首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T-cadherin is an unusual glycosilphosphatidylinositol (GPI)-anchored member of the cadherin family of cell adhesion proteins. In contrast to classical cadherins, tissue distribution of T-cadherin so far remained unknown. We examined tissue distribution of T-cadherin in rats using Western blotting and immunohistochemical method. Our results show that T-cadherin is expressed in all types of muscles (cardiac, striated, and smooth muscles), in brain neurons, and spinal cord, in the vessel endothelium, at the apical pole of intestinal villar epithelium, in the basal layer of skin, and eosophagal epithelium. Blood-derived and lymphoid cells as well as connective tissue were T-cadherin-negative. The highest level of T-cadherin expression was revealed in the cardiovascular system. Although T-cadherin was detected in smooth muscle cells, its role in the intimal thickening and restenosis is not known. We examined T-cadherin expression within 1-28 days after balloon injury of rat left carotid arteries. T-cadherin expression was valued immunohistochemically with semiquantitative method. In uninjured arteries, T-cadherin was expressed in endothelial (vWF-positive) cells, and smooth muscle (alpha-actin-positive) cells (SMCs). After denudation of arterial wall, T-cadherin was present both in the media and neointima. We revealed dynamics of T-cadherin expression in the media of injured artery: an essential increase being registered at the stage of cell migration and proliferation in the media and neointima (1-7 days), followed by its decrease to the baseline level (10-28 days). The high upregulation of T-cadherin expression in the media and neointima during migration and proliferation of vascular cells after vessel injury enables us to suggest the involvement of T-cadherin in vessel remodeling after balloon catheter injury.  相似文献   

2.
Vascular endothelial Flt-1 and other stem cell markers are variably expressed in vascular smooth muscle cells (SMCs) during normal and pathological conditions, but their biological role remains uncertain. In normal rat aorta, rare flt-1+ and c-kit+ SMCs were detected. Fifteen days after injury, 61.8+3.8, 45.7+3% of the intimal cells resulted flt-1+ and c-kit+ and expressed low level of alpha-smooth muscle actin; CD133+ cells were 5.6+0.7%. BrDU+/flt-1+ largely predominated in the neointima, whereas BrDU+/CD133+ cells were rare. Forty-five and sixty days after injury, intimal proliferation such as BrDU+ cells was greatly reduced. After sixty days, intimal stem marker expression had almost disappeared whereas alpha-smooth muscle actin was restored. Flk-1 and Oct-4 SMC immunodection was consistently negative. In vitro, intimal cells obtained fifteen days after injury exhibited an epithelioid phenotype and increased flt-1 and c-kit protein and mRNA and low smooth muscle markers compared to spindle-shaped medial and intimal SMCs obtained after sixty days. Epithelioid clones, independently from layer of origin, were similar in stem cell marker expression. The anti-flt-1 blocking antibody added to epithelioid SMC cultures reduced serum-deprived apoptosis and migration but not PDGF-BB-induced proliferation, and increased cell-populated collagen lattice contraction. In conclusion, stem marker expression in vascular SMCs was variable, chronologically regulated and prevailed in epithelioid populations and clones; among stem markers, flt-1 expression critically regulates intimal SMC response to microenviromental changes.  相似文献   

