首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because musculoskeletal injuries to racehorses are common, instrumentation for the study of factors (e.g. track surface), which affect the ground reaction loads in horses during racing conditions, would be useful. The objectives of the work reported by this paper were to (1) design and construct a novel dynamometric horseshoe that is capable of measuring the complete ground reaction loading during racing conditions, (2) characterize static and dynamic measurement errors, and (3) demonstrate the usefulness of the instrument by collecting example data during the walk, trot, canter, and gallop for a single subject. Using electrical resistance strain gages, a dynamometric horseshoe was designed and constructed to measure the complete ground reaction force and moment vectors and the center of pressure. To mimic the load transfer surface of the hoof, the shape of the surface contacting the ground was similar to that of the solar surface of the hoof. Following static calibration, the measurement accuracy was determined. The root mean squared errors (RMSE) were 3% of full scale for the force component normal to the hoof and 9% for force components in the plane of the hoof. The dynamic calibration determined that the natural frequency with the full weight of a typical horse was 1744 Hz. Example data were collected during walking on a ground surface and during trotting, cantering, and galloping on a treadmill. The instrument successfully measured the complete ground reaction load during all four gaits. Consequently the dynamometric horseshoe is useful for studying factors, which affect ground reaction loads during racing conditions.  相似文献   

2.
The objective of this study was to devise a method of kinetic analysis of the ground reaction force that enables the durations and magnitudes of forces acting during the individual phases of ski turns to be described exactly. The method is based on a theoretical analysis of physical forces acting during the ski turn. Two elementary phases were defined: (1) preparing to turn (initiation) and (2) actual turning, during which the center of gravity of the skier-ski system moves along a curvilinear trajectory (steering). The starting point of the turn analysis is a dynamometric record of the resultant acting ground reaction force applied perpendicularly on the ski surface. The method was applied to six expert skiers. They completed a slalom course comprising five gates arranged on the fall line of a 26° slope at a competition speed using symmetrical carving turns (30 evaluated turns). A dynamometric measurement system was placed on the carving skis (168 cm long, radius 16 m, data were recorded at 100 Hz). MATLAB procedures were used to evaluate eight variables during each turn: five time variables and three force variables. Comparison of the turn analysis results between individuals showed that the method is useful for answering various research questions associated with ski turns.  相似文献   

3.
In the present work, the load-bearing role of the facet joints in a lumbar I2-3 segment is quantitatively determined by means of a three dimensional nonlinear finite element program. The analysis accounts for both material and geometric nonlinearities and treats the facet articulation as a nonlinear moving contact problem. The disc nucleus is considered as an inviscid incompressible fluid and the annulus as a composite of collagenous fibres embedded in a matrix of ground substance. The spinal ligaments are modelled as a collection of nonlinear axial elements. The loadings consist of axial compression and sagittal plane shears and bending moments, acting alone or combined. The results show that in pure compression, the external axial force is transmitted primarily by the intervertebral disc. The facet joints carry only a small percentage of the force. However, the facet joints carry large forces in extension, whereas in small flexion they carry none. Addition of compression tends to increase these contact forces in extension while it has no effect on them in flexion. In extension, the forces on the facet joints are transmitted by both the articular surfaces and the capsular ligaments. Although in small flexion the facets carry no load, large contact forces are predicted to develop as the segment is flexed beyond 7-8 degrees. These forces are of the same magnitude as those computed under large extension rotation and are oriented nearly in the horizontal plane with negligible component in the axial direction. The horizontal components of the contact forces generated during articulation are often larger than the axial components which directly resist the applied compressive force. The axial components of the contact forces, therefore, grossly underestimate the total forces acting on the facets. The transfer of forces from one facet to the adjacent one occurs through distinct areas in flexion and in extension loadings. That is, on the superior articular surface, the contact area shifts from the upper tip in large flexion to the lower margin in extension. On the inferior articular surface, the contact area shifts from the upper and central regions in large flexion to the lower tip in extension.  相似文献   

