首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The perfused rat liver responds intensely to NAD+ infusion (20-100 microM). Increases in portal perfusion pressure and glycogenolysis and transient inhibition of oxygen consumption are some of the effects that were observed. The aim of the present work was to investigate the distribution of the response to extracellular NAD+ along the hepatic acinus. The bivascularly perfused rat liver was used. Various combinations of perfusion directions (antegrade and retrograde) and infusion routes (portal vein, hepatic vein and hepatic artery) were used in order to supply NAD+ to different regions of the liver parenchyma, also taking advantage of the fact that its extracellular transformation generates steep concentration gradients. Oxygen uptake was stimulated by NAD+ in retrograde perfusion (irrespective of the infusion route) and transiently inhibited in antegrade perfusion. This indicates that the signal causing oxygen uptake inhibition is generated in the periportal area. The signal responsible for oxygen uptake stimulation is homogenously distributed. Stimulation of glucose release was more intense when NAD+ was infused into the portal vein or into the hepatic artery, indicating that stimulation of glycogenolysis predominates in the periportal area. The increases in perfusion pressure were more pronounced when the periportal area was supplied with NAD+ suggesting that the vasoconstrictive elements responding to NAD+ predominate in this region. The response to extracellular NAD+ is thus unequally distributed in the liver. As a paracrine agent, NAD+ is likely to be released locally. It can be concluded that its effects will be different depending on the area where it is released.  相似文献   

2.
The heterogeneity of the liver parenchyma in relation to uric acid production from adenosine was investigated using the bivascularly perfused rat liver in the anterograde and retrograde modes. Adenosine was infused in livers from fed rats during 20 min at four different concentrations (20, 50, 100 and 200 M) according to four experimental protocols as follows: (A) anterograde perfusion, with adenosine infusion into the portal vein; (B) anterograde perfusion, with adenosine in the hepatic artery, (C) retrograde perfusion, with adenosine in the hepatic vein; (D) retrograde perfusion, with adenosine in the hepatic artery. With protocols A, B, and D uric acid production from adenosine was always characterized by initial bursts followed by progressive decreases toward smaller steady-states. With protocol C the initial burst was present only when 200 M adenosine was infused. The initial bursts in uric acid production were accompanied by simultaneous increases in the ratio of uric acid production/adenosine uptake rate. These initial bursts are thus representing increments in the production of uric acid that are not corresponded by similar increments in the metabolic uptake rates of adenosine. Global analysis of uric acid production revealed that the final steady-state rates were approximately equal for all infusion rates with protocols A, B and C, but smaller with protocol D. This difference, however, can be explained in terms of the differences in accessible cellular spaces, which are much smaller when protocol D is employed. When the analysis was performed in terms of the extra amounts of uric acid produced during the infusion of adenosine, where the initial bursts are also taken into account, different dose-response curves were found for each experimental protocol. These differences cannot be explained in terms of the accessible cell spaces and they are likely to reflect regional heterogeneities. From the various dose-response curves and from the known characteristics of the microcirculation of the rat liver it can be concluded that the initial bursts in uric acid production are generated in periportal hepatocytes. The reason for this heterogeneity could be related to the metabolic effects of adenosine, especially to oxygen uptake inhibition, which is likely to produce changes in the ATP/AMP ratios.  相似文献   

3.
The action of cyanide (500 μM ), 2,4-dinitrophenol (50 μM ) and atractyloside (100 μM ) on glycogen catabolism and oxygen uptake was investigated in the bivascularly perfused liver of fed rats. Cyanide, 2,4-dinitrophenol and atractyloside were infused at identical rates into the hepatic artery in either the anterograde or retrograde perfusion. The accessible aqueous cell spaces were determined by means of the multiple-indicator dilution technique. Glucose release, oxygen uptake and glycolysis were measured as metabolic parameters. Oxygen uptake changes per unit cell space caused by atractyloside (inhibition) and 2,4-dinitrophenol (stimulation) were equal in the retrograde perfusion (periportal cells) and the anterograde perfusion (space enriched in perivenous cells); the decreases caused by cyanide were higher in the retrograde perfusion. Glucose release from periportal cells was not increased upon inhibition of oxidative phosphorylation, a phenomenon which was independent of the mechanism of action of the inhibitor. There were nearly identical changes in glycolysis in the periportal and perivenous cells. It was concluded that: (1) oxygen concentration in the perfused rat liver, if maintained above 100 μM , had little influence on the zonation of the respiratory activity; (2) in spite of the lower activities of the key enzymes of glycolysis in the periportal hepatocytes, as assayed under standard conditions, these cells were as effective as the perivenous ones in generating ATP in the cytosol when oxidative phosphorylation was impaired; (3) the key enzymes of glycogenolysis and glycolysis in periportal and perivenous cells responded differently to changes in the energy charge.  相似文献   

