology and their applications in studies to identify intrinsic tumor subtypes of various tumors, to illuminate mechanistic aspects of pharmacological and oncogenic adaptations, and to highlight interaction targets for anti-cancer compounds and cancer-addicted proteins.

Expert commentary: Quantitative proteomic technologies are being successfully employed to classify tumor samples into distinct intrinsic subtypes, to improve existing DNA/RNA based classification methods, and to evaluate the activation status of key signaling pathways.  相似文献   


11.
Abstract

In our ongoing efforts to combat cancer, peptide-based tumor vaccines are promising as one of the several alternatives used for cancer immunotherapy and immunoprevention. We have attempted to identify T-cell epitopes suitable for the development of a peptide-based cancer vaccine directed towards placental isozyme of alkaline phosphatase (PLAP), an oncofetal antigen. After identifying amino acid residues specific to PLAP and distinct from other close PLAP homologs, we have used sequence-based immunoinformatics tools (BIMAS and SYF- PEITHI) and conducted molecular modeling studies using InsightII to investigate the binding affinity of the epitopes containing the unique residues with respective MHC class I molecules. Promiscuous epitopes binding to different alleles of different class I HLA loci were analyzed to get a population coverage that is widespread. Binding affinity deduced from the modeling studies corroborated the status of most of the epitopes scoring high in BIMAS and SYFPEITHI. We have thus identified specific epitopes from PLAP that have a potential for binding to their respective MHC class I alleles with high affinity. These peptides would be analysed in experiments to demonstrate their involvement in the induction of primary cytotoxic T-cell responses in vitro, using respective HLA-restricted T-cells in our way towards the development of an effective anti-cancer vaccine in a background of diverse MHC haplotypes.  相似文献   

12.
Professional APCs, such as dendritic cells, are routinely used in vitro for the generation of cytotoxic T lymphocytes specific for tumor antigens. In addition to dendritic cells, CD40-activated B cells and variant K562 leukemic cells can be readily transfected with nucleic acids for in vitro and in vivo antigen presentation. However, the expression of immunoproteasome components in dendritic cells may preclude display of tumor antigens such as Mart1/MelanA. Here, we use three target epitopes, two derived from tumor antigens [Mart126?C34 (M26) and Cyp1B1239?C247 (Cyp239)] and one derived from the influenza A viral antigen [FluM158?C66 (FluM58)], to demonstrate that CD40-activated B cells, like dendritic cells, have a limited capability to process certain tumor antigens. In contrast, the K562 HLA-A*0201 transfectant efficiently processes and presents M26 and Cyp239 as well as the influenza FluM58 epitopes to T cells. These results demonstrate that the choice of target APC for gene transfer of tumor antigens may be limited by the relative efficacy of proteasome components to process certain tumor epitopes. Importantly, K562 can be exploited as an artificial APC, efficient in processing both M26 and Cyp239 epitopes and presumably, by extension, other relevant tumor antigens.  相似文献   

13.

Background

Cross-presentation by dendritic cells (DCs) is a crucial prerequisite for effective priming of cytotoxic T-cell responses against bacterial, viral and tumor antigens; however, this antigen presentation pathway remains poorly defined.

Methodology/Principal Findings

In order to develop a comprehensive understanding of this process, we tested the hypothesis that the internalization of MHC class I molecules (MHC-I) from the cell surface is directly involved in cross-presentation pathway and the loading of antigenic peptides. Here we provide the first examination of the internalization of MHC-I in DCs and we demonstrate that the cytoplasmic domain of MHC-I appears to act as an addressin domain to route MHC-I to both endosomal and lysosomal compartments of DCs, where it is demonstrated that loading of peptides derived from exogenously-derived proteins occurs. Furthermore, by chasing MHC-I from the cell surface of normal and transgenic DCs expressing mutant forms of MHC-I, we observe that a tyrosine-based endocytic trafficking motif is required for the constitutive internalization of MHC-I molecules from the cell surface into early endosomes and subsequently deep into lysosomal peptide-loading compartments. Finally, our data support the concept that multiple pathways of peptide loading of cross-presented antigens may exist depending on the chemical nature and size of the antigen requiring processing.