4.
Knowledge of forces in the glenohumeral joint is essential for understanding normal and pathologic shoulder function. It forms the basis for performing fracture treatment or joint replacement surgery, for optimizing implant design and fixation and for improving and verifying analytical biomechanical models of the shoulder. An instrumented shoulder implant with telemetric data transmission was developed to measure six components of joint contact forces and moments. A patient with humeral head arthrosis achieved good joint function after its implantation. During the first 7 postoperative months, the contact force remained below 100% BW (percent body weight) for most activities of daily living. It ranged up to 130% BW for arm positions close to the limits of motion or when acting against external resistance. When the patient tried to turn a blocked steering wheel with maximum effort, the force rose to about 150% BW, the highest level observed thus far. Of great interest were the force directions relative to the humerus, especially those in the sagittal plane, which were not greatly influenced by the type of exercise, the arm position or the external resistance. The moments due to friction in the joint reached 5.2 Nm. The friction-induced shift of contact forces relative to the implant head centre ranged up to 6.3mm. These first worldwide in vivo measurements of glenohumeral contact forces are being continued in more patients and for longer postoperative times.  相似文献   

5.
Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles.  相似文献   

6.
This study investigated synergistic actions of hand–pen contact forces during circle drawing tasks in three-dimensional (3D) space. Twenty-four right-handed participants drew thirty concentric circles in the counterclockwise (CCW) and clockwise (CW) directions. Three-dimensional forces acting on an instrumented pen as well as 3D linear and angular positions of the pen were recorded. These contact forces were then transformed into the 3D radial, tangential, and normal force components specific to circle drawing. Uncontrolled manifold (UCM) analysis was employed to calculate the magnitude of the hand–pen contact force synergy. Three hypotheses were tested. First, hand–pen contact force synergies during circle drawing are dependent on the angular position of the pen tip. Second, hand–pen contact force synergies are dependent on force components in circle drawing. Third, hand–pen contact force synergies are greater in CCW direction than CW direction. The results showed that the strength of the hand–pen contact force synergy increased during the initial phase of circle drawing and decreased during the final phase. The synergy strength was greater for the radial and tangential components as compared to the normal component. Also, the circle drawing in CW direction was associated with greater hand–pen contact force synergy than the CCW direction. The results of this study suggest that the central nervous system (CNS) prioritizes hand–pen contact force synergies for the force components (i.e., radial and tangential) that are critical for circle drawing. The CNS modulates hand–pen contact force synergies for preparation and conclusion of circle drawing, respectively.  相似文献   

7.
To provide data for fatigue life prediction and testing of structural components in off-road bicycles, the objective of the research described herein was to quantify the loads input to an off-road bicycle as a result of surface-induced loads. A fully instrumented test bicycle was equipped with dynamometers at the pedals, handlebars, and hubs to measure all in-plane structural loads acting through points of contact between the bicycle and both the rider and the ground. A portable data acquisition system carried by the standing rider allowed, for the first time, this loading information to be collected during extended off-road testing. In all, seven experienced riders rode a downhill trial test section with the test bicycle in both front-suspension and full-suspension configurations. The load histories were used quantitatively to describe the load components through the computation of means, standard deviations, amplitude probability density functions, and power spectral density functions. For the standing position, the coefficients of variation for the load components normal to the ground were greater than 1.2 for handlebar forces and 0.3 and 0.5-0.6 for the pedal and hub forces, respectively. Thus, the relative contribution of the dynamic loading was much greater than the static loading at the handlebars but less so at the pedals and hubs. As indicated by the rainflow count, high amplitude loading was developed approaching 3 and 5 times the weight of the test subjects at the front and rear wheels, respectively. The power spectral densities showed that energy was concentrated in the band 0-50 Hz. Through stress computations and knowledge of material properties, the data can be used analytically to predict the fatigue life of important structural components such as those for steering. The data can also be used to develop a fatigue testing protocol for verifying analytical predictions of fatigue life.  相似文献   