4.
The metabolism of fructose was investigated in the bivascularly and hemoglobin-free perfused rat liver. Anterograde and retrograde perfusions were performed. In anterograde perfusion, fructose was infused at identical rates (19 mumols min-1 g-1) via the portal vein (all liver cells) or the hepatic artery (predominantly perivenous cells); in retrograde perfusion fructose was infused via the hepatic vein (all liver cells) or the hepatic artery (only periportal cells). The cellular water spaces accessible via the hepatic artery were measured by means of the multiple-indicator dilution technique. The following results were obtained. (i) Fructose was metabolized to glucose, lactate and pyruvate even when this substrate was infused via the hepatic artery in retrograde perfusion; oxygen consumption was also increased. (ii) When referred to the water spaces accessible to fructose via the hepatic artery in each perfusion mode, the rate of glycolysis was 0.99 +/- 0.14 mumols min-1 ml-1 in the retrograde mode; and, 2.05 +/- 0.19 mumols min-1 ml-1 in the anterograde mode (P = 0.002). (iii) The extra oxygen uptake due to fructose infusion via the hepatic artery was 1.09 +/- 0.16 mumols min-1 ml-1 in the retrograde mode; and, 0.51 +/- 0.08 mumols min-1 ml-1 in the anterograde mode (P = 0.005). (iv) Glucose production from fructose via the hepatic artery was 2.18 +/- 0.18 mumols min-1 ml-1 in the retrograde mode; and, 1.83 +/- 0.16 mumols min-1 ml-1 in the anterograde mode (P = 0.18). (v) Glucose production and extra oxygen uptake due to fructose infusion did not correlate by a single factor in all perfusion modes. It was concluded that: (a) rates of glycolysis are lower in the periportal area, confirming previous views; (b) extra oxygen uptake due to fructose infusion is higher in the periportal area; (c) a predominance of glucose production in the periportal area could not be demonstrated; and (d) extra oxygen uptake due to fructose infusion is not a precise indicator for glucose synthesis.  相似文献   

5.
Hepatocyte heterogeneity in response to extracellular ATP   总被引:4,自引:0,他引:4  
1. The metabolic and hemodynamic effects of extracellular ATP in perfused rat liver were compared during physiologically antegrade (portal to hepatic vein) and retrograde (hepatic to portal vein) perfusion. ATP in concentrations up to 100 microM was completely hydrolyzed during a single liver passage regardless of the perfusion direction. 2. The ATP(20 microM)-induced increases of glucose output, perfusion pressure and ammonium ion release seen during antegrade perfusions were diminished by 85-95% when the perfusion was in the retrograde direction, whereas the amount of Ca2+ mobilized from the liver was decreased by only 60%. The maximal rate of initial K+ uptake following ATP was dependent on the amount of Ca2+ mobilized regardless of the direction of perfusion. In the presence of UMP (1 mM), an inhibitor of ATP hydrolysis by membrane-bound nucleotide pyrophosphatase, the effect of the direction of perfusion on the glycogenolytic response to ATP (20 microM) was largely diminished. 3. For a maximal response of glucose output, Ca2+ release and perfusion pressure to extracellular ATP, concentrations of about 20 microM, 50 microM and 100 microM were required during antegrade perfusion, respectively. These maximal responses could also be obtained during retrograde perfusion, but higher ATP concentrations were required (120 microM, 80 microM, above 200 microM, respectively). 4. 14CO2 production from [1-14C]glutamate which occurs predominantly in the perivenous hepatocytes capable of glutamine synthesis was stimulated by extracellular ATP (20 microM); it was only slightly affected by the direction of perfusion. In antegrade perfusions, ATP (20 microM) increased 14CO2 production from 88 to 162 nmol g-1 min-1, compared to an increase from 91 to 148 nmol g-1 min-1 in retrograde perfusion. 5. The data are interpreted to suggest that (a) extracellular ATP is predominantly hydrolyzed by a small hepatocyte population located at the perivenous outflow of the acinus; (b) glycogenolysis to glucose is predominantly localized in the periportal area; (c) contractile elements (sphincters) exist near the inflow of the sinusoidal bed; (d) a considerable portion of the Ca2+ mobilized by ATP is derived from liver cells that do not contribute to hepatic glucose output.  相似文献   