3.
Vascular smooth muscle cell (SMC) switching between differentiated and dedifferentiated phenotypes is reversible and accompanied by morphological and functional alterations that require reconfiguration of cell-cell and cell-matrix adhesion networks. Studies attempting to explore changes in overall composition of the adhesion nexus during SMC phenotype transition are lacking. We have previously demonstrated that T-cadherin knockdown enforces SMC differentiation, whereas T-cadherin upregulation promotes SMC dedifferentiation. This study used human aortic SMCs ectopically modified with respect to T-cadherin expression to characterize phenotype-associated cell-matrix adhesion molecule expression, focal adhesions configuration and migration modes. Compared with dedifferentiated/migratory SMCs (expressing T-cadherin), the differentiated/contractile SMCs (T-cadherin-deficient) exhibited increased adhesion to several extracellular matrix substrata, decreased expression of several integrins, matrix metalloproteinases and collagens, and also distinct focal adhesion, adherens junction and intracellular tension network configurations. Differentiated and dedifferentiated phenotypes displayed distinct migrational velocity and directional persistence. The restricted migration efficiency of the differentiated phenotype was fully overcome by reducing actin polymerization with ROCK inhibitor Y-27632 whereas myosin II inhibitor blebbistatin was less effective. Migration efficiency of the dedifferentiated phenotype was diminished by promoting actin polymerization with lysophosphatidic acid. These findings held true in both 2D-monolayer and 3D-spheroid migration models. Thus, our data suggest that despite global differences in the cell adhesion nexus of the differentiated and dedifferentiated phenotypes, structural actin cytoskeleton characteristics per se play a crucial role in permissive regulation of cell-matrix adhesive interactions and cell migration behavior during T-cadherin-induced SMC phenotype transition.  相似文献   

4.
Elevated serum LDL level, which results in cholesterol accumulation in vascular wall, is widely accepted as a risk factor in atherosclerosis development. Additionally to metabolic effects, LDL can produce hormone-like effects in a number of cells: activate second messenger systems, regulate gene expression and activate platelets and stimulate cell proliferation. The responses elicited by LDL are rapid, dose-dependent and capable of being saturated, indicating the involvement of specific receptor/binding sites in LDI-stimulated signal transduction. This LDL-binding protein was isolated from human aorta media and identified as T-cadherin. Cadherins are a superfamily of adhesion molecules that mediate Ca2+ -dependent cell-cell adhesion in embryogenesis and in adult organism's solid tissues. Intercellular junctions are formed as a result of interactions between extracellular domains of the neighboring cells' cadherins. Binding of the intercellular domain to the acting cytoskeleton ensures stability of cadherin-mediated adhesive junctions. T-cadherin is a unique member of calcium-dependent adherent proteins; in contrast to classical cadherins T-cadherin is anchored to the cell surface membranes via a glycosyl phosphatidyl inositol (GPI) moiety. Subcellular distribution of T-cadherin is restricted to lipid rafts on the cell membranes where it co-localizes with signal-transducing molecules. The function of T-cadherin has not yet been revealed. It was originally cloned from chicken embryo brain where the spatial-temporally restricted pattern of T-cadherin suggests its role as a negative guidance cue in tegulating the segmental organization of trunk neural crest migration and motor axon projections. Comparative study of the T-cadherin expression in human organs and tissues revealed that T-cadherin content was maximal in cardiovascular system. Its expression in VSMC depends on the cell phenotype and proliferate activity and increases in atherosclerotic lesion and restenosis. T-cadherin seems to play a key role in the regulation of the vascular cell phenotype, migration and growth. We hypothesize that T-cadherin is an anti-adhesive molecule which participates in intercellular interactions informing cells about their environment and regulating migration and proliferation of cells in vascular wall, while LDL interfere with the normal function of T-cadherin.  相似文献   

5.
Expression of cell adhesion molecule T-cadherin in the human vasculature   总被引:7,自引:1,他引:6  
Alterations in expression of surface adhesion molecules on resident vascular and blood-derived cells play a fundamental role in the pathogenesis of cardiovascular disease. Smooth muscle cells (SMCs) have been shown to express T-cadherin (T-cad), an unusual GPI-anchored member of the cadherin family of adhesion molecules. Particular relevance for T-cad in cardiovascular tissues is indicated by our present screen (immunoblotting) of human tissues and organs whereby highest expression of T-cad was found in aorta, carotid, iliac and renal arteries and heart. To explore the (patho)physiological role for T-cad in the vasculature we performed an immunohistochemical analysis of T-cad expression in normal human aorta and atherosclerotic lesions of varying severity. T-cad was present both in the intima and media and was expressed in endothelial cells (ECs), SMCs and pericytes, but not in monocytes/macrophages, foam cells and lymphocytes. In the adventitia T-cad was present in the wall of vasa vasorum and was expressed in ECs, SMCs and pericytes. T-cad was differentially expressed in SMCs from distinct vascular layers of normal aorta (for example, high in the subendothelial (proteoglycan) layer of the intima, low in the musculoelastic intimal layer and in the media), as well as at different stages of lesion progression. In SMCs there was an apparent inverse relationship between the intensities of T-cad and smooth muscle alpha-actin expression, this being most prominent in lesions. The findings suggest a phenotype-associated expression of T-cad which may be relevant to control of the normal vascular architecture and its remodelling during atherogenesis.  相似文献   

