首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acer pseudoplatanus cell suspension cultures were used to examine the ability of vacuoles isolated from protoplasts to hydrolyze their endogenous proteins. Total cell proteins were labeled by addition of [3H]leucine to the culture medium. After preparation of the protoplasts, vacuoles were isolated and were shown to be essentially free from other cellular components. Up to 30% of the [3H]leucine-labeled newly synthesized proteins were recovered in the vacuoles. When incubated for 6 hours at 20°C, the vacuoles degraded half of these proteins. The protein breakdown was temperature and pH dependent. Analysis by electrophoresis, in denaturing polyacrylamide gels, revealed that most of the vacuolar proteins were degraded. However, some vacuolar proteins were unaffected during a 6-hour incubation period. The results indicate that vacuoles are able to acquire and degrade intracellular proteins.  相似文献   

2.
Highly purified amyloplasts were isolated from cultured cells of sycamore (Acer pseudoplatanus L.). Incubation of amyloplasts with [γ-32P]-ATP resulted in the labeling of more than ten polypeptides. Pulsechase experiments showed the reversibility of the process with some but not all of the polypeptides. The phosphorylation reaction of one polypeptide, Mr 100, was shown to be calcium dependent. Although exogenously added pig brain calmodulin had no effect, the calmodulin antagonist W-7 strongly inhibited phosphorylation of the 100 kilodaltons polypeptide. The presence of endogenous calmodulin, about 1 to 3 micrograms per milligram protein, in the amyloplast preparation was estimated by activation of phosphodiesterase in vitro.  相似文献   

3.
Bligny R 《Plant physiology》1977,59(3):502-505
A phytostat to mass culture higher plant cells in liquid medium is described. This apparatus allowed the culture in batch, turbidostat and chemostat of 20 liters of cells. Automatic control of cell suspension growth was based on culture turbidity. Changes with time of certain cell characteristics, particularly cell respiration and phospholipid content, indicated that the test time to harvest large amounts of sycamore cells (Acer pseudoplatanus L.) in good physiological state was about 2 days before the end of the exponential phase of growth, when the cell density reached one million cells per milliliter of culture.  相似文献   

4.
《Plant science》1987,50(2):97-104
The degradation of endogenously labelled glycoproteins was studied in Acer pseudoplatanus L. cell suspension cultures in experiments using a dual-label with [14C]mannose and [3H]leucine.After harvesting the cells, protoplasts were prepared and vacuoles isolated. More than 30% of both total newly synthesized proteins (3H radioactivity) and glycoproteins (14C radioactivity) were recovered inside the vacuoles, the lytic compartment of plant cells. Half of these proteins were degraded when isolated vacuoles were incubated for 6 h at 20°C. So, the vacuolar compartment appears to be a major site of glycoprotein degradation in the cell.The glycoproteins were degraded at the same rate as the total newly synthesized proteins. However, some vacuolar hydrolytic enzymes were found to be glycoproteins and resistant to proteolytic attack. The biochemical explanation for such a resistance is not clear at this time, but in Acer cells the presence of covalently bound carbohydrates in proteins does not seem to be involved in the selectivity of protein turnover.  相似文献   

5.
A simple and rapid technique was developed for the isolationof the vesicular Golgi membranes from suspension-cultured cellsof sycamore (Acer pseudoplatanus L.). The procedure involvespreparation of protoplasts and differential centrifugation ofdisrupted protoplasts followed by the sucrose density gradientcentrifugation. Starting from broken protoplasts, sedimentableat two different centrifugal forces (10,000g and 100,000 g),two Golgi-enriched fractions of lower density, GF1 and GF'1,and higher density, GF2 and GF'2, were separated. Purity ofthe fraction was assessed by determining the marker enzyme activitiesas well as the electron microscopy of the specimens obtained. Inosine diphosphatase was enriched about 15- and 6-fold, respectively,in the GF2 fraction from 10,000g and the GF'2 one from 100,000gpellets, whereas the enrichment in GF1 and GF'1 was approximately6–7 fold. Galactosyl-transferase in GF2 was enriched about25-fold. GF1 and GF2 account for 3–4% of the total proteinof 10,000g pellets, and GF'1 and GF'2 for about 6–7%of the total protein of 100,000g pellets. Electron microscopicobservations show that GF2 and GF'2 consisted principally ofvesicular Golgi membranes without an internal matrix althoughGF1 and GF'1 were contaminated with ER membranes and ribosomes. (Received March 11, 1985; Accepted June 17, 1985)  相似文献   