8.
Pattern of anterior cruciate ligament force in normal walking   总被引:6,自引:0,他引:6  
The goal of this study was to calculate and explain the pattern of anterior cruciate ligament (ACL) loading during normal level walking. Knee-ligament forces were obtained by a two-step procedure. First, a three-dimensional (3D) model of the whole body was used together with dynamic optimization theory to calculate body-segmental motions, ground reaction forces, and leg-muscle forces for one cycle of gait. Joint angles, ground reaction forces, and muscle forces obtained from the gait simulation were then input into a musculoskeletal model of the lower limb that incorporated a 3D model of the knee. The relative positions of the femur, tibia, and patella and the forces induced in the knee ligaments were found by solving a static equilibrium problem at each instant during the simulated gait cycle. The model simulation predicted that the ACL bears load throughout stance. Peak force in the ACL (303 N) occurred at the beginning of single-leg stance (i.e., contralateral toe off). The pattern of ACL force was explained by the shear forces acting at the knee. The balance of muscle forces, ground reaction forces, and joint contact forces applied to the leg determined the magnitude and direction of the total shear force acting at the knee. The ACL was loaded whenever the total shear force pointed anteriorly. In early stance, the anterior shear force from the patellar tendon dominated the total shear force applied to the leg, and so maximum force was transmitted to the ACL at this time. ACL force was small in late stance because the anterior shear forces supplied by the patellar tendon, gastrocnemius, and tibiofemoral contact were nearly balanced by the posterior component of the ground reaction.  相似文献   

9.
Mathematical models of small animals that predict in vivo forces acting on the lower extremities are critical for studies of musculoskeletal biomechanics and diseases. Rabbits are advantageous in this regard because they remodel their cortical bone similar to humans. Here, we enhance a recent mathematical model of the rabbit knee joint to include the loading behavior of individual muscles, ligaments, and joint contact at the knee and ankle during the stance phase of hopping. Geometric data from the hindlimbs of three adult New Zealand white rabbits, combined with previously reported intersegmental forces and moments, were used as inputs to the model. Muscle, ligament, and joint contact forces were computed using optimization techniques assuming that muscle endurance is maximized and ligament strain energy resists tibial shear force along an inclined plateau. Peak forces developed by the quadriceps and gastrocnemius muscle groups and by compressive knee contact were within the range of theoretical and in vivo predictions. Although a minimal force was carried by the anterior cruciate and medial collateral ligaments, force patterns in the posterior cruciate ligament were consistent with in vivo tibial displacement patterns during hopping in rabbits. Overall, our predictions compare favorably with theoretical estimates and in vivo measurements in rabbits, and enhance previous models by providing individual muscle, ligament, and joint contact information to predict in vivo forces acting on the lower extremities in rabbits.  相似文献   

10.
The human hip joint withstands high contact forces during daily activity and is therefore susceptible to injury and structural deterioration over time. Knowledge of muscle-force contributions to hip joint loading may assist in the development of strategies to prevent and manage conditions such as osteoarthritis, femoro-acetabular impingement and fracture. The main aim of this study was to determine the contributions of individual muscles to hip contact force in normal walking. Muscle contributions to hip contact force were calculated based on a previously published dynamic optimization solution for normal walking, which provided the time histories of joint motion, ground reaction forces, and muscle forces during the stance and swing phases of gait. The force developed by each muscle plus its contribution to the ground reaction force were used to determine the muscle’s contribution to hip contact force. Muscles were the major contributors to hip contact force, with gravitational and centrifugal forces combined contributing less than 5% of the total contact force. Four muscles that span the hip – gluteus medius, gluteus maximus, iliopsoas, and hamstrings – contributed most significantly to the three components of the hip contact force and hip contact impulse (integral of hip contact force over time). Three muscles that do not span the hip – vasti, soleus, and gastrocnemius – also contributed substantially to hip joint loading. These results provide additional insight into lower-limb muscle function during walking and may also be relevant to studies of cartilage degeneration and bone remodelling at the hip.  相似文献   

11.
Accurate measurement of ground reaction forces under discrete areas of the foot is important in the development of more advanced foot models, which can improve our understanding of foot and ankle function. To overcome current equipment limitations, a few investigators have proposed combining a pressure mat with a single force platform and using a proportionality assumption to estimate subarea shear forces and free moments. In this study, two adjacent force platforms were used to evaluate the accuracy of the proportionality assumption on a three segment foot model during normal gait. Seventeen right feet were tested using a targeted walking approach, isolating two separate joints: transverse tarsal and metatarsophalangeal. Root mean square (RMS) errors in shear forces up to 6% body weight (BW) were found using the proportionality assumption, with the highest errors (peak absolute errors up to 12% BW) occurring between the forefoot and toes in terminal stance. The hallux exerted a small braking force in opposition to the propulsive force of the forefoot, which was unaccounted for by the proportionality assumption. While the assumption may be suitable for specific applications (e.g. gait analysis models), it is important to understand that some information on foot function can be lost. The results help highlight possible limitations of the assumption. Measured ensemble average subarea shear forces during normal gait are also presented for the first time.  相似文献   

