首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of three growth substances, viz. indol-3yl-aceticacid (IAA), gibberellic acid (GA3), and kinetin (KIN), and differentialshoot and root temperatures on growth of sugar-beet (Beta vulgarisL.) plants have been studied. IAA, GA3, and KIN were applied in aqueous lanolin at differentconcentrations (50 ppm to 5000 ppm) to decapitated sugar-beetplants at the eight-leaf stage, one group also having alternateleaves removed. The growth substances significantly increasedthe dry weights of the plants when all the leaves were present,which was mainly explained by the large increase in roots. Thegrowth substances probably stimulated cambial activity and hencethe mobilization of substrates resulting in a bigger root whena relatively large leaf area existed. The failure of the plantsto respond to treatments following the removal of alternateleaves suggests that under such conditions the growth substanceshave hardly any major effect on the production of substrates;rather they influence growth by regulating the movement of substratesby altering the ‘sink strength’ if the supply ofsubstrates is not limiting. It could also be that the rootsproduce sufficient growth substances to maintain half the leavesat maximum expansion and maximum photosynthesis. Treatment withgrowth substances would therefore have little effect. When allthe leaves were present, they are limited by insufficient growthsubstances. All combinations of root and shoot temperatures of 17 and 25°C were imposed on plants decapitated at the eight-leafstage, one group also having each alternate leaf removed. Leaf8 expanded most at shoot and root temperature of 25 °C whereasother leaves had the largest areas at shoot and root temperatureof 17 °. When all the leaves were present root growth wasmaximal at shoot temperature of 17°C and root temperatureof 25 °C, but when alternate leaves were removed maximumroot growth occurred at shoot and root temperatures of 25 °C.Generally, a higher concentration of soluble carbohydrates wasfound in the roots and leaves when either the shoot or rootor both were kept at 17 °C. Concentrations of nitrogen,phosphorus, and potassium in different organs were less at 17°C than at higher shoot or root temperatures and decreasedwith age.  相似文献   

2.
Young plants of Banksia hookeriana were grown in acid-washedsand with adequate phosphate and water supply, and a proportionwere inoculated with Phytophthora cinnamomi. There were no majordifferences in growth between uninoculated and infected plants,but there was a large increase in uptake of 32P with increasingroot disease. In healthy plants 32P uptake was greatest in youngleaf tissue, but in diseased plants labelled phosphate was directedmore towards older leaves where the activity was almost twicethat of young leaves. Enhanced uptake with disease was ascribed to possible blockageof the ‘message’ or ‘signal’ of phosphatetranslocation from shoot to root, such that the diseased rootincorrectly treated the shoot as P deficient and increased Puptake. Key words: Banksia hookeriana, Proteaceae, 32P uptake, Phytophthora cinnamomi  相似文献   

3.
The freezing tolerance of many plants, such as pea (Pisum sativum),is increased by exposure to low temperature or abscisic acidtreatment, although the physiological basis of this phenomenonis poorly understood. The freezing tolerance of pea shoot tips,root tips, and epicotyl tissue was tested after cold acclimationat 2C, dehydration/rehydration, applications of 10–4M abscisic acid (ABA), and deacclimation at 25C. Tests wereconducted using the cultivar ‘Alaska’, an ABA-deficientmutant ‘wil’, and its ‘wildtype’. Freezinginjury was determined graphically as the temperature that caused50% injury (T50) from electrical conductivity. Endogenous ABAwas measured using an indirect enzyme-linked immunosorbant assay,and novel proteins were detected using 2-dimensional polyacrylamidegel electrophoresis. The maximum decrease in T50 for root tissuewas 1C for all genotypes, regardless of treatment. For ‘Alaska’shoot tips and epicotyl tissue, exogenous ABA increased thefreezing tolerance by –1.5 to –4.0C, while coldtreatment increased the freezing tolerance by –7.5 to–14.8C. Cold treatment increased the freezing toleranceof shoot tips by –9 and –15C for ‘wil’and ‘wild-type’, respectively. Cold acclimationincreased endogenous ABA concentrations in ‘Alaska’shoot tips and epicotyls 3- to 4-fold. Immunogold labeling increasednoticeably in the nucleus and cytoplasm of the epicotyl after7 d at 2C and was greatest after 30 d at the time of maximumfreezing tolerance and soluble ABA concentration. Cold treatmentinduced the production of seven, three, and two proteins inshoot, epicotyl, and root tissue of ‘Alaska’, respectively.In ‘Alaska’ shoot tissue, five out of seven novelproteins accumulated in response to both ABA and cold treatment.However, only a 24 kDa protein was produced in ‘wil’and ‘wild-type’ shoot and epicotyl tissues aftercold treatment. Abscisic acid and cold treatment additivelyincreased the freezing tolerance of pea epicotyl and shoot tissuesthrough apparently independent mechanisms that both resultedin the production of a 24 kDa protein. Key words: Pisum sativum, cold acclimation, immuno-localization  相似文献   