6.
7.
D. P. Webb  P. F. Wareing 《Planta》1972,104(2):115-125
Summary Dormant seeds of Acer pseudoplatanus L. contain two zones of inhibition on paper chromatograms in 10:1:1 as detected by the lettuce and cress seed germination, and the wheat coleoptile bioassays. One zone at Rf 0.6–0.8 was partitioned into ethyl acetate at acid pH and was shown to contain ABA by its behaviour on GLC and isomerization under ultra-violet light. The other zone at Rf 0.9 was detected only in the germination bioassays and was partitioned into ethyl acetate over a range of pH indicating the presence of one or more neutral compounds.The inhibitors present in the embryo of dormant sycamore seeds inhibited the germination of non-dormant sycamore seeds at relatively low concentrations. A comparison with the effects of application of exogenous ABA indicated that endogenous ABA could not solely account for the inhibitory activity of seed extracts, which appeared to be due partly to the presence of ABA and partly to that of neutral compounds present in the embryo. Leaching treatments that removed dormancy led to a decrease in the level of inhibitors present mainly in the basic fraction. The exogenous application of kinetin to dormant sycamore seeds increased germination whereas gibberellic acid had no effect. Similar responses were obtained with lettuce seeds inhibited by the basic fraction of dormant sycamore seeds.It is suggested that an inhibitor-cytokinin interaction may be involved in the dormancy of sycamore seeds.  相似文献   

8.
Givan CV 《Plant physiology》1968,43(6):948-952
Endogenous concentrations of hexosemonophosphates and ATP decline sharply and rapidly in intact cells of Acer pseudoplatanus subjected to anoxia, whereas fructose-1,6-diphosphate and pyruvate accumulate markedly. In view of gas exchange data indicating an apparent acceleration of glycolysis under anoxic conditions, the observed changes in glycolytic metabolite concentrations indicate regulation of glycolysis by phosphofructokinase.  相似文献   

9.
Pope DG 《Plant physiology》1977,59(5):894-900
The pathway of hydroxyproline-containing proteins to the cell wall, and to the growth medium in suspension-cultured Acer pseudoplatanus cells is traced by following the kinetics of the transfer of protein-bound 14C-hydroxyproline into various fractions, and by comparing the hydroxyproline-arabinoside profiles of these fractions after alkaline hydrolysis.  相似文献   

10.
Acclimation to Drought in Acer pseudoplatanus L. (Sycamore) Seedlings   总被引:9,自引:0,他引:9  
A glasshouse experiment was conducted with well-watered andwater-stressed seedlings of sycamore (Acer pseudoplatanus L.)grown in soil columns. Water was withheld when the seedlingswere 82-d-old. Effects of soil drying on stomatal behaviour,water relations, xylem cavitation, and growth of leaves androots were evaluated. Stomatal conductance declined well before any observable changein bulk leaf water potentials, and was correlated with soilwater status. At seven weeks, osmotic potential had declinedby 0·51 MPa and 0·44 MPa at full and zero turgor,respectively. Drought significantly increased both bulk elasticmodulus and leaf dry weight to turgid weight ratio of water-stressedplants. Drought had no effect on relative water content at zeroturgor. Water cavitation in the xylem was detected as ultrasonic acousticemissions (AE). Water-stressed plants displayed significantlyhigher rates of AE than well-watered plants. Maximum rate ofAE coincided with the minimum level of stomatal conductanceand apparent rehydration of the leaves. Drought caused changes in the root distribution profile andit increased the root weight. The increase in root weight wasmainly due to a substantial shift in assimilates allocated infavour of roots with total biomass being unaffected. Leaf growthwas maintained for six weeks without any significant declinein expansion rate. However, the development of severe waterstress reduced both leaf production and expansion.  相似文献   