12.
BACKGROUND: The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. METHOD OF APPROACH: A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. RESULTS: Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). CONCLUSIONS: Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.  相似文献   

13.
It is not presently clear whether mathematical models used to estimate leg stiffness during human running are valid. Therefore, leg stiffness during the braking phase of ground contact of running was calculated directly using synchronous kinematic (high-speed motion analysis) and kinetic (force platform) analysis, and compared to stiffness calculated using four previously published kinetic models. Nineteen well-trained male middle distance runners (age=21.1±4.1yr; VO(2max)=69.5±7.5mlO(2)kg(-1)min(-1)) completed a series of runs of increasing speed from 2.5 to 6.5ms(-1). Leg stiffness was calculated directly from kinetic-kinematic analysis using both vertical and horizontal forces to obtain the resultant force in the line of leg compression (Model 1). Values were also estimated using four previously published mathematical models where only force platform derived and anthropometric measures were required (Models 2-5; Morin et al., 2005, Morin et al., 2011, Blum et al., 2009, Farley et al., 1993, respectively). The greatest statistical similarity between leg stiffness values occurred with Models 1 and 2. The poorest similarity occurred when values from Model 4 were compared with Model 1. Analyses suggest that the poor correlation between Model 1 other models may have resulted from errors in the estimation in change in leg length during the braking phase. Previously published mathematical models did not provide accurate leg stiffness estimates, although Model 2, used by Morin et al. (2005), provided reasonable estimates that could be further improved by the removal of systematic error using a correction factor (K=1.0496K(Model2)).  相似文献   

14.
This is the first published report of the ground reaction forces during gait termination. Two mechanisms appear to be used to stop walking: increased braking forces and decreased push-off force. There appears to be a short interval of time during the gait cycle in which a decision to take an additional step is to be made.  相似文献   

15.
Bone contact forces on the distal tibia during the stance phase of running   总被引:1,自引:0,他引:1  
Although the tibia is a common site of stress fractures in runners, the loading of the tibia during running is not well understood. An integrated experimental and modeling approach was therefore used to estimate the bone contact forces acting on the distal end of the tibia during the stance phase of running, and the contributions of external and internal sources to these forces. Motion capture and force plate data were recorded for 10 male runners as they ran at 3.5-4 m/s. From these data, the joint reaction force (JRF), muscle forces, and bone contact force on the tibia were computed at the ankle using inverse dynamics and optimization methods. The distal end of the tibia was compressed and sheared posteriorly throughout most of stance, with respective peak forces of 9.00+/-1.13 and 0.57+/-0.18 body weights occurring during mid stance. Internal muscle forces were the primary source of tibial compression, whereas the JRF was the primary source of tibial shear due to the forward inclination of the leg relative to the external ground reaction force. The muscle forces and JRF both acted to compress the tibia, but induced tibial shear forces in opposing directions during stance, magnifying tibial compression and reducing tibial shear. The superposition of the peak compressive and posterior shear forces at mid stance may contribute to stress fractures in the posterior face of the tibia. The implications are that changes in running technique could potentially reduce stress fracture risk.  相似文献   

16.
Muscles are significant contributors to the high joint forces developed in the knee during human walking. Not only do muscles contribute to the knee joint forces by acting to compress the joint, but they also develop joint forces indirectly through their contributions to the ground reaction forces via dynamic coupling. Thus, muscles can have significant contributions to forces at joints they do not span. However, few studies have investigated how the major lower-limb muscles contribute to the knee joint contact forces during walking. The goal of this study was to use a muscle-actuated forward dynamics simulation of walking to identify how individual muscles contribute to the axial tibio-femoral joint force. The simulation results showed that the vastii muscles are the primary contributors to the axial joint force in early stance while the gastrocnemius is the primary contributor in late stance. The tibio-femoral joint force generated by these muscles was at times greater than the muscle forces themselves. Muscles that do not cross the knee joint (e.g., the gluteus maximus and soleus) also have significant contributions to the tibio-femoral joint force through their contributions to the ground reaction forces. Further, small changes in walking kinematics (e.g., knee flexion angle) can have a significant effect on the magnitude of the knee joint forces. Thus, altering walking mechanics and muscle coordination patterns to utilize muscle groups that perform the same biomechanical function, yet contribute less to the knee joint forces may be an effective way to reduce knee joint loading during walking.  相似文献   