4.
Fiskeby V soya bean was grown from seed germination to seedmaturation with two contrasting patterns of nitrogen metabolism:either wholly dependent on dinitrogen fixation, or with an abundantsupply of nitrate nitrogen, but lacking root nodules. The carbonand nitrogen economies of the plants were assessed at frequentintervals by measurements of photosynthesis, shoot and rootrespiration, and organic and inorganic nitrogen contents. Plantsfixing atmospheric nitrogen assimilated only 25–30 percent as much nitrogen as equivalent plants given nitrate nitrogen:c. 40 per cent of the nitrogen of ‘nitrate’ plantswas assimilated after dinitrogen fixation had ceased in ‘nodulated’plants. The rates of photosynthesis and respiration of the shootsof soya bean were not markedly affected by source of nitrogen;in contrast, the roots of ‘nodulated’ plants respiredtwice as rapidly during intense dinitrogen fixation as thoseof ‘nitrate’ plants. The magnitude of this respiratoryburden was calculated to increase the daily whole-plant respiratory loss of assimilate by 10–15 per cent over thatof plants receiving abundant nitrate. It is concluded that ‘nodulated’plants grew more slowly than ‘nitrate’ plants inthese experiments for at least two reasons: firstly, the symbioticassociation fixed insufficient nitrogen for optimum growth and,secondly, the assimila tion of the nitrogen which was fixedin the root nodules was more energy-demanding in terms of assimilatethan that of plants which assimilated nitrogen by reducing nitratein their leaves.  相似文献   

5.
Root formation from the cell aggregates formed in suspensioncultures of Atropa belladonna L. occurs either from peripheralmeristems or from endogenous meristematic nodules. The rootswhen released from the aggregates either continue to developas cultured roots or quickly develop a callus at their basalends and within this develops a shoot bud. When this shoot budis initiated both root and shoot may continue to develop togive a plantlet with either two equal first leaves or, lesscommonly, with several first leaves or with a single first leaf.Where the roots are of endogenous origin (and lack the ‘collar’characteristic of those derived from a peripheral meristem)and where some retardation of root growth is associated withbud formation, structures arise which have previously been termed‘embryo-like structures’ (Thomas and Street, 1970,Plate 10, F). Alternatively, root development may be suppressedand only the bud develops. It has been possible to trace the development also in thesecultures of embryoids whose development involves recognizablestages of normal embryology. These embryoids may arise fromsingle cells of the initial cell aggregate or from cells ofthe massive suspensors of these embryoids (these latter embryoidscan be described as adventive in origin). The embryoids mayshow two equal cotyledons or only one cotyledon.  相似文献   

