首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parasitoid development, parasitoid-induced host mortality and parasitoid progeny emergence were determined at five constant temperatures for Muscidifurax raptor Girault and Sanders, Muscidifurax zaraptor Kogan and Legner, Spalangia cameroni Perkins and Spalangia endius Walker using pupae of the house fly, Musca domestica L., as hosts. At temperatures of 20, 25, 30 and 35 degrees C the median development times (days from oviposition to adult emergence), respectively, were M. raptor (28.4, 20.7, 14.3, 14.5), M. zaraptor (30.6, 22.8, 14.1, 14.2), S. cameroni (55.6, 35.2, 21.8, 25.0) and S. endius (52.4, 31.5, 16.3, 14.6). All species failed to emerge at 15 degrees C. Using densities of five parasitoids and 100 hosts and a 24 h exposure period, Muscidifurax species oviposited at a greater rate over a wider range of temperatures than Spalangia species. At 15, 20, 25, 30 and 35 degrees C the mean number of pupae killed per parasitoid were, respectively, M. raptor (1.4, 7.4, 10.5, 13.7, 14.1), M. zaraptor (0.0, 3.3, 8.9, 14.4, 15.0), S.cameroni (0.0, 7.8, 11.0, 11.9, 7.4), S.endius (0.6, 4.0, 7.5, 12.0, 11.7), and means of the number of parasitoid progeny per parasitoid were, respectively, M.raptor (0.2, 5.2, 7.9, 11.8, 11.6), M.zaraptor (1.3, 4.4, 8.2, 13.0, 13.7), S.cameroni (0.0, 2.4, 4.7, 5.1, 1.0), S.endius (0.0, 0.9, 3.4, 7.5, 4.9). Development and ovipositional activity in S.cameroni was strongly inhibited at 35 degrees C. The model by Sharpe & DeMichele (1977) was used to describe temperature-dependent development and the number of parasitoid progeny produced per parasitoid at temperatures of 15-30 degrees C in all species.  相似文献   

2.
The parasitoid Lariophagus distinguendus Förster (Hymenoptera: Pteromalidae) is a promising candidate for biological control of the granary weevil Sitophilus granarius (L.) (Coleoptera: Curculionidae) in grain stores. For practical application in northern temperate regions it is important that the parasitoids can survive the cold temperatures in the grain during the winter and resume activity the following spring. In the present study the survival of Lariophagus distinguendus and Sitophilus granarius was followed during a simulated winter with stepwise reductions of temperature down to 6°C which was maintained for 15 weeks. Only 20% of the weevils were alive after eight weeks at 6°C, whereas the survival of L. distinguendus was unaffected by the temperature decrease. After being returned to room temperature an F 1 generation of the parasitoid emerged and was able to reproduce.  相似文献   

3.
The ectoparasitoid Habrobracon hebetor (Say) attacks stored-product infesting pyralid moths that are able to overwinter under extremely cold conditions. The extent to which H. hebetor can withstand these conditions is not known, but has important implications for the ability of H. hebetor to provide long-term suppression of these pests in temperate climates. We investigated basic cold hardiness aspects of a mutant eye-color strain of H. hebetor. Feeding larvae and adults of H. hebetor had supercooling points (SCPs) at temperatures higher than those of eggs and pupae. Mean SCPs of females and males were equivalent, as were those of naked and silk-encased pupae. Feeding on honey prior to being subjected to low temperatures significantly increased the SCP of adult females by approximately 8 degrees C. Mortality of pupae and adults increased significantly whenever the temperature dropped below the mean SCP, indicating that H. hebetor does not tolerate freezing. For pupae and adults exposed to -12 and -5 degrees C, the hourly mortality rate increased with time of exposure. Pupae and adults exposed to -12 degrees C for different time intervals showed high mortality after only 1d of exposure. At -5 degrees C, none survived 12d of exposure. A better understanding of how well this parasitoid tolerates low temperatures will be useful in evaluating its potential as a biological control agent of stored-product moths in temperate regions.  相似文献   