11.
To study the characteristic features of the amyloplast, a uniquely differentiated plastid-type which synthesizes and accumulates reserve starch, in comparison with those of the chloroplast, these two types of plastids were isolated from white-wild and green-mutant protoplasts of cultured sycamore (Acer pseudoplatanus L.) cells, respectively. The intactness of the isolated amyloplast preparations was 70%. Electron microscopic ultrastructural analysis of both plastid types revealed unique structural features of the green-mutant chloroplasts, including well developed grana membranes and abundant ribosomal particles and plastoglobuli. After osmotic rupture of the isolated amyloplasts and chloroplasts, a clear separation of the envelope-membranes was achieved by discontinuous sucrose density gradient centrifugation. Although the visible absorption spectra of the envelope lipid components were indistinguishable between the amyloplasts and chloroplasts, the envelope-membrane polypeptide patterns were clearly distinct as judged by denaturing electrophoresis. By immunoblotting analysis using the specific antiserum raised against the pea chloroplast 29-kilodalton Pi-translocator, the amount of this carrier-protein (31-kilodalton) in the white-wild amyloplast envelope-membranes was estimated to be at least 10-fold less than in the green-mutant envelopes.  相似文献   

12.
Ali MS  Akazawa T 《Plant physiology》1986,81(1):222-227
The Golgi complex and the disrupted vesicular membranes were prepared from suspension-cultured cells of sycamore (Acer pseudoplatanus L.) using protoplasts as the starting material and employing linear sucrose density gradient centrifugation followed by osmolysis (Ali et al. [1985] Plant Cell Physiol 26: 1119-1133). The isolated Golgi fraction was found to be enriched with marker enzyme activities and depleted of the activity of a typical mitochondrial marker enzyme, cytochrome c oxidase. Golgi complex, and vesicular membranes derived thereof were found to contain the specific ATPase (specific activity of about 0.5 to 0.7 micromoles per minute per milligram protein). Inhibitor studies suggested that the ATPase of Golgi was different from plasma membrane, tonoplast and mitochondrial ATPases as it was not inhibited by sodium vanadate, potassium nitrate, oligomycin and sodium azide. The sensitivity to N-ethylmaleimide further distinguished the Golgi ATPase from F0 to F1 ATPase of mitochondria. The internal acidification was measured by monitoring the difference in absorbance at 550 nanometers minus 600 nanometers using neutral red as a probe. The maximum rate detected with Golgi and disrupted membrane system was 0.49 and 0.61 optical density unit per minute per milligram protein, at pH 7.5, respectively, indicating that the proton pump activity was tightly associated with the Golgi membranes. In both cases, the acidification was inhibited 70 to 90% by various ionophores, indicating that the proton pump was electrogenic in nature. Both the Golgi ATPase activity and ATP-dependent acidification were profoundly inhibited by N,N′-dicyclohexylcarbodiimide, which also indicate that the two activities are catalyzed by the same enzyme.  相似文献   

13.
14.
Pascal N  Douce R 《Plant physiology》1993,103(4):1329-1338
The effects of iron deficiency on cell culture growth, cell respiration, mitochondrial oxidative properties, and the electron transport chain were studied with suspension-cultured sycamore (Acer pseudoplatanus L.) cells. Iron deprivation considerably decreased the initial growth rates and limited the maximum density of the cells. Under these conditions, the cells remained swollen throughout their growth. The absence of iron led to a steady decline in the uncoupled rate of O2 consumption. When the uncoupled rate of O2 uptake closely approximated the respiratory rate, the cells began to collapse. At this stage, the level of all the cytochromes and electron paramagnetic resonance-detectable Fe-S clusters of the mitochondrial inner membrane were dramatically decreased. Nevertheless, it appeared from substrate oxidation measurements that this overall depletion in iron-containing components solely disturbed the functioning of complex II, whereas neither complexes I, III, or IV, nor the machinery involved in ATP synthesis, was apparently impaired in iron-deficient mitochondria. However, our results suggest that the impairment of complex II resulted in a strong reduction of the overall capacity of the mitochondrial electron transport chain, which was responsible for determining the rate of endogenous respiration in sycamore cells. Finally, this situation led to a depletion of various energy metabolites that could contribute to the premature cell death.  相似文献   