6.
Significant differences in response to soil moisture stress(SMS) and restricted root zone volume (RRZV) were found in twocultivars of soybean [Glycine max (L.) Merr.] (‘Forrest’and ‘Williams’) plants grown under controlled-environmentconditions. Leaf water potentials of SMS-treated plants were0·4-0·6 MPa lower than those of controls and stomata1conductances 23-56% lower. In the case of RRZV treatment, however,there were no differences in either parameter. Initiation ofnew leaves as reflected in the plastochron index was stronglyreduced by SMS but was unaffected by RRZV. Photosynthetic rates(CO2 fixation dm2 of leaf) of plants given SMS were reducedby 11-21% while those of RRZV-treated plants were unaffected.SMS caused a strong preferential allocation of dry matter tothe root at the expense of the shoot in both cultivars. RRZV,however, had no effect on assimilate distribution in ‘Forrest’and only slightly favoured root growth in ‘Williams.’Carbohydrate concentrations of both alcohol-soluble and insolublefractions were increased significantly by SMS, especially inthe leaves, but were little affected by RRZV. Nitrogen concentrationin the root fraction was reduced by 22-24% and that in the leafand stem fractions by 7-14% under SMS but was not affected appreciablyby RRZV. Phosphorus concentration in the leaf, stem, and rootfractions was reduced by 45-65% under SMS but was relativelyunaffected by RRZV. These findings suggest that SMS and RRZVare basically different in their mechanism of action and thatthe impairment of growth resulting from these two stresses mayinvolve different physiological processes. Our results alsoindicate that the suppressive effects of small containers onplant growth do not necessarily result from inadvertent SMS. Key words: Drought, Container effects, Glycine max (L.) Merr  相似文献   

7.
Patterns of distribution of 14C were determined in 47-day-oldtomato plants (Lycopersicon esculentum Mill.) 24 h after theapplication of [14C]sucrose to individual source leaves fromleaves 1–10 (leaf 1 being the first leaf produced abovethe cotyledons). The first inflorescence of these plants wasbetween the ‘buds visible’ and the ‘firstanthesis’ stages of development. The predominant sink organs in these plants were the root system,the stem, the developing first inflorescence and the shoot ‘apex’(all tissues above node 10). The contribution made by individualsource leaves to the assimilate reaching these organs dependedupon the vertical position of the leaf on the main-stem axisand upon its position with respect to the phyllotactic arrangementof the leaves about this axis. The root system received assimilateprincipally from leaf 5 and higher leaves, and the stem apexfrom the four lowest leaves. The developing first inflorescencereceived assimilates mainly from leaves in the two orthostichiesadjacent to the radial position of the inflorescence on thevertical axis of the plant; these included leaves which weremajor contributors of 14C to the root system (leaves 6 and 8)and to the shoot apex (leaves 1 and 3). This pattern of distributionof assimilate may explain why root-restriction treatments andremoval of young leaves at the shoot apex can reduce the extentof flower bud abortion in the first inflorescence under conditionsof reduced photoassimilate availability. Lycopersicon esculentum Mill, tomato, assimilate distribution, source-sink relationships  相似文献   

8.
Crop phenology is one of the most important characters influencingproductivity in a given environment. Narrow-leafed lupin (Lupinusangustifolius L.) is a major grain legume crop in southern Australiawith general phenological adaptation to this Mediterranean-typeenvironment. However, it is an indeterminate crop with severalassociated limitations to productivity, such as overlappingvegetative and reproductive growth, late grain filling and sometimesexcessive vegetative growth. Here we studied two novel typesof narrow-leafed lupin with restricted branching, which mightbe useful for overcoming these problems. These restricted branchinglupins arose spontaneously within a breeding population, inthe case of ‘Tallerack’, and within a farmer's cropin the case of ‘ Hurst’ and we compared them withthe ‘Merrit’, which is widely grown and has thenormal indeterminate branching habit. The morphology and developmentof the main shoot of these genotypes were similar. However,‘Hurst’ had much larger leaves. There were alsostriking differences in the lateral branches of the restrictedbranching types; they had fewer leaves than ‘Merrit’and flowered earlier. These differences were most marked in‘ Hurst’, where the upper main stem branches werereduced to a single floret in the axil of main stem leaves,and these flowers often exhibited abnormal morphology. Copyright2000 Annals of Botany Company Lupinus angustifolius L., narrow-leafed lupin, adaptation, development, morphology, branching, leaves, mutant, plastochron, phyllochron, floral initiation, flowering.  相似文献   