4.
Functional responses by Lysiphlebus testaceipes (Cresson), a common parasitoid of small grain aphids, on greenbug, Schizaphis graminum (Rondani), were measured at seven temperatures (14, 12, 10, 8, 6, 4, and 2 degrees C) during a 24-h period (12-h light: 12-h dark). Oviposition by L. testaceipes ceased at temperatures <4 degrees C. At all experimental temperatures, a type I, rather than a type II or type III, functional response was determined to be the best fit based on coefficient of determination (r2) values. L. testaceipes was observed to oviposit in greenbugs at temperatures below the developmental temperature of both the greenbug host (5.8 degrees C) and the parasitoid itself (6.6 degrees C). This ability to oviposit at subdevelopmental temperatures enables the parasitoid to increase the percentage of greenbugs that are parasitized while the greenbugs are unable to reproduce. The implications of these findings regarding population suppression of greenbugs are discussed.  相似文献   

5.
The egg parasitoid Trichogramma turkestanica Meyer is being evaluated as a biological control agent against the Mediterranean flour moth, Ephestia kuehniella Zeller, in flour mills. The longevity, parasitism and host-feeding of the parasitoid at four constant temperatures (15-30 degrees C) has been determined in the laboratory. The highest fecundity occurred at intermediate temperatures. The number of host eggs killed by host-feeding per female was highest at the two lower temperatures. A very conservative estimate of host-feeding showed that it accounts for approximately half of the mortality of host eggs at 20 and 25 degrees C and thus could constitute a major mortality factor for the flour moth population.  相似文献   

6.
To determine whether host body size is the currency used by the aphidiine parasitoid, Lysiphlebus ambiguus Haliday (Hymenoptera: Braconidae), in assessing host quality, the aphid, Aphis fabae Scopoli (Homoptera: Aphididae), was reared at either high or low temperature to yield hosts of the same instar with different body sizes. Cohorts of A. fabae raised at 15 degrees C and 30 degrees C and exposed to individual female L. ambiguus in no-choice tests were successfully parasitized in all host stages from 1st instar nymphs to adults. However, younger and smaller aphids were more susceptible to parasitism than older and larger nymphs or adults, as measured by the number of mummies produced. For aphid cohorts reared at 15 degrees C, the proportion of female progeny, progeny adult size, and development time all increased linearly with aphid size at the time of attack. In contrast, for aphid cohorts raised at 30 degrees C, the proportion of female progeny and progeny adult size declined with aphid size, while development time remained unaffected. Through manipulation of host rearing temperature, we have shown that at cooler temperatures the koinobiont parasitoid, L. ambiguus, responds to host size in the same way as an idiobiont parasitoid, but that this response is compromised at higher temperatures. Our results suggest that differential mortality during development is likely to influence the observed secondary sex ratio in relation to aphid size for aphid cohorts raised at higher temperatures due to disruption of the activity of the host's primary endosymbiont and that such reduced nutritional quality of aphids cannot be compensated by increased development time.  相似文献   

7.
The objective of this study was to evaluate the suitability of killed house fly (Musca domestica L) pupae for production of two economically important pupal parasitoids. Two-day-old fly pupae were subjected to heat shock treatments of varying temperatures and durations in an oven at >or=70% RH; exposure to temperatures of 55 degrees C or higher for 15 min or longer resulted in 100% mortality. Exposure to 50 degrees C resulted in 40 and 91% mortality at 15 and 60 min, respectively. All (100%) pupae placed in a -80 degrees C freezer were killed after 10-min exposure; exposure times of <5 min resulted in <21% mortality. Progeny production of Spalangia cameroni Perkins and Muscidifurax raptor Girault and Sanders (Hymeoptera: Pteromalidae) from pupae killed by heat shock or 50 kR of gamma radiation was not significantly different from production on live hosts on the day when pupae were killed. Freeze-killed pupae produced 16% fewer S. cameroni than live pupae and an equivalent amount of M. raptor progeny on the day when pupae were killed. When killed pupae were stored in freezer bags at 4 degrees C for 4 mo, heat-killed, irradiated, and freeze-killed pupae remained as effective for production of M. raptor as live pupae. Production of S. cameroni on heat-killed and irradiated pupae was equal to parasitoid production on live pupae for up to 2 mo of storage, after which production on killed pupae declined to 63% of that observed with live pupae. Production of S. cameroni on freeze-killed pupae was 73-78% of production using live pupae during weeks 2-8 of storage and declined to 41 and 28% after 3 and 4 mo, respectively. Killing pupae by heat shock provides a simple and low-cost method for stockpiling high-quality hosts for mass-rearing both of these filth fly biological control agents.  相似文献   