6.
Zonation of ethanol oxidation and metabolic effects along the hepatic acini were investigated in the bivascularly perfused liver of fed rats. Ethanol was infused into the hepatic artery in antegrade and retrograde perfusion. Inhibition of glycolysis by ethanol, expressed as micromol min(-1) (ml accessible cell space)(-1), was more pronounced in the retrograde mode; the retrograde/antegrade ratio was equal to 1.63 for an ethanol infusion rate of 37.5 micromol min(-1) g(-1). Stimulation of oxygen uptake by ethanol was more pronounced in the retrograde mode; the retrograde/antegrade ratio was equal to 1.77. Diminution of the citrate cycle caused by ethanol was more pronounced in the retrograde mode; the retrograde/antegrade ratio was equal to 1.46. Transformation of arterially infused ethanol into acetate was more pronounced in retrograde perfusion; the retrograde/antegrade ratio was equal to 1.63. The increments in glucose release (glycogenolysis) caused by ethanol in the antegrade and retrograde modes were similar. It was assumed that the changes caused by arterially infused ethanol in retrograde and antegrade perfusion closely reflect a significant part of the periportal parenchyma and an average over the whole liver parenchyma, respectively. Under such assumptions it can be concluded that, in the perfused liver from fed rats, four related parameters predominate in the periportal region: ethanol oxidation, glycolysis inhibition, oxygen uptake stimulation and citrate cycle inhibition. One of the main causes for this predominance could be the malate/aspartate shuttle, which operates more rapidly in the periportal area and is essential for NADH oxidation.  相似文献   

7.
Predominance of the vasopressin binding capacity in the hepatic perivenous area leads to the hypothesis that the metabolic effects of the hormone should also be more pronounced in this area. Until now this question has been approached solely by experiments with isolated hepatocytes where an apparent absence of metabolic zonation was found. We have reexamined this question using the bivascularly perfused liver. In this system periportal cells can be reached in a selective manner with substrates and effectors via the hepatic artery when retrograde perfusion (hepatic vein --> portal vein) is done. The action of vasopressin (1-10 nM) on glycogenolysis, initial calcium efflux, glycolysis and oxygen uptake were measured. The results revealed that the action of vasopressin in the liver is heterogeneously distributed. Glycogenolysis stimulation and initial calcium efflux were predominant in the perivenous area, irrespective of the vasopressin concentration. Oxygen uptake was stimulated in the perivenous area; in the periportal area it ranged from inhibition at low vasopressin concentrations to stimulation at high ones. Lactate production was generally greater in the perivenous zone, whereas the opposite occurred with pyruvate production. Analysis of these and other results suggests that at least three factors are contributing to the heterogenic response of the liver parenchyma to vasopressin: a) receptor density, which tends to favour the perivenous zone; b) cell-to-cell interactions, which tend to favour situations where the perivenous zone is amply supplied with vasopressin; and c) the different response capacities of perivenous and periportal cells.  相似文献   

8.
Zonation of the actions of ethanol on gluconeogenesis and ketogenesis from lactate were investigated in the bivascularly perfused rat liver. Livers from fasted rats were perfused bivascularly in the antegrade and retrograde modes. Ethanol and lactate were infused into the hepatic artery (antegrade and retrograde) and portal vein. A previously described quantitative analysis that takes into account the microcirculatory characteristics of the rat liver was extended to the analysis of zone-specific effects of inhibitors. Confirming previous reports, gluconeogenesis and the corresponding oxygen uptake increment due to saturable lactate infusions were more pronounced in the periportal region. Arterially infused ethanol inhibited gluconeogenesis more strongly in the periportal region (inhibition constant = 3.99 ± 0.22 mM) when compared to downstream localized regions (inhibition constant = 8.64 ± 2.73 mM). The decrease in oxygen uptake caused by ethanol was also more pronounced in the periportal zone. Lactate decreased ketogenesis dependent on endogenous substrates in both regions, periportal and perivenous, but more strongly in the former. Ethanol further inhibited ketogenesis, but only in the periportal zone. Stimulation was found for the perivenous zone. The predominance of most ethanol effects in the periportal region of the liver is probably related to the fact that its transformation is also clearly predominant in this region, as demonstrated in a previous study. The differential effect on ketogenesis, on the other hand, suggest that the net effects of ethanol are the consequence of a summation of several partial effects with different intensities along the hepatic acini.  相似文献   