9.
The success of Triticum aestivumxZea mays crosses, used to producewheat doubled haploids, is influenced by light intensity. Toexamine the basis for this response, pollen tube growth, embryosurvival and indicators of photosynthetic rate were measuredin two wheat cultivars (‘Karamu’ and ‘Kotuku’)crossed with maize at two irradiance levels (250 or 750 µmolm-2s-1, PAR). Pollen tube growth was significantly affectedby light intensity in ‘Karamu’ plants but not in‘Kotuku’ plants, despite both cultivars being pollinatedby the same maize source. The percentage of pollen tubes reachingthe cavity between the ovarian wall and integuments, or in themicropyle of ‘Karamu’ plants at high light intensity(65%) was nearly three-times greater than that at low lightintensity (22%). Thus, either low light intensity can affectthe maternal wheat plant in a way that inhibits pollen tubegrowth and/or high light intensity may promote pollen tube growthin ‘Karamu’ plants. Significant differences in ratesof electron transport in plants grown at the two light intensitiesindicated that the rate of photosynthesis may also have an effecton pollen tube growth. These results have importance for improvingthe efficiency of wheat x maize crosses and other wide cerealcrosses. Copyright 2001 Annals of Botany Company Intergeneric hybridization, light intensity, pollen tube growth, embryo survival, Triticum aestivum, wheat,Zea mays , maize  相似文献   

10.
The freezing tolerance of many plants, such as pea (Pisum sativum),is increased by exposure to low temperature or abscisic acidtreatment, although the physiological basis of this phenomenonis poorly understood. The freezing tolerance of pea shoot tips,root tips, and epicotyl tissue was tested after cold acclimationat 2C, dehydration/rehydration, applications of 10–4M abscisic acid (ABA), and deacclimation at 25C. Tests wereconducted using the cultivar ‘Alaska’, an ABA-deficientmutant ‘wil’, and its ‘wildtype’. Freezinginjury was determined graphically as the temperature that caused50% injury (T50) from electrical conductivity. Endogenous ABAwas measured using an indirect enzyme-linked immunosorbant assay,and novel proteins were detected using 2-dimensional polyacrylamidegel electrophoresis. The maximum decrease in T50 for root tissuewas 1C for all genotypes, regardless of treatment. For ‘Alaska’shoot tips and epicotyl tissue, exogenous ABA increased thefreezing tolerance by –1.5 to –4.0C, while coldtreatment increased the freezing tolerance by –7.5 to–14.8C. Cold treatment increased the freezing toleranceof shoot tips by –9 and –15C for ‘wil’and ‘wild-type’, respectively. Cold acclimationincreased endogenous ABA concentrations in ‘Alaska’shoot tips and epicotyls 3- to 4-fold. Immunogold labeling increasednoticeably in the nucleus and cytoplasm of the epicotyl after7 d at 2C and was greatest after 30 d at the time of maximumfreezing tolerance and soluble ABA concentration. Cold treatmentinduced the production of seven, three, and two proteins inshoot, epicotyl, and root tissue of ‘Alaska’, respectively.In ‘Alaska’ shoot tissue, five out of seven novelproteins accumulated in response to both ABA and cold treatment.However, only a 24 kDa protein was produced in ‘wil’and ‘wild-type’ shoot and epicotyl tissues aftercold treatment. Abscisic acid and cold treatment additivelyincreased the freezing tolerance of pea epicotyl and shoot tissuesthrough apparently independent mechanisms that both resultedin the production of a 24 kDa protein. Key words: Pisum sativum, cold acclimation, immuno-localization  相似文献   

