首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microplate fluorimetric assay was developed for measuring potential activities of extracellular enzymes of individual ectomycorrhizal (EM) roots using methylumbelliferone (MU)-labelled fluorescent substrate analogues and microsieves to minimise damage due to manipulation of excised mycorrhizal roots. Control experiments revealed that enzyme activities remained stable over the whole time of the experiment suggesting a strong affinity of the studied enzymes to the fungal cell walls. The same mycorrhizal tips thus could be used repeatedly for enzyme detection and subsequently analysed for the projection area by automated image analysis. The developed system was evaluated on four different EM species measuring pH optimum and substrate saturation of phosphatase, chitinase and beta-glucosidase. The four EM species studied were Lactarius subdulcis, Russula ochroleuca, Cortinarius obtusus and Xerocomus cf. chrysenteron. Depending upon the enzyme, each species exhibited different levels of enzymatic activities as well as enzyme kinetics and showed also differences in pH optima.  相似文献   

2.
Ectomycorrhizas and water relations of trees: a review   总被引:4,自引:0,他引:4  
Lehto T  Zwiazek JJ 《Mycorrhiza》2011,21(2):71-90
There is plenty of evidence for improved nutrient acquisition by ectomycorrhizas in trees; however, their role in water uptake is much less clear. In addition to experiments showing improved performance during drought by mycorrhizal plants, there are several studies showing reduced root hydraulic conductivity and reduced water uptake in mycorrhizal roots. The clearest direct mechanism for increased water uptake is the increased extension growth and absorbing surface area, particularly in fungal species with external mycelium of the long-distance exploration type. Some studies have found increased aquaporin function and, consequently, increased root hydraulic conductivity in ectomycorrhizal plants while other studies showed no effect of ectomycorrhizal associations on root water flow properties. The aquaporin function of the fungal hyphae is also likely to be important for the uptake of water by the ectomycorrhizal plant, but more work needs to be done in this area. The best-known indirect mechanism for mycorrhizal effects on water relations is improved nutrient status of the host. Others include altered carbohydrate assimilation via stomatal function, possibly mediated by changes in growth regulator balance; increased sink strength in mycorrhizal roots; antioxidant metabolism; and changes in osmotic adjustment. None of these possibilities has been sufficiently explored. The mycorrhizal structure may also reduce water movement because of different fine root architecture (thickness), cell wall hydrophobicity or the larger number of membranes that water has to cross on the way from the soil to the xylem. In future studies, pot experiments comparing mycorrhizal and nonmycorrhizal plants will still be useful in studying well-defined physiological details. However, the quantitative importance of ectomycorrhizas for tree water uptake and water relations can only be assessed by field studies using innovative approaches. Hydraulic redistribution can support nutrient uptake during prolonged dry periods. In large trees with deep root systems, it may turn out that the most important function of mycorrhizas during drought is to facilitate nutrient acquisition.  相似文献   

3.
Mycorrhizas are the chief organ for plant mineral nutrient acquisition. In temperate, mixed forests, ash roots (Fraxinus excelsior) are colonized by arbuscular mycorrhizal fungi (AM) and beech roots (Fagus sylvatica) by ectomycorrhizal fungi (EcM). Knowledge on the functions of different mycorrhizal species that coexist in the same environment is scarce. The concentrations of nutrient elements in plant and fungal cells can inform on nutrient accessibility and interspecific differences of mycorrhizal life forms. Here, we hypothesized that mycorrhizal fungal species exhibit interspecific differences in mineral nutrient concentrations and that the differences correlate with the mineral nutrient concentrations of their associated root cells. Abundant mycorrhizal fungal species of mature beech and ash trees in a long-term undisturbed forest ecosystem were the EcM Lactarius subdulcis, Clavulina cristata and Cenococcum geophilum and the AM Glomus sp. Mineral nutrient subcellular localization and quantities of the mycorrhizas were analysed after non-aqueous sample preparation by electron dispersive X-ray transmission electron microscopy. Cenococcum geophilum contained the highest sulphur, Clavulina cristata the highest calcium levels, and Glomus, in which cations and P were generally high, exhibited the highest potassium levels. Lactarius subdulcis-associated root cells contained the highest phosphorus levels. The root cell concentrations of K, Mg and P were unrelated to those of the associated fungal structures, whereas S and Ca showed significant correlations between fungal and plant concentrations of those elements. Our results support profound interspecific differences for mineral nutrient acquisition among mycorrhizas formed by different fungal taxa. The lack of correlation between some plant and fungal nutrient element concentrations may reflect different retention of mineral nutrients in the fungal part of the symbiosis. High mineral concentrations, especially of potassium, in Glomus sp. suggest that the well-known influence of tree species on chemical soil properties may be related to their mycorrhizal associates.  相似文献   