8.
The olive fruit fly, Bactrocera oleae (Rossi), is a newly invasive, significant threat to California's olive industry. As part of a classical biological control programme, Psyttalia ponerophaga (Silvestri) was imported to California from Pakistan and evaluated in quarantine. Biological parameters that would improve rearing and field-release protocols and permit comparisons to other olive fruit fly biological control agents were measured. Potential barriers to the successful establishment of P. ponerophaga, including the geographic origins of parasitoid and pest populations and constraints imposed by fruit size, were also evaluated as part of this investigation. Under insectary conditions, all larval stages except neonates were acceptable hosts. Provided a choice of host ages, the parasitoids' host-searching and oviposition preferences were a positive function of host age, with most offspring reared from hosts attacked as third instars. Immature developmental time was a negative function of tested temperatures, ranging from 25.5 to 12.4 days at 22 and 30 degrees C, respectively. Evaluation of adult longevity, at constant temperatures ranging from 15 to 34 degrees C, showed that P. ponerophaga had a broad tolerance of temperature, living from 3 to 34 days at 34 and 15 degrees C, respectively. Lifetime fecundity was 18.7 +/- 2.8 adult offspring per female, with most eggs deposited within 12 days after adult eclosion. Olive size affected parasitoid performance, with lower parasitism levels on hosts feeding in larger olives. The implications of these findings are discussed with respect to field manipulation and selection of parasitoid species for olive fruit fly biological control in California and worldwide.  相似文献   

9.
Abstract. 1. The influence of experience on egg maturation, parasitism rate, and behaviour during host searching was investigated for Lariophagus distinguendus (Först.) (Hymenoptera: Pteromalidae) parasitizing larvae of the granary weevil Sitophilus granarius (L.) in grains of wheat Triticum aestivum L.
2. Dissection of female parasitoids and parasitism bioassays at high host density revealed that experience with hosts (e.g. by oviposition or by host feeding) is not required either for triggering oogenesis or for oviposition.
3. In parasitism experiments at low host density, when single host-infested grains were offered within a bulk of healthy grains, host finding and parasitism rate were increased by experience.
4. Behavioural observations revealed that searching time required for finding an infested grain was shorter for experienced parasitoids than for naive parasitoids, because travel time from grain to grain is shorter for experienced parasitoids, and because experienced parasitoids spend less time than naive parasitoids on non-infested grains.
5. In conclusion, experience due to host exposure increases parasitism and thereby the fitness of the parasitoids. It is discussed that this increase is more likely due to learning than to different egg load dynamics of experienced parasitoids.  相似文献   

10.
The parasitism capacity of Trichogramma pretiosum Riley strain bonagota on Bonagota salubricola (Meyrick) eggs was studied under the temperatures of 18, 20, 22, 25, 28, 30 and 32 degrees C. The number of days with parasitism, accumulated parasitism, total number of eggs parasitized per female and parasitoid longevity was evaluated. In the first 24h, parasitism ranged from 1.6 (32 degrees C) to 8.8 (22 degrees C) eggs of B. salubricola. Accumulated egg parasitism of B. salubricola reached 80% in 1st to 4th day at 20 degrees C to 32 degrees C, respectively, and in the 7th day at 18 degrees C. Temperatures from 18 degrees C to 22 degrees C were the best suited for the total eggs parasitized for female, resulting in 35.4 and 24.6 eggs/male respectively. T. pretiosum female longevity ranged from 7.8 to 2.5 days, at 18 degrees C and 32 degrees C, respectively. The results showed that T. pretiosum strain bonagota is better adapted to temperatures from 18 degrees C to 22 degrees C.  相似文献   