11.
Barley (Hordeum vulgare L., cvs Golf and Laevigatum) was grownunder nitrogen limitation in solution culture until near maturity.Three different nitrogen addition regimes were used: in the‘HN’ culture, the relative rate of nitrate-N additionwas 0·08 d–1 until day 48 and then stepwise decreasedto, finally, 0·005 d–1 during late grain-filling;the ‘LN’ culture received 45% of the nitrogen addedin HN; the ‘CN’ culture was maintained at RA 0·0375d–1 throughout growth. At four different growth stages(vegetative,anthesis, and twice during grain-filling), 15N-nitrate was fedto the plants. In some cases (‘split root cultures’),label was fed only to one-half of the root system. These wereharvested directly after labelling, whereas ‘standardcultured’ plants were harvested at termination of theexperiment (day 148). Absorption of added nitrate was nearlycomplete in the HN and LN cultures, and translocation of nitrogenwithin the plants could thus be studied independently of differencesin nitrate absorption. Cycling of nitrogen absorbed by vegetativeplants accounted for up to 50% of the nitrogen recovered inthe roots. The sink strength of the roots for cycling nitrogen,however, declined during post-anthesis growth, and net lossof nitrogen from both roots and vegetative shoot tissue occurredconcomitantly with incorporation of labelled 15N-nitrogen. Thenitrogen of the vegetative shoot tissue was substantially lesslabelled than the nitrogen entering the ears, indicating thattranslocation of recently absorbed nitrogen to ears occurs withminor prior exchange with the bulk nitrogen of shoots. In caseswhere the sink strength of the ears was weak, as in LN-culturedLaevigatum (due to high frequency of sterile flowers) and inCN-cultured Golf, nitrogen translocated from roots appearedto be incorporated into the vegetative shoot tissue. There werealso indications that a fraction of the remobilized nitrogenwas actually lost from the plants in these cases. It is concludedthat the root remains efficient in translocation of nitrogento the aerial parts throughout ontogeny and that nitrogen takenup during grain–filling is preferentially directly translocatedto the developing grains. The further translocation of nitrogenreceived by vegetative shoot parts to ears appears mainly relatedto the potential of the ear to accumulate nitrogen. Nitrogenabsorbed/remobilized in excess of the sink strength of the earsis either invested in continued shoot growth, or is irreversiblylost from the plants. Key words: Barley, 15N-labelling, post-anthesis, remobilization, translocation  相似文献   

12.
This review compares new developmental models on flowering andother vascular plants with evolutionary hypotheses formulatedby Agnes Arber (1879–1960) and like-minded botanists.Special emphasis is laid on philosophical basics such as perspectivism,pluralism about evolutionary modelling, continuum way of thinking,and fuzzy logic. Arber's perspective is best labelled as F uzzyA rberian M orphology (FAM Approach). Its proponents (‘FAMmers’)treat structural categories (e.g. ‘roots’, ‘shoots’,‘stems’, ‘leaves’, ‘stipules’)in vascular plants as concepts with fuzzy borderlines allowingintermediates (including transitional forms, developmental mosaics).The FAM Approach complements Cla ssical Plant M orphology (ClaMApproach), which is the traditional approach in botany. ClaMproponents (‘ClaMmers’) postulate that the structuralcategories of vascular plants are regarded as concepts withclear-cut borderlines and without intermediates. However, duringthe evolution of vascular plants, the root-shoot distinctionand the stem-leaf distinction have become blurred several timesdue to developmental changes, resulting in organs with uniquecombinations of features. This happened, for example, in thebladderworts (Utricularia, Lentibulariaceae). When focusingon the ‘leaf’, the FAM Approach is identical toArber's ‘partial-shoot theory of the leaf’ and Sinha's‘leaf shoot continuum model’. A compound leaf canrepeat the developmental pathway of the whole shoot, at leastto some degree. For example, compound leaves of Chisocheton(Meliaceae)with indeterminate apical growth and three-dimensional branchingmay be seen as developmental mosaics sharing some growth processeswith whole shoots! We focus here on the FAM Approach becausethis perspective is especially promising for developmental geneticistsstudying flowering and other vascular plants. Copyright 2001Annals of Botany Company Review, body plan, developmental mosaics, leaf development, history of botany, homeosis, homeotic genes, Lentibulariaceae, morphological evolution, process morphology, stipules, Utricularia, flowering plants  相似文献   