9.
The present study was undertaken to investigate hepatic microcirculatory response following partial portal vein ligation (PPVL) in rats. Portal pressure was markedly increased 2-6 wk after PPVL, but no significant reduction in sinusoidal perfusion and hepatocellular injury were detected. However, marked neovascularization was observed in PPVL rats using intravital microscopy and scanning electron microscopy (SEM). Extremely high red blood cell velocity (2,000-4,900 microm/s) was seen in these vessels. Injection of fluorescein sodium via the carotid artery revealed that the neovessels originated from the hepatic arterial vasculature. This was further confirmed by clamping the common hepatic artery and phenylephrine injection from the carotid artery. These vessels maintained sufficient flow after massive sinusoidal shutdown elicited by the portal infusion of endothelin receptor B agonist IRL-1620. SEM also showed extensive neovascularization at the hilum. Additionally, clamping the portal vein decreased sinusoidal perfusion only by 9.5% in PPVL, whereas a 71.2% decrease was observed in sham. These results strongly suggest that the liver maintains its microcirculatory flow by vascular remodeling from the hepatic arterial vasculature following PPVL.  相似文献   

10.
Gluconeogenesis from fructose was studied in periportal and pericentral regions of the liver lobule in perfused livers from fasted, phenobarbital-treated rats. When fructose was infused in increasing concentrations from 0.25 to 4 mM, corresponding stepwise increases in glucose formation by the perfused liver were observed as expected. Rates of glucose and lactate production from 4 mM fructose were around 100 and 75 mumol/g/h, respectively. Rates of fructose uptake were around 190 mumol/g/h when 4 mM fructose was infused. 3-Mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, decreased glucose formation from fructose maximally by 20% suggesting that a fraction of the lactate formed from fructose is used for glucose synthesis. A good correlation (r = 0.92) between extra oxygen consumed and glucose produced from fructose was observed. At low fructose concentrations (less than 0.5 mM), the extra oxygen uptake was much greater than could be accounted for by glucose synthesis possibly reflecting fructose 1-phosphate accumulation. Furthermore, fructose diminished ATP/ADP ratios from about 4.0 to 2.0 in periportal and pericentral regions of the liver lobule indicating that the initial phosphorylation of fructose via fructokinase occurs in both regions of the liver lobule. Basal rates of oxygen uptake measured with miniature oxygen electrodes were 2- to 3-fold higher in periportal than in pericentral regions of the liver lobule during perfusions in the anterograde direction. Infusion of fructose increased oxygen uptake by 65 mumol/g/h in periportal areas but had no effect in pericentral regions of the liver lobule indicating higher local rates of gluconeogenesis in hepatocytes located around the portal vein. When perfusion was in the retrograde direction, however, glucose was synthesized nearly exclusively from fructose in upstream, pericentral regions. Thus, gluconeogenesis from fructose is confined to oxygen-rich upstream regions of the liver lobule in the perfused liver.  相似文献   

11.
In the rat liver NAD+ infusion produces increases in portal perfusion pressure and glycogenolysis and transient inhibition of oxygen consumption. The aim of the present work was to investigate the possible action of this agent on gluconeogenesis using lactate as a gluconeogenic precursor. Hemoglobin-free rat liver perfusion in antegrade and retrograde modes was used with enzymatic determination of glucose production and polarographic assay of oxygen uptake. NAD+ infusion into the portal vein (antegrade perfusion) produced a concentration-dependent (25–100 μM) transient inhibition of oxygen uptake and gluconeogenesis. For both parameters inhibition was followed by stimulation. NAD+ infusion into the hepatic vein (retrograde perfusion) produced only transient stimulations. During Ca2+-free perfusion the action of NAD+ was restricted to small transient stimulations. Inhibitors of eicosanoid synthesis with different specificities (indo-methacin, nordihydroguaiaretic acid, bromophenacyl bromide) either inhibited or changed the action of NAD+. The action of NAD+ on gluconeogenesis is probably mediated by eicosanoids synthesized in non-parenchymal cells. As in the fed state, in the fasted condition extracellular NAD+ is also able to exert two opposite effects, inhibition and stimulation. Since inhibition did not manifest significantly in retrograde perfusion it is likely that the generating signal is located in pre-sinusoidal regions.  相似文献   