11.
The effects of host instar of Toxoptera citricida Kirkaldy (Homoptera: Aphididae) on the performance of the parasitoid Lipolexis oregmae (Gahan) (Hymenoptera: Aphidiidae), originally Lipolexis scutellaris Mackauer, were evaluated in an effort to increase basic knowledge of this host-parasitoid association, improve field sampling methods, and potentially predict the success of parasitism in the field. L. oregmae was able to oviposit and develop in all four instars of T. citricida; however, there are differences in the quality of different host instars. Although second-instar hosts produce more L. oregmae progeny and a higher female-biased sex ratio, fourth-instar hosts produce L. oregmae progeny that are larger and have a higher realized fecundity. However, fourth-instar hosts require a longer handling time and expose the parasitoid female to more aphid behavioral defenses than do second-instar hosts. Additionally, results suggest that fourth-instar hosts may elicit a physiological immune response to parasitism; when aphids were observed being stung once, the number of L. oregmae larvae present on dissection after 4 d and the number of eclosed adults was lower in fourth- than in second-instar hosts. Pupal mortality of L. oregmae was also higher in fourth-instar hosts compared with second-instar hosts. The results of this study confirm that L. oregmae has a high reproductive rate and low incidence of incomplete parasitization on this host and is one of only a few natural enemies able to complete development in all instars of the brown citrus aphid in Florida.  相似文献   

12.
The use of general foraging kairomones in a generalist parasitoid   总被引:1,自引:0,他引:1  
Almost no comparative studies are available on the use of general and specific infochemical cues by generalist parasitoids with hosts from different families feeding on host plants also from different families. Based on literature, two hypotheses were developed and tested with host recognition cues used by the larval parasitoid Lariophagus distinguendus . This generalist parasitizes beetle species from different families developing in seeds of plant species from the Poaceae and Fabaceae. The first hypothesis predicts that for initial encounters with host species, natural enemies should innately use general cues, which are common to all hosts and their food plants. The second hypothesis predicts that natural enemies should learn specific cues from host plant and host after experience with a host species. The first hypothesis was partly confirmed. L. distinguendus innately reacted to faecal cues from several host species and chemical analyses of faeces from these hosts revealed the common occurrence of chemicals that are used for host recognition by L. distinguendus . In disagreement with the first hypothesis, parasitoids did not innately respond to cues from plant seeds. Preference experiments on the influence of experience demonstrated an increased host recognition response towards a host after experience with it. In support of the second hypothesis, L. distinguendus females learned specific cues from herbivore-damaged wheat, rice and cowpea seeds and from the faeces of the bean weevil Callosobruchus maculatus .  相似文献   

13.
Aptesis nigrocincta: Gravenhorst is a bivoltine ectoparasitoid of apple sawfly cocoons, hosts that must be found and parasitized by females at a depth of 10-25 cm in the soil. Females are significantly smaller than males and nearly wingless. After encountering a host, females needed 29.3 min at 20 degrees C and 19. 9 min at 25 degrees C to deposit an egg on the host. Development from egg to adult took 39.6 days for females and 38.0 days for males at 20 degrees C. This small difference was significant. At 20 degrees C, the longevity of females that had no opportunity to oviposit was on average 72.5 days, significantly higher than male longevity (50.6 days). The longevity of females given access to hosts throughout their lifetime averaged 58.6 days. Females were able to mate immediately after emergence and copulation lasted on average 21.7 s. After a pre-oviposition period averaging 5.8 days, females laid 20.2 eggs during their lifetime, thus less than one egg per day. Neither the fecundity nor longevity of individual females was correlated with body size. If females were deprived of food, longevity as well as lifetime fecundity were drastically reduced. Field studies were carried out in one organically managed apple orchard in Switzerland. Aptesis nigrocincta showed parasitism rates ranging from 12.1 to 39.7 % within single parasitoid generations, thereby constituting the most important mortality factor of apple sawfly cocoons.  相似文献   