13.
ROBSON  M. J. 《Annals of botany》1982,49(3):321-329
Simulated swards of each of two selection lines of Lolium perennecv. S23 with ‘fast’ and ‘slow’ ratesof ‘mature tissue’ respiration were establishedin growth rooms at 20/15 °C day/night temperatures and studiedover four successive regrowth periods of 46, 30, 26 and 53 daysduration. The ‘slow’ line outyielded the ‘fast’,both in harvestable shoot (above a 5 cm cut) and in root andstubble. Its advantage increased over successive regrowth periodsto 23 per cent (total biomass). Gas analysis measurements onthe entire communities (including roots), during the final regrowthperiod, showed that the ‘slow’ line had a 22–34per cent lower rate of dark respiration per unit dry weight.This enabled it to maintain its greater mass of tissue for thesame cost in terms of CO2 efflux per unit ground area. Halfthe extra dry weight produced by the ‘slow’ line,relative to the ‘fast’, could be attributed to itsmore economic use of carbon. The rest could be traced to a 25per cent greater tiller number which enabled the ‘slow’line to expand leaf area faster (though not at a greater rateper tiller), intercept more light and fix more carbon, earlyin the regrowth period. Lolium perenne L., ryegrass, respiration, maintenance respiration, tiller production, simulated swards, canopy photosynthesis, carbon economy  相似文献   

14.
The effects of the foliar application of phytocidal concentrationsof 2-methyl-4-chlorophenoxyacetic acid (MCPA) on change in totaldry weight, and in ‘available carbohydrate’ (starch,‘total’ and ‘reducing’ sugars), totalnitrogen, phosphorus, potassium, calcium, and magnesium of ‘tops’and roots of tomato plants have been followed over a periodof 14 days following spraying. There were two main treatments—‘nutrient’(nutrient supply to roots continued after spraying) and ‘water’(distilled water only supplied to roots after spraying) and‘water’ (distilled water only supplied to rootsafter spraying)—the sub-treatments consisting of ‘MCPA’versus ‘no-MCPA’ for each of the main treatments.Twelve different times of sampling were used. In analysing the present data, the quantity ‘residualdry weight’ (total dry weight less ‘available carbohydrate’),which was originally introduced by Mason and Maskell as a basisof reference for analyses of plant organs in short-period experimentsnot involving appreciable growth, has been used as an estimateof the permanent structure of plant growth. This new use ofthe ‘residual dry weight’ basis has brought outimportant features which were obscured when the data were leftin their primary form (as percentages of total dry weight oramounts per plant). Growth, as measured by increase in ‘residual dry weight’,was greatly inhibited by 2-methyl-4-chlorophenoxyacetic acidshortly after spraying, in both the presence and the absenceof nutrient. In the presence of 2-methyl-4-chlorophenoxyacetic acid, netassimilation rate (estimated as rate of increase in total dryweight per gram ‘residual dry weight’ of the ‘tops’)was greatly diminished while uptake of total nitrogen and ofP2O5 (estimated as increase in total nitrogen or of P2O5 ofthe whole plant per day per 1 g. ‘residual dry weight’of the roots) appeared to undergo a similar but much smallerdiminution. It seemed probable, however, that in the presenceof MCPA a larger proportion of the carbohydrate actually formedwas utilized for synthesis of aminoacids and protein. In the plant as a whole there was no evidence of actual depletionof ‘available carbohydrate’ as a result of MCPAtreatment, this fraction showing a steady increase in all treatmentsthroughout the experiment. The rate of increase was, however,much reduced by MCPA treatment. The ‘tops’ presentedmuch the same picture as the whole plant, but for the rootsthe situation was quite different. While the roots of the ‘no-MCPA’plants and also of the ‘MCPA-water’ plants showeda steady increase in available carbohydrate, those of the ‘MCPA-nutrient’plants rose only very slightly (from the initial value of 8mg. per plant to about 10 mg.) during the first 2 days, andthen in the next 2 days declined to a value (about 6 mg.) belowthe initial and remained at this low level for the rest of theexperiment. It is suggested that the phytocidal effect of 2-methyl-4-chlorophenoxyaceticacid in the presence of nutrient may be due to depletion ofthe ‘available carbohydrate’ supplies in the roots,which is shown to be brought about, in part, by reduced transportfrom the tops, and partly by the relatively greater utilizationof the carbohydrate present. These results offer an explanationfor the facts that plants showing vigorous growth are more easilykilled by MCPA and that perennial plants, particularly thosewith storage tissues in their roots, are more resistant. Further,they suggest the useful practical application that MCPA treatmentshould be given when the carbohydrate reserves of the rootsare at a minimum. For perennial plants, conditions might beexpected to be optimal for the application of MCPA in late spring,at a time when the first ‘flush’ of growth is slowingdown and before any appreciable new reserves of carbohydratehave been accumulated. It was also shown that 2-methyl-4-chlorophenoxyacetic acid preventedthe net synthesis of starch, but still permitted an appreciablenet formation of sucrose. 2-methyl-4-chlorophenoxyacetic acid appeared to have no effecton the uptake of potassium, calcium, or of magnesium. The lackof effect on potassium is contrasted with the previous observationby Rhodes, Templeman, and Thruston (1950) that sub-lethal concentrationsof MCPA, applied over a relatively long period to the rootsof tomato plants, specifically depressed the uptake of potassium.  相似文献   