4.
M. Beyeler  W. Heyser 《Mycorrhiza》1997,7(4):171-177
 The influence of mycorrhizal colonization on beech (Fagus sylvatica L.) root tannin (procyanidin polymer) and its putative precursors catechin and epicatechin was investigated by high performance liquid chromatography. Seedlings planted in a sterile mixture of litter, compost, soil and sand were inoculated with brown beech ectomycorrhizas collected from a woodland (Lactarius subdulcis Bull ex Fr. ×  F. sylvatica). The seedlings were not fertilized during the first year of growth. Nonmycorrhizal control plants showed severe nutrient-deficiency symptoms on their leaves and grew less well than mycorrhizal plants. Mycorrhizal roots contained significantly less catechin, epicatechin and procyanidin polymer than nonmycorrhizal roots. In the second year of growth, the plants were fertilized and procyanidin formation in roots was investigated. None of the fertilized plants showed mineral-deficiency symptoms. Fertilized mycorrhizal roots consistently contained significantly less catechin and epicatechin than nonmycorrhizal controls, but procyanidin polymer content varied between replicate experiments. The possible function of catechin and epicatechin in ectomycorrhizal formation is discussed. Accepted: 11 July 1997  相似文献   

5.
Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that associations with multiple functional (or phylogenetic) groups of fungi are ubiquitous among plants. Moreover, ectomycorrhizal fungal symbionts of fagaceous plants may “invade” the roots of neighboring non-fagaceous plants, potentially influencing the interactions between non-fagaceous plants and their arbuscular-mycorrhizal fungal symbionts at a fine spatial scale.  相似文献   

6.
Plant roots may be linked by shared or common mycorrhizal networks (CMNs) that constitute pathways for the transfer of resources among plants. The potential for water transfer by such networks was examined by manipulating CMNs independently of plant roots in order to isolate the role(s) of ectomycorrhizal (EM) and arbuscular mycorrhizal fungal (AMF) networks in the plant water balance during drought (soil water potential -5.9 MPa). Fluorescent tracer dyes and deuterium-enriched water were used to follow the pathways of water transfer from coastal live oak seedlings (Quercus agrifolia Nee; colonized by EM and AMF) conducting hydraulic lift (HL) into the roots of water-stressed seedlings connected only by EM (Q. agrifolia) or AMF networks (Q. agrifolia, Eriogonum fasciculatum Benth., Salvia mellifera Greene, Keckiella antirrhinoides Benth). When connected to donor plants by hyphal linkages, deuterium was detected in the transpiration flux of receiver oak plants, and dye-labelled extraradical hyphae, rhizomorphs, mantles, and Hartig nets were observed in receiver EM oak roots, and in AMF hyphae of Salvia. Hyphal labelling was scarce in Eriogonum and Keckiella since these species are less dependent on AMF. The observed patterns of dye distribution also indicated that only a small percentage of mycorrhizal roots and extraradical hyphae were involved with water transfer among plants. Our results suggest that the movement of water by CMNs is potentially important to plant survival during drought, and that the functional ecophysiological traits of individual mycorrhizal fungi may be a component of this mechanism.  相似文献   

7.
Kinetics of amino acid uptake by ectomycorrhizal roots   总被引:5,自引:0,他引:5  
It is well established that ectomycorrhizal fungi can use amino acids as nitrogen and carbon sources, but data on the kinetic properties of amino acid uptake systems of ectomycorrhizal systems are scarce. Using 14C-labelled compounds we have determined the kinetics of uptake of amino acids by excised ectomycorrhizal roots for a range of distinct mycorrhizal types from three tree species, beech, spruce, and pine. All mycorrhizal types examined took up amino acids via high-affinity transport systems ( K M values ranging from 19 to 233 mmol m–3). A comparative analysis of kinetic parameters for uptake of amino acids and the ammonium analogue methylammonium showed that ectomycorrhizal roots have similar or even higher affinities (lower K M values) for the amino acids, indicating that absorption of these organic forms of nitrogen (N) can contribute significantly to total N uptake by ectomycorrhizal plants. Analysis of amino acid uptake by ectomycorrhizal roots collected along a European north/south gradient of increasing mineral N pollution from northern Sweden to south Germany revealed no obvious trend in the uptake capabilities for amino acids by ectomycorrhizal roots in relation to the location of the sampling site on this gradient. Rather, the fungal species forming a particular morphotype was the factor determining uptake kinetics. It can therefore be deduced that the species composition of the fungal community will contribute significantly to the functional diversity of a population of mycorrhizal roots.  相似文献   