6.
Won KJ  Lee P  Jung SH  Jiang X  Lee CK  Lin HY  Kang H  Lee HM  Kim J  Toyokuni S  Kim B 《Proteomics》2011,11(2):193-201
3-Morpholinosydnonimine (SIN-1) affects vascular smooth muscle cell migration and proliferation, processes essential for atherosclerosis. However, the mechanism by which SIN-1 exerts these effects has not been elucidated. We used 2-DE followed by MALDI-TOF/TOF MS to identify responses in protein expression to SIN-1 in rat aortic smooth muscle. Platelet-derived growth factor-BB increased cell migration and proliferation in rat aortic smooth muscle cells, and subsequent SIN-1 treatment inhibited it. Administration of SIN-1 in vivo attenuated neointima formation in balloon-injured rat carotid arteries. Proteomic analysis showed that glutathione peroxidase and 40S ribosomal protein S12 were differentially expressed in aortic strips exposed to SIN-1. Expression of annexin A2 was decreased by SIN-1. Platelet-derived growth factor-BB-induced cell migration was increased and inhibited in rat aortic smooth muscle cells with overexpression and knockdown of annexin A2 gene, respectively. The expression of annexin A2 was increased in vascular neointima compared with the intact control, which was inhibited by SIN-1 treatment. These results demonstrate that SIN-1 may attenuate vascular neointima formation by inhibiting annexin A2-mediated migration. Therefore, annexin A2 may be a potential target for therapeutic strategies for atherosclerosis.  相似文献   

7.
Extracellular matrix signaling via integrin receptors is important for smooth muscle cell (SMC) differentiation during vasculogenesis and for phenotypic modulation of SMCs during atherosclerosis. We previously reported that the noncatalytic carboxyl-terminal protein binding domain of focal adhesion kinase (FAK) is expressed as a separate protein termed FAK-related nonkinase (FRNK) and that ectopic expression of FRNK can attenuate FAK activity and integrin-dependent signaling (A. Richardson and J. T. Parsons, Nature 380:538-540, 1996). Herein we report that in contrast to FAK, which is expressed ubiquitously, FRNK is expressed selectively in SMCs, with particularly high levels observed in conduit blood vessels. FRNK expression was low during embryonic development, was significantly upregulated in the postnatal period, and returned to low but detectable levels in adult tissues. FRNK expression was also dramatically upregulated following balloon-induced carotid artery injury. In cultured rat aortic smooth muscle cells, overexpression of FRNK attenuated platelet-derived growth factor (PDGF)-BB-induced migration and also dramatically inhibited [(3)H]thymidine incorporation upon stimulation with PDGF-BB or 10% serum. These effects were concomitant with a reduction in SMC proliferation. Taken together, these data indicate that FRNK acts as an endogenous inhibitor of FAK signaling in SMCs. Furthermore, increased FRNK expression following vascular injury or during development may alter the SMC phenotype by negatively regulating proliferative and migratory signals.  相似文献   