15.
Aluminium (Al) tolerance in an Al-tolerant cultivar of Phaseolusvulgaris L. (‘Dade’) was found to be an inducibletrait. Upon exposure to 10 µM Al, the rate of root elongationwas inhibited in comparison to controls. During the following72 h, the rate of elongation returned to levels comparable tocontrols. In contrast, root elongation of an Al-sensitive cultivar(‘Romano’) did not recover after exposure to Al.In Dade, the resumption of root elongation following exposureto Al was accompanied by increased rates of root respiration,whereas respiration rates slowly declined over the 72 h treatmentperiod in Romano. When partitioned into growth and maintenanceexpenditures, a larger proportion of root respiration of Dadeexposed to Al was allocated to maintenance processes, potentiallyreflecting diversion of energy to metabolic pathways that offsetthe adverse effects of Al toxicity. Romano did not show sucha pattern and respiration associated with both growth and maintenancewas reduced after exposure to Al. Root and shoot growth of bothcultivars were also measured to determine the effects of long-term(21 d) exposure to 10 µM Al. Dade plants exposed to Alexhibited enhanced growth in comparison to controls, whereasRomano plants were characterized by reduced shoot and root growth.Modelling the time-course of root respiration and measuringthe long-term growth responses to Al is a valuable method ofelucidating respiratory costs of stress tolerance. Key words: Aluminium, differential tolerance, maintenance respiration, Phaseolus vulgaris, root respiration  相似文献   

16.
HAYCOCK  R. 《Annals of botany》1982,50(2):161-165
Trifolium repens has two types of root, one derived from theseed and the adventitious roots derived from the stolon nodes.It has been suggested that these two systems have differentpotentials for supporting growth. This paper presents a comparisonof plants grown on single seedling or adventitious roots anddemonstrates that although the shoot: root ratios for the twotypes differ this may be explained by differing shoot morphologies.Comparison of the lamina: root ratios for the two types of plantproduced no statistically significant differences and it isproposed that the two types of root system do not differ intheir relationship with leaf growth. A mechanism for large diameter‘tap’ root formation is suggested. white clover, Trifolium repens L., adventitious roots, seedling roots, shoot: root ratio  相似文献   