8.
Differential ability of ectomycorrhizas to survive drying   总被引:1,自引:0,他引:1  
To test the hypothesis that, depending on the fungal symbiont, ectomycorrhizas are differentially affected by severe drought stress, we developed a simple method to quantify the loss of vitality of excised ectomycorrhizal tips subjected to drying under controlled conditions. The method uses 96-well microtitration plates with one single ectomycorrhizal tip per well, and is based on measuring the loss of volume and the loss of electrolytes before and after the imposed stress. This approach very significantly discriminated the two ectomycorrhizal morphotypes formed with beech (Fagus silvatica) by Lactarius subdulcis and Cenococcum geophilum, which confirmed the ability of the latter fungal species to protect roots against desiccation already suggested by previous works. The new method should contribute to the present effort in deciphering the functional diversity of complex ectomycorrhizal communities.  相似文献   

9.
Climate change treatments – winter warming, summer drought and increased summer precipitation – have been imposed on an upland grassland continuously for 7 years. The vegetation was surveyed yearly. In the seventh year, soil samples were collected on four occasions through the growing season in order to assess mycorrhizal fungal abundance. Mycorrhizal fungal colonisation of roots and extraradical mycorrhizal hyphal (EMH) density in the soil were both affected by the climatic manipulations, especially by summer drought. Both winter warming and summer drought increased the proportion of root length colonised (RLC) and decreased the density of external mycorrhizal hyphal. Much of the response of mycorrhizal fungi to climate change could be attributed to climate‐induced changes in the vegetation, especially plant species relative abundance. However, it is possible that some of the mycorrhizal response to the climatic manipulations was direct – for example, the response of the EMH density to the drought treatment. Future work should address the likely change in mycorrhizal functioning under warmer and drier conditions.  相似文献   

10.
Arbuscular mycorrhizal (AM) fungi in both soil and roots were examined in May (summer) and December (winter) under a 4-y drought experiment in a Chinese subtropical secondary forest. Drought significantly decreased AM fungal extra-radical hyphal density, spore density, and root colonization rate in both seasons. These AM parameters were significantly higher in summer than in winter in the control treatment, but only AM fungal extra-radical hyphal density exhibited the same seasonal trend in the drought treatment. In total, 45 AM fungal operational taxonomic units (OTUs) were obtained at a 97% sequence similarity level using Illumina sequencing of 18S rDNA. Drought and season had no significant effects on AM fungal OTU richness in soil and roots. AM fungal community composition in soil and roots was significantly affected by season but not by drought. This finding enhances our understanding of the response of AM fungi to global climate change in subtropical forest ecosystems.  相似文献   

11.
We tested the hypothesis that carbon productivity of beech ( Fagus sylvatica ) controls ectomycorrhizal colonization, diversity and community structures. Carbon productivity was limited by long-term shading or by girdling. The trees were grown in compost soil to avoid nutrient deficiencies. Despite severe limitation in photosynthesis and biomass production by shading, the concentrations of carbohydrates in roots were unaffected by the light level. Shade-acclimated plants were only 10% and sun-acclimated plants were 74% colonized by ectomycorrhiza. EM diversity was higher on roots with high than at roots with low mycorrhizal colonization. Evenness was unaffected by any treatment. Low mycorrhizal colonization had no negative effects on plant mineral nutrition. In girdled plants mycorrhizal colonization and diversity were retained although 14C-leaf feeding showed almost complete disruption of carbon transport from leaves to roots. Carbohydrate storage pools in roots decreased upon girdling. Our results show that plant carbon productivity was the reason for and not the result of high ectomycorrhizal diversity. We suggest that ectomycorrhiza can be supplied by two carbon routes: recent photosynthate and stored carbohydrates. Storage pools may be important for ectomycorrhizal survival when photoassimilates were unavailable, probably feeding preferentially less carbon demanding EM species as shifts in community composition were found.  相似文献   