Conclusions/Significance

We conclude that DCs have ‘hijacked’ and adapted a common vacuolar/endocytic intracellular trafficking pathway to facilitate MHC I access to the endosomal and lysosomal compartments where antigen processing and loading and antigen cross-presentation takes place.  相似文献   

14.
Introduction: Biomarkers are commonly used to stratify cancer patients and guide targeted therapies, but most biomarkers are of a genomic nature. Discrepancies between the genome and proteome and the high rates of drug resistance indicate that proteomic analyses may provide additional critically important information. Here we present immuno-Matrix-Assisted Laser Desorption/Ionization (iMALDI), the combination of immuno-affinity enrichment of peptides followed by direct MALDI-mass spectrometry analysis. iMALDI is a highly sensitive, targeted protein-quantitation technique with the potential to measure clinically relevant signaling-pathway proteins using minimal sample amounts, thus improving upon existing methodologies.

Areas covered: We provide a brief overview of the current state of biomarker analysis technologies for modern cancer treatment. We also show the advantages of iMALDI for translating potential new biomarkers into the clinic, factors to consider for iMALDI assay development, and the utility of iMALDI for the quantitation of cell-signaling proteins.

Expert commentary: We see targeted mass spectrometry approaches such as iMALDI as an important part of improving patient responses to targeted therapies by providing highly sensitive, accurate, precise, and specific measurements of signaling-pathway proteins, both in tumor cells and in cells from the tumor microenvironment. iMALDI results can be integrated with other -omics data to aid in tumor-targeting therapies and immuno-oncology.  相似文献   


15.
ABSTRACT

Introduction: The liver is the main location for metastasization in stage IV colorectal cancers.

Areas covered: This review intends to comprehensively present the most important studies conducted in the past few years concerning the role of miRNAs in colorectal cancer liver metastases, trying to clarify some aspects regarding tumor biology and favorite liver metastasization site.

Expert commentary: Recent advances in tissue and serum RNA extraction has considerably improved the field of microRNAs studies. These molecules known to play a crucial role in the metastatic stage indicate a starting point in the development of clinical biomarkers with a possible role in the stratification of high-risk patients for adequate treatment.  相似文献   

16.
The combination cancer immunotherapies with oncolytic virus (OV) and immune checkpoint blockade (ICB) reinstate otherwise dysfunctional antitumor CD8 T cell responses. One major mechanism that aids such reinstatement of antitumor CD8 T cells involves the availability of new class I major histocompatibility complex (MHC-I)-bound tumor epitopes following therapeutic intervention. Thus, therapy-induced changes within the MHC-I peptidome hold the key to understanding the clinical implications for therapy-reinstated CD8 T cell responses. Here, using mass spectrometry–based immuno-affinity methods and tumor-bearing animals treated with OV and ICB (alone or in combination), we captured the therapy-induced alterations within the tumor MHC-I peptidome, which were then tested for their CD8 T cell response-stimulating activity. We found that the oncolytic reovirus monotherapy drives up- as well as downexpression of tumor MHC-I peptides in a cancer type and oncolysis susceptibility dependent manner. Interestingly, the combination of reovirus + ICB results in higher numbers of differentially expressed MHC-I-associated peptides (DEMHCPs) relative to either monotherapies. Most importantly, OV+ICB-driven DEMHCPs contain biologically active epitopes that stimulate interferon-gamma responses in cognate CD8 T cells, which may mediate clinically desired antitumor attack and cancer immunoediting. These findings highlight that the therapy-induced changes to the MHC-I peptidome contribute toward the reinstated antitumor CD8 T cell attack established following OV + ICB combination cancer immunotherapy.  相似文献   