8.
Vascular smooth muscle cells (SMCs) phenotypes span a reversible continuum from quiescent/contractile (differentiated) to proliferative/synthetic (dedifferentiated) enabling them to perform a diversity of functions that are context-dependent and important for vascular tone-diameter homeostasis, vasculogenesis, angiogenesis or vessel reparation after injury. Dysregulated phenotype modulation and failure to maintain/regain the mature differentiated and contractile phenotypic state is pivotal in the development of vascular diseases such as atherosclerosis and restenosis after angioplasty and coronary bypass grafting. Many functions of SMCs such as adhesion, migration, proliferation, contraction, differentiation and apoptosis are regulated by a broad spectrum of cell-cell and cell-matrix adhesion molecules. Cadherins represent a superfamily of cell surface homophilic adhesion molecules with fundamental roles in morphogenetic and differentiation processes during development and in the maintenance of tissue integrity and homeostasis in adults. The cadherins have major inputs on signalling pathways and cytoskeletal assemblies that participate in regulating processes such as cell polarity, migration, proliferation, survival, phenotype and differentiation. Abnormalities in these processes have long been recognized to underlie pathological SMC-driven reparation, but knowledge on the involvement of cadherins is remarkably limited. This article presents a comprehensive review of cadherin family members currently identified on vascular SMCs in relation to their functions, molecular mechanisms of action and relevance for vascular pathology.  相似文献   

9.
T-cadherin (T-cad), an unusual glycosylphosphatidylinositol (GPI)-anchored member of the cadherin family of cell adhesion molecules, is widely expressed in the cardiovascular system. The expression profile of T-cad within diseased (atherosclerotic and restenotic) vessels indicates some relationship between expression of T-cad and the phenotypic status of resident cells. Using cultures of human aortic smooth muscle cells (SMC) and human umbilical vein endothelial cells (HUVEC) we investigate the hypothesis that T-cad may function in modulating adhesive properties of vascular cells. Coating of culture plates with recombinant T-cad protein or with antibody against the first amino-terminal domain of T-cad (anti-EC1) significantly decreased adhesion and spreading of SMC and HUVEC. HUVECs adherent on T-cad or anti-EC1 substratum exhibited an elongated morphology and associated redistribution of the cytoskeleton and focal adhesions to a distinctly peripheral location. These changes are characteristic of the less-adhesive, motile or pro-migratory, pro-angiogenic phenotype. Boyden chamber migration assay demonstrated that the deadhesion induced by T-cad facilitates cell migration towards a serum gradient. Overexpression of T-cad in vascular cells using adenoviral vectors does not influence cell adhesion or motility per se, but increases the detachment and migratory responses induced by T-cad substratum. The data suggest that T-cad acts as an anti-adhesive signal for vascular cells, thus modulating vascular cell phenotype and migration properties.  相似文献   

10.
11.
Smooth muscle cell migration and proliferation are important events in the formation of intimal lesions associated with atherosclerosis and restenosis following balloon angioplasty. To make this possible, the smooth muscle cell has to change from a contractile to an activated repair cell with capacity to synthesize DNA and extracellular matrix components. There is now considerable evidence that the extracellular matrix has important functions in modulating the phenotypic properties of smooth muscle cells, but less is known about the role of the matrix metalloproteinases. The present study investigates the role of stromelysin in the modulation of rat aortic smooth muscle cell morphology and function following mechanical injury in vitro and in vivo. Antisense mRNA oligonucleotides were used to investigate the role of stromelysin expression in injury-induced phenotypic modulation and the subsequent migration and proliferation of vascular smooth muscle cells. Cultured rat aortic smooth muscle cells and balloon-injured rat carotid arteries were used as experimental models. Light- and electron microscopy were used to follow changes in smooth muscle cell phenotype and lesion formation and incorporation of 3H-thymidine to detect DNA synthesis. Injury-induced DNA synthesis and migration in vitro were inhibited by 72% and 36%, respectively, by adding stromelysin antisense oligonucleotides to the medium prior to injury. In primary cultures, 67% of the smooth muscle cells treated with stromelysin antisense were retained in a contractile phenotype as judged by analysis of cell fine structure, compared to 15% untreated cells and 40% in cells treated with mismatched oligonucleotides. Examination of the carotid arteries one week after balloon injury likewise demonstrated a larger fraction of contractile cells in the inner parts of the media in vessels treated with antisense oligonucleotides compared to those treated with mismatched oligonucleotides. The neointima was also distinctly thinner in antisense-treated than in mismatched-treated and control arteries at this time. These findings indicate that stromelysin mRNA antisense oligonucleotides inhibited phenotypic modulation of rat arterial smooth muscle cells and so caused a decrease in migration and proliferation and neointima formation in response to vessel wall injury.  相似文献   