12.
1. The metabolism of glutamine and ammonia was studied in isolated perfused rat liver in relation to its dependence on the direction of perfusion by comparing the physiological antegrade (portal to caval vein) to the retrograde direction (caval to portal vein). 2. Added ammonium ions are mainly converted to urea in antegrade and to glutamine in retrograde perfusions. In the absence of added ammonia, endogenously arising ammonium ions are converted to glutamine in antegrade, but are washed out in retrograde perfusions. When glutamine synthetase is inhibited by methionine sulfoximine, direction of perfusion has no effect on urea synthesis from added or endogenous ammonia. 3. 14CO2 production from [1-14C]glutamine is higher in antegrade than in retrograde perfusions as a consequence of label dilution during retrograde perfusions. 4. The results are explained by substrate and enzyme activity gradients along the liver lobule under conditions of limiting ammonia supply for glutamine and urea synthesis, and they are consistent with a perivenous localization of glutamine synthetase and a predominantly periportal localization of glutaminase and urea synthesis. Further, the data indicate a predominantly periportal localization of endogenous ammonia production. The results provide a basis for an intercellular (as opposed to intracellular) glutamine cycling and its role under different metabolic conditions.  相似文献   

13.
The plasma membrane permeabilization obtained by exposure of hepatocytes to digitonin is utilized in the so-called digitonin-pulse perfusion of rat liver (Quistorff and Grunnet 1987). Brief pulses of digitonin applied with antegrade and retrograde perfusion of the liver caused selective elution of cytosolic enzymes and metabolites from the periportal and the perivenous zone of the same liver. In the present study a light microscopical examination of the liver fixed immediately after the digitonin pulse confirmed the very high zonal selectivity of the method inferred from the marker enzyme pattern of the eluates: Only cells around the port of entry of digitonin were affected and the borderline between affected and non-affected cells was always sharp. The typical periportal lesion was triangular in shape, enclosing the portal space, while the perivenous lesion was roughly circular, concentric with the hepatic vein. Assuming that the digitonin lesion reflects the microcirculatory flow pattern these findings seem to be at variance with the acinar model of Rappaport (Rappaport et al. 1954). The lesion in the lobuli near the surface of the liver as reflected by the discoloration pattern observed on the surface was the same as the lesion of deeper lobuli. The conducting vessels of the liver were only insignificantly affected by digitonin. At the cellular level only the sinusoidal luminal surface of the hepatocytes was affected. The cytoplasmic matrix of the cells including glycogen appeared thinned. All cell types of the liver parenchyma seemed to be equally affected by the digitonin treatment.  相似文献   

14.
Summary The plasma membrane permeabilization obtained by exposure of hepatocytes to digitonin is utilized in the so-called digitonin-pulse perfusion of rat liver (Quistorff and Grunnet 1987). Brief pulses of digitonin applied with antegrade and retrograde perfusion of the liver caused selective elution of cytosolic enzymes and metabolites from the periportal and the perivenous zone of the same liver. In the present study a light microscopical examination of the liver fixed immediately after the digitonin pulse confirmed the very high zonal selectivity of the method inferred from the marker enzyme pattern of the eluates: Only cells around the port of entry of digitonin were affected and the borderline between affected and non-affected cells was always sharp. The typical periportal lesion was triangular in shape, enclosing the portal space, while the perivenous lesion was roughly circular, concentric with the hepatic vein. Assuming that the digitonin lesion reflects the microcirculatory flow pattern these findings seem to be at variance with the acinar model of Rappaport (Rappaport et al. 1954). The lesion in the lobuli near the surface of the liver as reflected by the discoloration pattern observed on the surface was the same as the lesion of deeper lobuli. The conducting vessels of the liver were only insignificantly affected by digitonin. At the cellular level only the sinusoidal luminal surface of the hepatocytes was affected. The cytoplasmic matrix of the cells including glycogen appeared thinned. All cell types of the liver parenchyma seemed to be equally affected by the digitonin treatment.  相似文献   