14.
The development and parasitism of Diaphania hyalinata L. eggs by Trichogramma atopovirilia Oatman & Platner and its thermal requirements were studied at the temperatures of 18, 21, 24, 27, 30 and 33 degrees C. Thirty eggs of D. hyalinata were exposed to three females of T. atopovirilia for 5h at 25 degrees C and incubated at the different temperatures. The developmental time from egg exposure to adult, parasitism viability, number of adults per parasitized host egg and progeny sex ratio were monitored. The developmental time from egg to adult emergence of the parasitoid exhibited inverse relationship to the temperature, lasting 24.12 days at 18 degrees C and 7.36 days at 33 degrees C. Parasitism viability at 24, 27 and 30 degrees C was higher than 90%. The ratio of T. atapovirilia adult produced per egg and its sex ratio were not affected when using D. hialynata as host. The lowest threshold temperature (Tb) and estimated degree-days over Tb required by T. atopovirilia to develop on eggs of D. hyalinata was 11.99 degrees C and 130.42 masculine C, respectively. Considering the temperature regimes of two areas where cucurbitaces are cultivated in Bahia State (Rio Real and Inhambupe County) it was estimated that T. atopovirilia can achieve more than 32 generation per year. The results suggest that T. atopovirilia has potential to control D. hyalinata eggs with better chance of success under temperature regimes ranging from 24 to 27 degrees C that meets the suitable field conditions for cropping cucurbitaces.  相似文献   

15.
The bruchid Callosobruchus maculatus (F.) causes major losses during the storage of seeds of Vigna unguiculata (Walp.) in West Africa. An endemic parasitoid, the pteromalid Dinarmus basalis (Rond.) reduces the increase in bruchid populations in stores and could be used for biological control. African farmers often introduce essential oils into granaries at harvest time. In Togo, essential oils were extracted from two Gramineae, Cymbopogon nardus (L.) and Cymbopogon schoenanthus (L.) and from a Lamiaceae, Ocimum basilicum (L.). The major components of these essential oils were citronellal in C. nardus, carene-2 and piperitone in C. schoenanthus and estragol in O. basilicum. Cymbopogon schoenanthus was the most toxic oil for C. maculatus adults. D. basalis adults were more susceptible to the three essential oils than the adults of their hosts C. maculatus. In the presence of cowpea seeds, the LC50s of the three essential oils were lower than in their absence, suggesting that the seeds may absorb a part of the volatiles. High doses of three essential oils slightly affected the survival of the fourth instar or the pupae of C. maculatus. This high survival was due to protection of larvae from volatiles by the surrounding seeds. The D. basalis were more affected by the oil volatiles than their hosts. Sub-lethal doses of essential oils reduced the duration of the adult life of both insect species and fecundity of the females. The differences in sensitivity of the host and its parasitoid could influence their population dynamics. The introduction of the essential oils into storage systems potentially could reduce density of parasitoid populations and increase seed losses.  相似文献   

16.
Parasitoid-induced mortality of house fly, Musca domestica L., pupae and parasitoid progeny emergence by four species of pteromalid parasitoids, Muscidifurax raptor Girault & Sanders, M.zaraptor Kogan & Legner, Spalangia cameroni Perkins and S.endius Walker, were determined for a 24 h exposure period using parasitoid: host ratios ranging from 1:2 to 1:50. When the number of parasitoids was held constant (n = 5) and the numbers of hosts varied, and when the number of hosts was held constant (n = 100) and the number of parasitoids varied, both the number of pupae killed per parasitoid and the number of parasitoid progeny per parasitoid increased with increasing parasitoid:host ratios to reach an upper limit asymptotically. Maximum values were, respectively: M.raptor (14.7, 11.1), M.zaraptor (12.3, 9.3), S.cameroni (16.9, 5.5), S.endius (14.8, 9.7) with no consistent effects attributed to parasitoid interference. For M.raptor and S.cameroni at parasitoid:host ratios of 1:10, the pupal mortality and progeny emergence were determined for a 24 h exposure period when hosts were distributed in poultry manure at four levels of aggregation ranging from clumped to uniform. Pupal mortality was least in clumped distributions, while parasitoid progeny emergence was not significantly different.  相似文献   