12.
The most effective immediate cure for coronary stenosis is stent-supported angioplasty. Restenosis due to neointima proliferation represents a major limitation. We investigated the expression of 2435 genes in atherectomy specimens and blood cells of patients with restenosis, normal coronary artery specimens, and cultured human smooth muscle cells (SMCs). Of the 223 differentially expressed genes, 37 genes indicated activation of interferon-gamma (IFN-gamma) signaling in neointimal SMCs. In cultured SMCs, IFN-gamma inhibited apoptosis. Genetic disruption of IFN-gamma signaling in a mouse model of restenosis significantly reduced the vascular proliferative response. Our data suggest an important role of IFN-gamma in the control of neointima proliferation.  相似文献   

13.
Differentiation and dedifferentiation, accompanied by proliferation play a pivotal role for the phenotypic development of vascular proliferative diseases (VPD), such as restenosis. Increasing evidence points to an essential role of regulated nucleoporin expression in the choice between differentiation and proliferation. However, whether components of the Ran GTPase cycle, which is of pivotal importance for both nucleocytoplasmic transport and for mitotic progression, are subject to similar regulation in VPD is currently unknown. Here, we show that differentiation of human coronary artery smooth muscle cell (CASMC) to a contractile phenotype by stepwise serum depletion leads to significant reduction of RanGAP1 protein levels. The inverse event, dedifferentiation of cells, was assessed in the rat carotid artery balloon injury model, a well-accepted model for neointima formation and restenosis. As revealed by temporospatial analysis of RanGAP1 expression, neointima formation in rat carotid arteries was associated with a significant upregulation of RanGAP1 expression at 3 and 7 days after balloon injury. Of note, neointimal cells located at the luminal surface revealed persistent RanGAP1 expression, as opposed to cells in deeper layers of the neointima where RanGAP1 expression was less or not detectable at all. To gain first evidence for a direct influence of RanGAP1 levels on differentiation, we reduced RanGAP1 in human coronary artery smooth muscle cells by siRNA. Indeed, downregulation of the essential RanGAP1 protein by 50% induced a differentiated, spindle-like smooth muscle cell phenotype, accompanied by an upregulation of the differentiation marker desmin. Reduction of RanGAP1 levels also resulted in a reduction of mitogen induced cellular migration and proliferation as well as a significant upregulation of the cyclin-dependent kinase inhibitor p27KIP1, without evidence for cellular necrosis. These findings suggest that RanGAP1 plays a critical role in smooth muscle cell differentiation, migration and proliferation in vitro and in vivo. Appropriate modulation of RanGAP1 expression may thus be a strategy to modulate VPD development such as restenosis.  相似文献   

14.
Intracranial aneurysm (IA) is recognized as a lethal form of cerebrovascular disease mainly featured with a modulated phenotype of vascular smooth muscle cells (SMCs). It is generally believed that enhanced SMC proliferation and migration capabilities are the main characteristics in this process. In this study, we revealed that microRNA-4735 (miR-4735) participates in phenotypic modulation in a hypoxia-inducible factor-1 (HIF-1)-dependent manner of SMCs. miR-4735 targets the 3′-untranslated region of HIF-1. The downregulated expression of miR-4735 in IA tissues leads to elevated expression of HIF-1, which activates autophagy and promotes autophagy-mediated SMC proliferation and migration. Overexpression of miR-4735 suppressed HIF-1 expression and HIF-1-mediated autophagy, which led to impaired SMC proliferation and migration abilities. Forced expression of HIF-1 in miR-4735-overexpressed SMCs rescued the impaired SMC proliferation and migration abilities. In conclusion, miR-4735 plays an important role in phenotypic modulation in IA by regulating autophagy-promoted SMC proliferation and migration.  相似文献   