15.
Since in the usual perfusion of isolated rat liver via the portal vein an insulin-dependent increase of hepatic glucose uptake could not be demonstrated, the possibility was considered that hepatic glucose uptake might not be a function of the absolute concentration of this substrate but of its concentration gradient between the portal vein and the hepatic artery. Therefore a new method was established for the simultaneous perfusion of isolated rat liver via both the hepatic artery (20-35% flow) and the portal vein (80-65% flow). When glucose was offered in a concentration gradient, 9.5 mM in the portal vein and 6 mM in the hepatic artery, insulin given via both vessels caused a shift from net glucose release to uptake. This insulin-dependent shift was not observed when glucose was offered without a gradient or with an inverse gradient, 6 mM in the portal vein and 9.5 mM in the hepatic artery. Using a portal-arterial glucose gradient as a signal the liver might be able to differentiate between endogenous and exogenous glucose.  相似文献   

16.
目的:探讨16层螺旋CT灌注成像对肝硬化血流状态的评估价值及其与肝硬化程度的相关性。方法:选取2014年1月至2016年1月于我院接受诊治的肝硬化患者126例作为肝硬化组,根据Child-Pugh分级分为A组(Child A级,n=35例)、B组(Child B级,n=50例)、C组(Child C级,n=41例)。另选取同期于我院接受体检的健康人员100例作为对照组。应用16层螺旋CT对受试者肝脏、脾脏、主动脉以及门静脉的层面进行CT动态增强扫描,对比CT灌注参数,采用Pearson相关性分析分析CT灌注参数与肝硬化病情严重程度的关系。结果:肝硬化组肝动脉灌注量(HAP)、肝动脉灌注指数(HPI)、肝脏血流量(TBV)以及平均通过时间(MTT)均明显高于对照组,而门静脉灌注量(PVP)、总肝灌注量(TLP)均明显低于对照组(P0.05)。A组患者HAP、HPI均明显高于C组,而PVP与TLP均明显低于C组,差异有统计学意义(P0.05);两组TBV、MTT比较无统计学差异(P0.05);而A组与B组相比以及B组与C组相比,各项CT灌注参数均无统计学差异(P0.05)。肝硬化患者病情严重程度与HAP、HPI均呈正相关关系(P0.05),而与PVP、TLP均呈负相关关系(P0.05)。结论:16层螺旋CT灌注成像对肝硬化血流状态具有一定的评估价值,且CT灌注参数的水平变化与肝硬化患者病情严重程度存在密切相关。  相似文献   

17.
Decellularization and recellularization of parenchymal organs may enable the generation of functional organs in vitro, and several protocols for rodent liver decellularization have already been published. We aimed to improve the decellularization process by construction of a proprietary perfusion device enabling selective perfusion via the portal vein and/or the hepatic artery. Furthermore, we sought to perform perfusion under oscillating surrounding pressure conditions to improve the homogeneity of decellularization. The homogeneity of perfusion decellularization has been an underestimated factor to date. During decellularization, areas within the organ that are poorly perfused may still contain cells, whereas the extracellular matrix (ECM) in well-perfused areas may already be affected by alkaline detergents. Oscillating pressure changes can mimic the intraabdominal pressure changes that occur during respiration to optimize microperfusion inside the liver. In the study presented here, decellularized rat liver matrices were analyzed by histological staining, DNA content analysis and corrosion casting. Perfusion via the hepatic artery showed more homogenous results than portal venous perfusion did. The application of oscillating pressure conditions improved the effectiveness of perfusion decellularization. Livers perfused via the hepatic artery and under oscillating pressure conditions showed the best results. The presented techniques for liver harvesting, cannulation and perfusion using our proprietary device enable sophisticated perfusion set-ups to improve decellularization and recellularization experiments in rat livers.  相似文献   

18.
The effect of glucagon on gluconeogenesis was measured in periportal and pericentral regions of the liver lobule by monitoring changes in rates of O2 uptake on the surface of the perfused liver with miniature O2 electrodes after infusion of lactate. When lactate (2 mM) was infused into livers from starved rats perfused in the anterograde direction, O2 uptake was increased 2.5-fold more in periportal than in pericentral regions, reflecting increased energy demands for glucose synthesis. Under these conditions, glucagon infusion in the presence of lactate increased O2 uptake exclusively in periportal regions of the liver lobule. Thus, when perfusion is in the physiological anterograde direction, the metabolic actions of glucagon predominate in periportal regions of the liver lobule under gluconeogenic conditions in the starved state. When livers were perfused in the retrograde direction, however, glucagon stimulated O2 uptake exclusively in pericentral regions. Thus glucagon only stimulates gluconeogenesis in 'upstream' regions of the liver lobule irrespective of the direction of flow.  相似文献   