17.
Hip contact forces and gait patterns from routine activities.   总被引:35,自引:0,他引:35  
In vivo loads acting at the hip joint have so far only been measured in few patients and without detailed documentation of gait data. Such information is required to test and improve wear, strength and fixation stability of hip implants. Measurements of hip contact forces with instrumented implants and synchronous analyses of gait patterns and ground reaction forces were performed in four patients during the most frequent activities of daily living. From the individual data sets an average was calculated. The paper focuses on the loading of the femoral implant component but complete data are additionally stored on an associated compact disc. It contains complete gait and hip contact force data as well as calculated muscle activities during walking and stair climbing and the frequencies of daily activities observed in hip patients. The mechanical loading and function of the hip joint and proximal femur is thereby completely documented. The average patient loaded his hip joint with 238% BW (percent of body weight) when walking at about 4 km/h and with slightly less when standing on one leg. This is below the levels previously reported for two other patients (Bergmann et al., Clinical Biomechanics 26 (1993) 969-990). When climbing upstairs the joint contact force is 251% BW which is less than 260% BW when going downstairs. Inwards torsion of the implant is probably critical for the stem fixation. On average it is 23% larger when going upstairs than during normal level walking. The inter- and intra-individual variations during stair climbing are large and the highest torque values are 83% larger than during normal walking. Because the hip joint loading during all other common activities of most hip patients are comparably small (except during stumbling), implants should mainly be tested with loading conditions that mimic walking and stair climbing.  相似文献   

18.
Computational analyses of leg-muscle function in human locomotion commonly assume that contact between the foot and the ground occurs at discrete points on the sole of the foot. Kinematic constraints acting at these contact points restrict the motion of the foot and, therefore, alter model calculations of muscle function. The aim of this study was to evaluate how predictions of muscle function obtained from musculoskeletal models are influenced by the model used to simulate ground contact. Both single- and multiple-point contact models were evaluated. Muscle function during walking and running was determined by quantifying the contributions of individual muscles to the vertical, fore-aft and mediolateral components of the ground reaction force (GRF). The results showed that two factors--the number of foot-ground contact points assumed in the model and the type of kinematic constraint enforced at each point--affect the model predictions of muscle coordination. Whereas single- and multiple-point contact models produced similar predictions of muscle function in the sagittal plane, inconsistent results were obtained in the mediolateral direction. Kinematic constraints applied in the sagittal plane altered the model predictions of muscle contributions to the vertical and fore-aft GRFs, while constraints applied in the frontal plane altered the calculations of muscle contributions to the mediolateral GRF. The results illustrate the sensitivity of calculations of muscle coordination to the model used to simulate foot-ground contact.  相似文献   

19.
Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.  相似文献   

20.
The purpose of this study was to investigate ground reaction forces (GRF) in collegiate baseball pitchers and their relationship to pitching mechanics. Fourteen healthy collegiate baseball pitchers participated in this study. High-speed video and force plate data were collected for fastballs from each pitcher. The average ball speed was 35 ± 3 m/sec (78 ± 7 mph). Peak GRFs of 245 ± 20% body weight (BW) were generated in an anterior or braking direction to control descent. Horizontal GRFs tended to occur in a laterally directed fashion, reaching a peak of 45 ± 63% BW. The maximum vertical GRF averaged 202 ± 43% BW approximately 45 milliseconds after stride foot contact. A correlation between braking force and ball velocity was evident. Because of the downward inclination and rotation of the pitching motion, in addition to volume, shear forces may occur in the musculoskeletal tissues of the stride limb leading to many of the lower-extremity injuries seen in this athletic population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号