17.
Here, we sought to determine whether peptide vaccines designed harbor both class I as well as class II restricted antigenic motifs could concurrently induce CD4 and CD8 T cell activation against autologous tumor antigens. Based on our prior genome-wide interrogation of human prostate cancer tissues to identify genes over-expressed in cancer and absent in the periphery, we targeted SIM2 as a prototype autologous tumor antigen for these studies. Using humanized transgenic mice we found that the 9aa HLA-A*0201 epitope, SIM2237–245, was effective at inducing an antigen specific response against SIM2-expressing prostate cancer cell line, PC3. Immunization with a multi-epitope peptide harboring both MHC-I and MHC-II restricted epitopes induced an IFN-γ response in CD8 T cells to the HLA-A*0201-restricted SIM2237–245 epitope, and an IL-2 response by CD4 T cells to the SIM2240–254 epitope. This peptide was also effective at inducing CD8+ T-cells that responded specifically to SIM2-expressing tumor cells. Collectively, the data presented in this study suggest that a single peptide containing multiple SIM2 epitopes can be used to induce both a CD4 and CD8 T cell response, providing a peptide-based vaccine formulation for potential use in immunotherapy of various cancers.  相似文献   

18.
In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules. These are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating CTLs. The polymorphism of the MHC effectively individualizes the immune response of each member of the species. We have recently developed efficient methods to generate recombinant human MHC-I (also known as human leukocyte antigen class I, HLA-I) molecules, accompanying peptide-binding assays and predictors, and HLA tetramers for specific CTL staining and manipulation. This has enabled a complete mapping of all HLA-I specificities (“the Human MHC Project”). Here, we demonstrate that these approaches can be applied to other species. We systematically transferred domains of the frequently expressed swine MHC-I molecule, SLA-1*0401, onto a HLA-I molecule (HLA-A*11:01), thereby generating recombinant human/swine chimeric MHC-I molecules as well as the intact SLA-1*0401 molecule. Biochemical peptide-binding assays and positional scanning combinatorial peptide libraries were used to analyze the peptide-binding motifs of these molecules. A pan-specific predictor of peptide–MHC-I binding, NetMHCpan, which was originally developed to cover the binding specificities of all known HLA-I molecules, was successfully used to predict the specificities of the SLA-1*0401 molecule as well as the porcine/human chimeric MHC-I molecules. These data indicate that it is possible to extend the biochemical and bioinformatics tools of the Human MHC Project to other vertebrate species.  相似文献   

19.
Abstract

Alkhurma hemorrhagic fever virus (ALKV) causes a fatal clinical disease in human beings of different tropical and sub-tropical regions. Recently, the ALKV epidemics have raised a great public health concern with the room for improvement in the essential therapeutic interventions. Despite increased realistic clinical cases of ALKV infection, the efficient vaccine or immunotherapy is not yet available to-date. Therefore, the current study aimed to analyze the envelope glycoprotein of ALKV for the development of B-cells and T-cells epitope-based peptide vaccine using the computational in silico method. Utilizing various immunoinformatics approaches, a total of 5 B-cells and 25 T-cells (MHC-I?=?17, MHC-II?=?8) epitope-based peptides were predicted in the current study. All predicted peptides had highest antigenicity and immunogenicity scores along with high binding affinity to human leukocyte antigen (HLA) class II alleles. Among 25T-cell epitopes, three peptides were found alike to have affinity to bind both MHC-I and MHC-II alleles. These outcomes suggested that these predicted epitopes could potentially be used in the development of an efficient vaccine against ALKV, which may enable to elicit both humoral and cell-mediated immunity. Although, these predicted peptides could be useful in designing a candidate vaccine for the prevention of ALKV; however, it’s in vitro and in vivo assessments are prerequisite.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
《Endocrine practice》2021,27(6):626-635
IntroductionObesity is a chronic illness that requires a multifaceted personalized treatment approach.Methods & FindingsUsing current guidelines and recent studies in weight management, this article reviews the multiple components of weight management: lifestyle intervention (dietary intervention, physical activity, and behavioral interventions), pharmacotherapy, endoscopic procedures, and surgical procedures. This review briefly discusses specific diets and dietary strategies, compensatory mechanisms acting against weight loss, recent changes to Food and Drug Administration approved antiobesity medications, and technological advances in weight management delivery.ConclusionCurrent literature is lacking large studies on the safety and efficacy of combination therapies involving pharmacotherapy plus 1 or more procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号