19.
In cirrhosis, hepatic venous pressure gradient is used to measure portal venous and sinusoidal pressures, as well as drug-induced decreases of elevated pressures. The aim of this study was to investigate the influence of hepatic arterial flow (HAF) changes on portal venous perfusion (PVPP) and wedged hepatic venous pressure (WHVP). Normal and CCl4-cirrhotic rats were subjected to a bivascular liver perfusion with continuous measurements of PVPP, WHVP, and hepatic arterial perfusion pressure. Flow-pressure curves were performed with the use of different flows either through the portal vein (PVF: 20-32 ml/min) or HAF (5-15 ml/min). Increases in HAF lead to significant absolute and relative increases in PVPP (P = 0.002) and WHVP (P < 0.001). Absolute changes in HAF correlated to absolute changes in PVPP (cirrhosis: r = 0.64, P < 0.001; control: r = 0.67, P < 0.001) and WHVP (cirrhosis: r = 0.71, P < 0.001; control: r = 0.82, P < 0.001). Changes in PVPP correlated to changes in WHVP due to changes in PVF only in cirrhosis (r = 0.75, P < 0.001), whereas changes in HAF correlated in both cirrhosis (r = 0.92, P < 0.001) and control (r = 0.77, P < 0.001). In conclusion, increases and decreases in HAF lead to respective changes in PVPP and WHVP. This suggests a direct influence of HAF on PVPP and WHVP most likely due to changes in sinusoidal perfusion.  相似文献   

20.
Gluconeogenesis predominates in periportal regions of the liver lobule   总被引:2,自引:0,他引:2  
Rates of gluconeogenesis from lactate were calculated in periportal and pericentral regions of the liver lobule in perfused rat livers from increases in O2 uptake due to lactate. When lactate (0.1-2.0 mM) was infused into livers from fasted rats perfused in either anterograde or the retrograde direction, a good correlation (r = 0.97) between rates of glucose production and extra O2 uptake by the liver was observed as expected. Rates of oxygen uptake were determined subsequently in periportal and pericentral regions of the liver lobule by placing miniature oxygen electrodes on the liver surface and measuring the local change in oxygen concentration when the flow was stopped. Basal rates of oxygen uptake of 142 +/- 11 and 60 +/- 4 mumol X g-1 X h-1 were calculated for periportal and pericentral regions, respectively. Infusion of 2 mM lactate increased oxygen uptake by 71 mumol X g-1 X h-1 in periportal regions and by 29 mumol X g-1 X h-1 in pericentral areas of the liver lobule. Since the stoichiometry between glucose production and extra oxygen uptake is well-established, rates of glucose production in periportal and pericentral regions of the liver lobule were calculated from local changes in rates of oxygen uptake for the first time. Maximal rates of glucose production from lactate (2 mM) were 60 +/- 7 and 25 +/- 4 mumol X g-1 X h-1 in periportal and pericentral zones of the liver lobule, respectively. The lactate concentrations required for half-maximal glucose synthesis were similar (0.4-0.5 mM) in both regions of the liver lobule in the presence or absence of epinephrine (0.1 microM). In the presence of epinephrine, maximal rates of glucose production from lactate were 79 +/- 5 and 59 +/- 3 mumol X g-1 X h-1 in periportal and pericentral regions, respectively. Thus, gluconeogenesis from lactate predominates in periportal areas of the liver lobule during perfusion in the anterograde direction; however, the stimulation by added epinephrine was greatest in pericentral areas. Differences in local rates of glucose synthesis may be due to ATP availability, as a good correlation between basal rates of O2 uptake and rates of gluconeogenesis were observed in both regions of the liver lobule in the presence and absence of epinephrine. In marked contrast, when livers were perfused in the retrograde direction, glucose production was 28 +/- 5 mumol X g-1 X h-1 in periportal areas and 74 +/- 6 mumol X g-1 X h-1 in pericentral regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号