12.
Physiological parameters of mycorrhizal symbiosis by Helianthemum almeriense and Terfezia claveryi in orchards were characterized under water deficit conditions. Our orchard included 40 mycorrhizal and 40 nonmycorrhizal plants. Only mycorrhizal plants survived at the beginning of the experimental period, indicating dependency on fungal symbionts in roots for survival. Drought stress significantly affected the mycorrhizal colonization percentage which was 70% in nonirrigated mycorrhizal and 48% in irrigated mycorrhizal plants. No significant differences in plant growth were observed between nonirrigated and irrigated mycorrhizal plants before and after drought stress. Stomatal conductance was more sensitive to water stress than shoot water potential. It decreased more than two-fold under drought-stress compared to control mycorrhizal plants under irrigation/light saturating conditions, indicating important stomatal closure with water deficit. Plants’ water use efficiency improved with drought with stomatal conductance values below 0.3 mol?m?2?s?1. The ability to maintain open stomata and photosynthesis under drought increased carbon supply for growth, and ascocarp fruiting which requires current photosynthates. Basically, H. almeriense shows a conservative water use strategy based mainly on avoiding drought stress by reducing stomatal conductance as soil water potential decreases and atmospheric conditions dry. The results show that mycorrhizal H. almeriense plants maintain good physiological parameters with low soil matric potentials, thus making them an alternative agricultural crop in arid/semi-arid areas.  相似文献   

13.
The significance of ectomycorrhizal fungi for sulfur nutrition of trees   总被引:3,自引:0,他引:3  
Rennenberg  Heinz 《Plant and Soil》1999,215(2):115-122
Sulfur nutrition of plants is largely determined by sulfate uptake of the roots, the allocation of sulfate to the sites of sulfate reduction and assimilation, the reduction of sulfate to sulfide and its assimilation into reduced sulfur-containing amino acids and peptides, and the allocation of reduced sulfur to growing tissues that are unable to fulfill their own demand for reduced sulfur in growth and development. Association of the roots of pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) trees with ectomycorrhizal fungi seems to interact with these processes of sulfur nutrition in different ways, but the result of these interactions is dependent on both the plant and the fungal partners. Mycorrhizal colonisation of the roots can alter the response of sulfate uptake to sulfate availability in the soil and enhances xylem loading and, hence, xylem transport of sulfate to the leaves. As a consequence, sulfate reduction in the leaves may increase. Simultaneously, sulfate reduction in the roots seems to be stimulated by ectomycorrhizal association. Increased sulfate reduction in the leaves of mycorrhizal trees can result in enhanced phloem transport of reduced sulfur from the leaves to the roots. Different from herbaceous plants, enhanced phloem allocation of reduced sulfur does not negatively affect sulfate uptake by the roots of trees. These interactions between mycorrhizal association and the processes involved in sulfur nutrition are required to provide sufficient amounts of reduced sulfur for increased protein synthesis that is used for the enhanced growth of trees frequently observed in response to ectomycorrhizal association. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
外生菌根对干旱胁迫的响应   总被引:3,自引:0,他引:3  
王琚钢  峥嵘  白淑兰  刘声  闫伟 《生态学杂志》2012,31(6):1571-1576
从外生菌根真菌、外生菌根共生体以及外生菌根的间接作用等方面阐述外生菌根如何抵制干旱胁迫,并对未来我国外生菌根的研究提出了建议。干旱可以抑制外生菌根真菌的生长并降低其群落中真菌的多样性,干旱胁迫下外生菌根真菌子实体可以利用深度30cm以下的土壤水,子实体的表面积和体积比可作为筛选抗旱真菌的一个重要因子;在遭受干旱胁迫时,外生菌根共生体可以发生形态变化来应对干旱,同时增加了植株水分的吸收并改善了植物的光合作用、活性氧以及激素等相关代谢;外生菌根对植物生长的促进作用、增加土壤碳汇以及对其他根际微生物生长的促进作用等对宿主植物应对干旱胁迫有利。未来我国外生菌根研究应加强对干旱区优良菌-树组合的筛选工作,同时加大对乡土外生菌根真菌资源的调查力度,未来研究应重点向分子生物学领域推进。  相似文献   