15.
The glycosaminoglycan hyaluronan (HA) modulates cell proliferation and migration, and it is involved in several human vascular pathologies including atherosclerosis and vascular restenosis. During intima layer thickening, HA increases dramatically in the neointima extracellular matrix. Aging is one of the major risk factors for the insurgence of vascular diseases, in which smooth muscle cells (SMCs) play a role by determining neointima formation through their migration and proliferation. Therefore, we established an in vitro aging model consisting of sequential passages of human aortic smooth muscle cells (AoSMCs). Comparing young and aged cells, we found that, during the aging process in vitro,HA synthesis significantly increases, as do HA synthetic enzymes (i.e. HAS2 and HAS3), the precursor synthetic enzyme (UDP-glucose dehydrogenase), and the HA receptor CD44. In aged cells, we also observed increased CD44 signaling that consisted of higher levels of phosphorylated MAP kinase ERK1/2. Further, aged AoSMCs migrated faster than young cells, and such migration could be modulated by HA, which alters the ERK1/2 phosphorylation. HA oligosaccharides of 6.8 kDa and an anti-CD44 blocking antibody prevented ERK1/2 phosphorylation and inhibited AoSMCs migration. These results indicate that, during aging, HA can modulate cell migration involving CD44-mediated signaling through ERK1/2. These data suggest that age-related HA accumulation could promote SMC migration and intima thickening during vascular neointima formation.  相似文献   

16.
We have purified, cloned and characterized kallistatin, a tissue kallikrein-binding protein (KBP) in humans and rodents. Kallistatin is a unique serine proteinase inhibitor (serpin) with Phe-Phe residues at the P2 and P1 positions. Structural and functional analysis of kallistatin by site-directed mutagenesis and protein engineering indicate that wild-type kallistatin is selective for tissue kallikrein. Kallistatin is expressed and localized in endothelial and smooth muscle cells of blood vessels and has multiple roles in vascular function independent of the tissue kallikrein-kinin system. First, kallistatin induces vasorelaxation of isolated aortic rings and reduces renal perfusion pressure in isolated rat kidneys. Transgenic mice overexpressing rat kallistatin are hypotensive, and adenovirus-mediated gene delivery of human kallistatin attenuates blood pressure rise in spontaneously hypertensive rats. Second, kallistatin stimulates the proliferation and migration of vascular smooth muscle cells in vitro and neointima formation in balloon-injured rat arteries. Third, kallistatin inhibits the proliferation, migration and adhesion of endothelial cells in vitro and angiogenesis in the rat model of hindlimb ischemia. These results demonstrate novel roles of kallistatin in blood pressure regulation and vascular remodeling.  相似文献   

17.
Both histological and in vitro studies indicate a relationship between T-cadherin levels and acquisition of a modulated, migratory phenotype by vascular cells. This study further examines a role for T-cadherin in relation to cell migration and adhesion. Fluorescence microscopic examination of T-cadherin localisation in confluent cultures of human umbilical vein endothelial cells (HUVEC), human aortic smooth muscle cells and the human carcinoma cell line ECV-304 revealed global distribution over the entire cell body, and with only slight enrichment at cell borders. This contrasts with restricted cell–cell junction localisation of classical cadherin (for example, VE-cadherin in HUVEC). In wounded cultures, T-cadherin polarised to the leading edge of cells migrating into the wound area, again contrasting with classical VE-cadherin, which was undetectable in this region. Confocal microscopy demonstrated that potential signalling functions of T-cadherin at the leading edge are unrelated to physical interactions with caveolin. Adherence of HUVEC onto a monolayer of T-cadherin-transfected L929 cells is significantly reduced compared with adhesion onto control (T-cadherin-negative) L929. Thus T-cadherin is not required for maintenance of intercellular adhesion, but may rather function as a signalling molecule involved in cell–cell recognition and sensing of the environment in processes where cell detachment occurs.  相似文献   

