首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A Abe  Y Hiraoka    T Fukasawa 《The EMBO journal》1990,9(11):3691-3697
We have identified a signal sequence (designated core signal) necessary to specify formation of mRNA 3' end of the GAL7 gene in Saccharomyces cerevisiae within a DNA segment 26 bp long. The sequence was located 4-5 nucleotides upstream from the 3' end, i.e. the polyadenylation site, of the GAL7 mRNA. Replacement of a DNA segment encompassing the polyadenylation site with a pBR322 DNA, leaving the core signal intact, resulted in alteration of the mRNA 3' end by several nucleotides, suggesting the existence of an additional signal (designated end signal) at or near the polyadenylation site. The normal end formation was abolished when the core signal was placed in the reverse orientation. A considerable fraction of pre-mRNA synthesized in vitro with SP6 RNA polymerase on the template of a DNA fragment containing these signals was cleaved and polyadenylated presumably at the in vitro 3' end during incubation in a cell-free system of yeast. By contrast pre-mRNA synthesized on the template with the core signal alone was processed but much less efficiently. No such processing was seen when the pre-mRNA either lacked the core signal or contained it in the reverse orientation.  相似文献   

5.
We present the DNA sequence of a 914-base pair fragment from Saccharomyces cerevisiae that contains the GAL1-GAL10 divergent promoter, 140 base pairs of GAL10 coding sequence, and 87 base pairs of GAL1 coding sequence. From this fragment, we constructed four pairs of GAL1-lacZ and GAL10-lacZ fusions on various types of yeast plasmid vectors. On each type of vector, the fused genes were induced by galactose and repressed by glucose. The response of a GAL1-lacZ fusion to gal4 and gal80 regulatory mutations was similar to the response of intact chromosomal GAL1 and GAL10 genes. A set of deletions that removed various portions of the GAL10 regulatory sequences from a GAL10-CYC1-lacZ fusion was constructed in vitro. These deletions defined a relatively guanine-cytosine-rich region of 45 base pairs that contained sequences necessary for full-strength galactose induction and an adjacent guanine-cytosine rich 55 base pairs that contained sequences sufficient for weak induction.  相似文献   

6.
7.
8.
9.
10.
C155 and E252 are respiratory-defective mutants of Saccharomyces cerevisiae, previously assigned to complementation groups G37 and G142, respectively. The following evidence suggested that both mutants were likely to have lesions in components of the mitochondrial translational machinery: C155 and E252 display a pleiotropic deficiency in cytochromes a, a3 and b; both strains are severly limited in their ability to incorporate radioactive methionine into the mitochondrial translation products and, in addition, display a tendency to loose wild-type mitochondrial DNA. This set of characteristics is commonly found in strains affected in mitochondrial protein synthesis. To identify the biochemical lesions, each mutant was transformed with a wild-type yeast genomic library and clones complemented for the respiratory defect were selected for growth on a non-fermentable substrate. Analysis of the cloned genes revealed that C155 has a mutation in a protein which has high sequence similarity to bacterial elongation factor G and that E252 has a mutation in a protein homologous to bacterial initiation factor 2. Disruption of the chromosomal copy of each gene in a wild-type haploid yeast induced a phenotype analogous to that of the original mutants, but does not affect cell viability. These results indicate that both gene products function exclusively in mitochondrial protein synthesis. Subcloning of the IFM1 gene, coding for the mitochondrial initiation factor, indicates that the amino-terminal 423 residues of the protein are sufficient to promote peptide-chain initiation in vivo.  相似文献   

11.
Eukaryotic translation elongation factor 3 (eEF3) is a fungal-specific ATPase proposed to catalyze the release of deacylated-tRNA from the ribosomal E-site. In addition, it has been shown to interact with the aminoacyl-tRNA binding GTPase elongation factor 1A (eEF1A), perhaps linking the E and A sites. Domain mapping demonstrates that amino acids 775-980 contain the eEF1A binding sites. Domain III of eEF1A, which is also involved in actin-related functions, is the site of eEF3 binding. The binding of eEF3 to eEF1A is enhanced by ADP, indicating the interaction is favored post-ATP hydrolysis but is not dependent on the eEF1A-bound nucleotide. A temperature-sensitive P915L mutant in the eEF1A binding site of eEF3 has reduced ATPase activity and affinity for eEF1A. These results support the model that upon ATP hydrolysis, eEF3 interacts with eEF1A to help catalyze the delivery of aminoacyl-tRNA at the A-site of the ribosome. The dynamics of when eEF3 interacts with eEF1A may be part of the signal for transition of the post to pre-translocational ribosomal state in yeast.  相似文献   

12.
13.
14.
15.
16.
17.
Cleavage and polyadenylation of eukaryotic mRNA requires efficiency and positioning elements in the 3'-untranslated region (3'-UTR) of the mRNA. Specific point mutations were introduced into the yeast GCN4 3'-UTR to detect sequence motifs which are involved in the positioning of the poly(A) site. 3'-End proces-sing activities of different GCN4 3'-UTR alleles were measured in an in vivo test system. Point mutations in an AAGAA motif defocussed selection of the poly(A) sites of the GCN4 3'-UTR to various additional poly(A) sites instead of the single site of the wild-type GCN4 3'-UTR. A strain with an intact wild-type GCN4 3'-UTR but impaired in RNA15 encoding an RNA-binding processing factor showed a similar defocussed pattern of poly(A) site selection. Remarkably, two additional sequence motifs upstream of the AAGAA motif which resemble yeast efficiency motifs independently affected poly(A) site positioning but not efficiency of 3'-end processing. Mutations in one motif resulted in an additional upstream poly(A) site. Alterations of the other motif shifted the poly(A) sites exclusively to two downstream poly(A) sites. These data suggest several contact points between the precursor mRNA and the polyadenylation machinery in yeast.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号