15.
Egerton-Warburton  L.M.  Graham  R.C.  Hubbert  K.R. 《Plant and Soil》2003,249(2):331-342
We documented the spatial distribution, abundance and molecular diversity of mycorrhizal hyphae and physical and chemical properties of soil-weathered bedrock in a chaparral community that experiences seasonal drought. Because plants in this community were known to rely on bedrock-stored water during the summer, the data were used to evaluate the potential role of mycorrhizal hyphae in accessing bedrock-stored water during summer drought. The granitic bedrock was characterized by factures filled with a disaggregated, sandy loam that acted as conduits for water, and matrices composed of soil-weathered granite that retained the fabric and structure of rock. Mycorrhizal hyphae of six ectomycorrhizal taxa (from the Basidiomycota and Ascomycota), and arbuscular mycorrhizal hyphae (Zygomycota) were recovered from both fracture and matrix compartments to depths greater than 200 cm. Our findings also indicated a potential linkage between the abundance of Ascomycete hyphae, substrate physical (bulk density) and chemical properties (total N, N:P, Ca:Mg), and bedrock moisture content, as well as spatial patterning between hyphae and resources at a scale of 25–45 cm. Such linkages suggest that mycorrhizal fungal hyphae may be part of an adaptive mechanism that enables chaparral plants to survive seasonal drought.  相似文献   

16.
The aim of this study was to investigate the influence of ectomycorrhizal fungi (EMF) on the architecture of and nitrogen (N) partitioning in young beech (Fagus sylvatica) plants in response to different light regimes and water deprivation. We hypothesized that EMF modify biomass partitioning and architecture of young beech plants by increased N uptake in comparison with non-mycorrhizal (NM) plants and that therefore, the drought responses of EM and NM plants diverge. We anticipated that full light-exposed plants were more drought tolerant due to improved water status and nutrition, whereas shade-acclimated EM plants were more drought susceptible because of decreased mycorrhizal colonization. To test these hypotheses seedlings were grown in native or sterilized forest soil. To avoid effects of soil pretreatment NM and EM plants were transplanted into sand-peat culture systems and exposed to shade, drought or the combination of both factors. Shade resulted in reduced root biomass production decreasing the root-to-shoot ratio. Mild drought stress (pre-dawn water potential [Ψpd] = −1.3 MPa) did not affect biomass partitioning. EMF colonization did not increase plant biomass, but had strong effects on root architecture: the numbers of root tips as well as the absolute and specific root lengths were increased because of formation of thin roots, especially in the diameter classes from 0.2 to 0.8 mm. In contrast to our expectation N uptake of well irrigated EM plants was not increased despite their larger potential for soil exploitation. Overall, EM plants exhibited higher amounts of carbon fixed per unit of N taken up than NM plants and shifted N partitioning towards the roots. Beneficial effects of EMFs were apparent under mild drought but the responses differed depending on the light availability: shaded EM plants showed a delay in the decrease of Ψpd; light exposed EM plants showed increased N uptake compared with NM beeches. These results indicate that EMFs are involved in mediating divergent responses of beech to drought depending on the light availability.  相似文献   

17.
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak‐dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal‐root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root‐associated fungal community was dominated by root‐endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root‐associated fungal communities of oak‐dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.  相似文献   

18.
Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.  相似文献   

19.
干旱是中国烟草种植业面临的较为严重的非生物胁迫.很多与植物共生或联合的根际微生物能帮助植物避旱和耐旱.微生物能通过菌丝吸水并转运到植物,通过产生植物激素或改变植物内源激素的平衡来促进根发育和伸长,或诱导叶片关闭气孔,促进根吸水和减少叶片散失水分来避旱.微生物能通过调整不同激素介导的信号通路,诱导植物产生系统抗逆性,促进植物细胞产生渗透保护剂、抗氧化物和活性氧清除剂而耐旱.微生物还能帮助植物吸收营养,以支持植物在干旱胁迫下的代谢和生长.本文关注丛枝菌根真菌、模式内生真菌印度梨形孢和根际促植物生长细菌帮助烟草和番茄等植物抗旱的机理,探讨如何在烟草育苗和栽培中应用有益微生物来帮助烟草抗旱.  相似文献   

20.
The function of the ectomycorrhizal mutualism depends on the ability of the fungal symbionts to take up nutrients (particularly nitrogen) available in inorganic and/or organic form in the soil and to translocate them (or their metabolites) to the symbiotic roots. A better understanding of the molecular mechanisms underlying nutrient exchanges between fungus and plant at the symbiotic interface is necessary to fully understand the function of the mycorrhizal symbioses. The present review reports the characterization of several genes putatively involved in nitrogen uptake and transfer in the Hebeloma cylindrosporum-Pinus pinaster ectomycorrhizal association. Study of this model system will further clarify the symbiotic nutrient exchange which plays a major role in plant nutrition as well as in resistance of plants against pathogens, heavy metals, drought stress, etc. Ultimately, ecological balance is maintained and/or improved with the help of symbiotic associations, and therefore, warrant further understanding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号