18.
目的:研究视黄醇结合蛋白4(Retinol-binding protein 4,RBP4)对血管平滑肌细胞(SMCs)迁移和增殖的影响及分子机制。方法:体外培养大鼠主动脉SMCs,采用划痕实验及Boyden's迁移小室实验观察RBP4对SMCs迁移的影响,采用免疫印迹实验技术检测Akt的磷酸化水平,采用Boyden's小室实验观察PI3K抑制剂LY294002预处理细胞对RBP4促SMCs迁移的影响,应用MTT比色实验结合流式细胞仪技术,检测RBP4对SMCs细胞增殖及细胞周期的影响。结果:RBP4呈剂量依赖性诱导大鼠血管SMCs迁移(P0.05);RBP4处理细胞显著增加了Akt磷酸化;PI3K抑制剂LY294002预处理细胞则显著抑制了RBP4的促迁移作用(P0.05);RBP4处理有增加SMCs数量的趋势,且可轻微阻滞细胞进入S期,但未达到统计学显著性(P0.05)。结论:RBP4通过PI3K-Akt通路诱导大鼠血管SMCs迁移,对细胞增殖及细胞周期则无显著影响。  相似文献   

19.
A characteristic property of the vascular smooth muscle cell is its ability to modulate between a contractile phenotype, responsible for control of vascular tone and tension, through to a synthetic phenotype, capable of migration and synthesis of extracellular matrix molecules. Smooth muscle cells are coupled by gap junctions, the membrane structures which permit direct intercellular passage of ions and small molecules, and which play a role both in electrical coupling and intercellular communication during patterning and development. We have previously found that connexin43 type gap junction expression is upregulated in the synthetic phenotype smooth muscle cellin vitroand during atherosclerotic plaque formation in human coronary arteries. On the basis of immunohistochemical labelling, confocal laser scanning microscopy and digital image analysis, we now report that relatively high levels of connexin43 are expressed during development of the rat thoracic aorta, temporally correlating with reported periods of smooth muscle cell proliferation and secretion of elastic laminae. A major peak in expression occurs at seven days post-natal, with a second less pronounced peak at 72 days post-natal. The principal peak in gap junction levels appears to coincide with increased post-natal blood pressure and aorta media thickening. The amount of gap junction labelling falls off to normal adult levels as the smooth muscle cells modulate towards the contractile phenotype and growth is completed. The results indicate an association between direct cell-to-cell communication and synthetic phenotype smooth muscle cell activity during aortic growth and patterning.  相似文献   

20.
We have shown that microRNAs (miRNAs) are necessary for renin cell specification and kidney vascular development. Here, we used a screening strategy involving microarray and in silico analyses, along with in situ hybridization and in vitro functional assays to identify miRNAs important for renin cell identity. Microarray studies using vascular smooth muscle cells (SMCs) of the renin lineage and kidney cortex under normal conditions and after reacquisition of the renin phenotype revealed that of 599 miRNAs, 192 were expressed in SMCs and 234 in kidney cortex. In silico analysis showed that the highly conserved miR-330 and miR-125b-5p have potential binding sites in smoothelin (Smtn), calbindin 1, smooth muscle myosin heavy chain, α-smooth muscle actin, and renin genes important for the myoepithelioid phenotype of the renin cell. RT-PCR studies confirmed miR-330 and miR-125b-5p expression in kidney and SMCs. In situ hybridization revealed that under normal conditions, miR-125b-5p was expressed in arteriolar SMCs and in juxtaglomerular (JG) cells. Under conditions that induce reacquisition of the renin phenotype, miR-125b-5p was downregulated in arteriolar SMCs but remained expressed in JG cells. miR-330, normally absent, was expressed exclusively in JG cells of treated mice. In vitro functional studies showed that overexpression of miR-330 inhibited Smtn expression in SMCs. On the other hand, miR-125b-5p increased Smtn expression, whereas its inhibition reduced Smtn expression. Our results demonstrate that miR-330 and miR-125b-5p are markers of JG cells and have opposite effects on renin lineage cells: one inhibiting and the other favoring their smooth muscle phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号