17.
STUTZEL  H.; AUFAMMER  W. 《Annals of botany》1991,67(6):487-495
Models for root: shoot, vegetative: generative and stem: leafpartitioning are presented to quantify dry matter partitioningof two contrasting genotypes of Vicia faba, an indeterminateand a ‘topless’. A third plant type, a determinateof which two to three inflorescences had been removed, was alsoincluded but behaved similarly to the intact plant. The root:shoot partitioning model predicts linear relationships betweenroot proportion and the product of air vapour pressure deficitand relative growth rate. Data from field experiments were consistentwith model prediction and coefficients estimated were similarfor both genotypes. Partitioning into pods was modelled as proportionalto the number of actively growing pods younger than 1000°Cd. Coefficients estimated were similar in both genotypes butdifferent between densities and years. In the indeterminategenotype, stem: leaf ratio was allometric throughout, whereasleaf growth ceased but stem growth continued in the determinateafter formation of the terminal inflorescence. Relatively moredry matter was allocated to stems than to leaves in high thanin low densities. In conclusion, the main differences in drymatter partitioning between genotypes concern leaf: stem partitioningduring early pod filling and pod partitioning due to pod numberdifferences. Partitioning, root, shoot, leaf, stem, Vicia faba L.  相似文献   

18.
BELL  A. D. 《Annals of botany》1979,43(2):209-223
Alpinia speciosa L. (Zingiberaceae) is a striking example ofa plant in which an organized architectural structure fulfilsa basic functional requirement - the economical explorationand exploitation of the substrate. This rhizomatous plant spreadslaterally in a predictable manner by vegetative growth to forma clone of separated ramets. A morphological study establishes‘rules of growth’ governing the success and failureof lateral branches (sympodial units), their lengths, and theirrelative angles. The basic branching pattern of this rhizome system approximatesto that of a hexagonal grid - the most economical structuralshape that uniformly ‘samples’ a plane surface.It is shown that the significant deviation of branching anglefound in Alpinia from that required to develop an exact hexagonalnetwork will virtually eliminate aerial shoot ‘clashes’in which the placing of one aerial shoot coincides with thatof another aerial shoot, whilst at the same time enhancing thebenefits of the hexagonal system. The broader implications ofthe organised architecture of plants are emphasised. rhizome, branching pattern, architecture, productivity  相似文献   

19.
Root cultures of Lotus corniculatus L. cv. Leo transformed withAgrobacterium rhizogenes (C58Cl-pRi15834) grew rapidly in liquidmedium when cultured in the dark and produced large numbersof shoots when illuminated. The shoots, which could be regeneratedto produce fertile plants, were maintained in liquid mediumas shoot-organ cultures The accumulation and cellular distribution of condensed tanninswas determined during the growth of these root and shoot organcultures and in primary callus from non-transformed explants.Root and shoot cultures predominantly accumulated insolublepolymeric tannins which yielded both cyanidin and delphinidinon hydrolysis at ratios equivalent to control plants. Methanol-solublevanillin-positive compounds were isolated but no free oligomericproanthocyanidins, monomeric flavans or dihydroflavonols weredetected in these extracts. Condensed tannin accumulation waslinearly related to root growth and had a similar spatial distributionin ‘tannin’ cells in roots and leaves as comparedto control plants. Tannin-containing cells were absent frommeristematic cells of the root tip and root/shoot interface.Primary callus cultures failed to accumulate condensed tanninson media containing auxins, and exogenously supplied auxinswere found to inhibit tannin accumulation by transformed rootand shoot cultures Key words: Lotus corniculatus, Agrobacterium rhizogenes, hairy roots, condensed tannins, shoot and root cultures.  相似文献   

20.
The performance of the crop plant and the ‘ratoon’plant (lateral shoot succeeding the harvested main shoot) of65 medium-sized False Horn plantains (Musa cv. AAB) was studiedby measuring vegetative and inflorescence (bunch) parameters.From significant regressions between different parameters itappears that taller pseudostems produce leaves at a faster rate,flower earlier and produce heavier infructescences which needmore time to mature. A high yield is determined by vigorousinitial growth of the planted sucker (lateral root). Beforeflowering, there is no sink competition between ratoon and mainpseudostem growth, and fast-growing main pseudostems are accompaniedby fast-growing ratoons. After flowering, competition occursbetween the fructifying inflorescence, a preferential sink andthe ratoon. The results indicate that plantain should not beconsidered as an annual crop. Growth, development, production parameters, bananas, plantains  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号