15.
16.
17.
Incubation of amyloplasts isolated from cultured cells of sycamore (Acer pseudoplatanus L.) with [γ-32P]ATP resulted in the rapid phosphorylation (half-time of 40 seconds at 25 degrees Celcius) of organellar polypeptides. The preferred substrate for amyloplast protein kinases was Mg2+. ATP, and recovery of only [32P]serine after partial acid hydrolysis indicated the predominance of protein serine kinases in the organelle. These activities were located in the envelope and stromal fractions of the plastid, which showed different specificities toward exogenous protein substrates and distinct patterns of phosphorylation of endogenous polypeptides. A 66-kilodalton polypeptide, inaccessible to an exogenously added protease, was one of the major phosphorylated products found in intact amyloplasts at low [γ-32P] adenosine triphosphate concentrations. This polypeptide represented the major phosphoprotein observed with the isolated envelope fraction. The patterns of polypeptide phosphorylation found in intact amyloplasts and chloroplasts from cultured cell lines of sycamore were clearly distinguishable. The overall results indicate the presence of protein phosphorylation systems unique to this reserve plastid present in nonphotosynthetic tissues.  相似文献   

18.
Sycamore (Acer pseudoplatanus L.) is a tetraploid European hardwood tree species. The reproduction system of the insect‐pollinated trees and patterns of genetic variation are largely unknown. We isolated and characterized eight polymorphic microsatellite markers for Acer pseudoplatanus L. The high degree of polymorphism observed at these markers makes them useful to observe genetic variation patterns at various spatial scales and to analyse gene flow and the mating system. Primers developed for the amplification of microsatellites in A. pseudoplatanus were tested for 21 different species of genus Acer. Amplification products of the expected size were obtained in most cases.  相似文献   

19.
WILSON  G. 《Annals of botany》1976,40(5):919-932
Operational and constructional details are given of a relativelysimple and inexpensive chemostat designed for the continuousculture of plant cells in suspension. This apparatus permitscontrol of the growth rate of sycamore, Acer pseudoplatanusL. cells in steady-state conditions. By alteration of the rateof input of medium different steady-state growth rates wereobtained over a wide range (mean doubling times from 182 h to36 h). In order to establish a growth-limiting nutrient thetime course of nutrient uptake in batch culture was measured.In batch culture the maximum growth obtained was proportionalto the initial concentration of phosphate when this was belowa concentration of 17 µg P per ml (as phosphate). It isalso shown in chemostat culture that the steady-state cell densityis proportional to the phosphate concentration in the mediumwhen this is below 17 µg P per ml (as phosphate). Phosphatewas therefore established to be the growth rate-limiting nutrientin chemostat culture at a concentration of 8•5 µgP per ml (as phosphate).  相似文献   

20.
The intracellular distribution of K+ and Na+ ions has been determined by compartmental analysis of isotope exchange. The simultaneous measurement of electrical potentials allowed us to show that the distribution of K+ was close to thermodynamic equilibrium while the internal concentration of Na+ was well below the value predicted for the equilibrium. The efflux of Na+ was more sensitive to temperature than its influx. Both ouabain and variations in the external levels of KCl produced weak and inconsistent effects, observations which would emphasize the difference between the Na+ extrusion mechanism of plants and animals. The Na+ extrusion system of Acer cells ceased to be functional in Na+-depleted cells but recovered its function if the cells were placed in 10 mM NaCl, which suggests that the extrusion system was induced by the level of internal Na+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号