17.
The biology of Cirrospilus coachellae Gates (Hymenoptera: Eulophidae), an ecto-parasitoid of the larvae of Marmara gulosa Guillén & Davis (Lepidoptera: Gracillariidae) was studied in the laboratory. In total, 120.3 +/- 21.2 adults were produced per female at 26 degrees C. Females survived an average of 23.5 +/- 4.4 d and parasitized an average of 49.8 +/- 10.2 hosts over their lifetime. C. coachellae is a facultatively gregarious parasitoid with up to eight parasitoids developing per host with an average of 2.5 +/- 0.1 in the laboratory. A female-biased sex ratio of 0.31 (male/total) was exhibited. Development times decreased with increasing temperatures from 23.7 +/- 0.2 d at 20 degrees C to 9.2 +/- 0.1 at 29 degrees C. Estimated lower and upper development thresholds were 14.1 and 36.7 degrees C, respectively. Maximal development rate occurred at 31.3 degrees C, and 138 degree-days was required to complete the cycle.  相似文献   

18.
We investigated the effects of eight temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, and 40.0 degrees C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis rufa Broadhead (Psocoptera: Liposcelididae). L. rufa did not survive at 43% RH, at all temperatures tested; at 55% RH, at the highest four temperatures; and at 63% RH and 40.0 degrees C. The greatest population growth was recorded at 35.0 degrees C and 75% RH (73-fold growth). At 40.0 degrees C, L. rufa populations declined or barely grew. L. rufa males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 31, 54, and 15%, respectively. Female L. rufa have two to five instars, and the percentages of females with two, three, four, and five instars were 2, 44, 42, and 12%, respectively. The life cycle was shorter for males than females. We developed temperature-dependent developmental equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. The ability of L. rufa to reproduce at a relative humidity of 55% and temperatures of 22.5-30.0 degrees C and at relative humidities of 63-75% and temperatures of 22.5-37.5 degrees C, in addition to being able to survive at 40.0 degrees C, suggests that this species would be expected to have a broader distribution than other Liposcelis species. These data provide a better understanding of L. rufa population dynamics and can be used to help develop effective management strategies for this psocid.  相似文献   

19.
Leptopilina heterotoma is a Drosophila parasitoid mainly occurring in temperate regions, and females of this species are pro‐ovigenic (i.e. all or nearly all of their lifetime eggs are already mature at emergence). Here I investigated how L. heterotoma overwinters in Sapporo, Japan, a cool temperate region, by outdoor and laboratory experiments. Females of this species had mature eggs at emergence as expected, and they did not resorb eggs even if they were exposed to cold or starvation. Nevertheless, females were able to overwinter, and post‐overwintering females retained parasitization capacity. In this species, thus, adult overwintering is not associated with reproductive diapause. However, females grown in late autumn or at low temperatures (e.g. 5°C) had a fewer number of mature eggs and higher winter survival. At low temperatures, female larvae could save energy by reducing egg production and allocate the saved energy to expenditure for overwintering. In contrast to females, males and pre‐adult individuals were not able to overwinter.  相似文献   

20.
Eggs of the Indianmeal moth, Plodia interpunctella (Hübner), were exposed to the labeled rate of hydroprene (1.9 x 10(-3) mg [AI]/cm2) sprayed on concreted petri dishes. These eggs were exposed for 1, 3, 6, 12, and 18 h and until hatching (continuous exposure) at temperatures of 16, 20, 24, 28, and 32 degrees C and 57% RH until the emergence of first instars. The developmental time and egg mortality were significantly influenced by temperature and exposure periods. At 16 degrees C, hydroprene did not cause differences in developmental time when eggs were exposed for different periods. At temperatures >16 degrees C, both exposure period and temperature influenced developmental time. The maximum developmental time (15.0 +/- 0.2 d) occurred at 16 degrees C, and the minimum developmental time (3.2 +/- 0.3 d) occurred at 32 degrees C. Mortality increased when eggs were exposed to hydroprene for longer periods at all of the five tested temperatures. The greatest mortality (81.6 +/- 2.1%) occurred when eggs were continuously exposed on treated surfaces at 32 degrees C. We used developmental time instead of rate (1/ developmental time) to fit simple linear or polynomial regression models to the development data. Appropriate models for developmental time and mortality were chosen based upon lack-of-fit tests. The regression models can be used in predictive simulation models for the population dynamics of Indianmeal moth to aid in optimizing use of hydroprene for insect management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号