首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within each cell cycle, a cell must ensure that the processes of selection of replication origins (licensing) and initiation of DNA replication are well coordinated to prevent re-initiation of DNA replication from the same DNA segment during the same cell cycle. This is achieved by restricting the licensing process to G1 phase when the prereplicative complexes (preRCs) are assembled onto the origin DNA, while DNA replication is initiated only during S phase when de novo preRC assembly is blocked. Cdt1 is an important member of the preRC complex and its tight regulation through ubiquitin-dependent proteolysis and binding to its inhibitor Geminin ensure that Cdt1 will only be present in G1 phase, preventing relicensing of replication origins. We have recently reported that Cdt1 associates with chromatin in a dynamic way and recruits its inhibitor Geminin onto chromatin in vivo. Here we discuss how these dynamic Cdt1-chromatin interactions and the local recruitment of Geminin onto origins of replication by Cdt1 may provide a tight control of the licensing process in time and in space.  相似文献   

2.
Initiation of DNA synthesis involves the loading of the MCM2-7 helicase onto chromatin by Cdt1 (origin licensing). Geminin is thought to prevent relicensing by binding and inhibiting Cdt1. Here we show, using Xenopus egg extracts, that geminin binding to Cdt1 is not sufficient to block its activity and that a Cdt1-geminin complex licenses chromatin, but prevents rereplication, working as a molecular switch at replication origins. We demonstrate that geminin is recruited to chromatin already during licensing, while bulk geminin is recruited at the onset of S phase. A recombinant Cdt1-geminin complex binds chromatin, interacts with the MCM2-7 complex and licenses chromatin once per cell cycle. Accordingly, while recombinant Cdt1 induces rereplication in G1 or G2 and activates an ATM/ATR-dependent checkpoint, the Cdt1-geminin complex does not. We further demonstrate that the stoichiometry of the Cdt1-geminin complex regulates its activity. Our results suggest a model in which the MCM2-7 helicase is loaded onto chromatin by a Cdt1-geminin complex, which is inactivated upon origin firing by binding additional geminin. This origin inactivation reaction does not occur if only free Cdt1 is present on chromatin.  相似文献   

3.
Geminin is believed to have a major function in the regulation of genome replication and cell proliferation. Published evidence shows that geminin specifically interacts with Cdt1 to block its function in the assembly of prereplication complexes. However, in proliferating HeLa cells geminin and Cdt1 are co-expressed during a relatively short time at the G(1)-to-S phase transition. Under these conditions, nearly all Cdt1 and a major part of geminin are bound to chromatin and reside at the same or closely adjacent sites as shown here by chromatin immunoprecipitation. Cdt1 is rapidly degraded early in S phase, but geminin remains bound to the chromatin sites. One function that chromatin-bound geminin could perform is to prevent access to Cdt1 that may escape S phase-dependent degradation or is synthesized in excess. Indeed, Cdt1 continues to be synthesized in HeLa cells in S phase but never accumulates because of the efficient degradation. Therefore, geminin can be eliminated by RNA interference without detectable effects on cell cycle parameters.  相似文献   

4.
Licensing of replication origins is carefully regulated in a cell cycle to maintain genome integrity. Using an in vivo ubiquitination assay and temperature-sensitive cell lines we demonstrate that Cdt1 in mammalian cells is degraded through ubiquitin-dependent proteolysis in S-phase. siRNA experiments for Geminin indicate that Cdt1 is degraded in the absence of Geminin. The N terminus of Cdt1 is required for its nuclear localization, associates with cyclin A, but is dispensable for the association of Cdt1 with Geminin in cells. This region is responsible for proteolysis of Cdt1 in S-phase. On the other hand, the N terminus-truncated Cdt1 is stable in S-phase, and associates with the licensing inhibitor, Geminin. High level expression of this form of Cdt1 brings about cells having higher DNA content. Proteasome inhibitors stabilize Cdt1 in S-phase, and the protein is detected in the nucleus in a complex with Geminin. This form of Cdt1 associates with chromatin as tightly as that of G1-cells, when no Geminin is detected. Our data show that proteolysis and Geminin binding independently inactivate Cdt1 after the onset of S-phase to prevent re-replication.  相似文献   

5.
The efficiency of metazoan origins of DNA replication is known to be enhanced by histone acetylation near origins. Although this correlates with increased MCM recruitment, the mechanism by which such acetylation regulates MCM loading is unknown. We show here that Cdt1 induces large scale chromatin decondensation that is required for MCM recruitment. This process occurs in G1, is suppressed by Geminin, and requires HBO1 HAT activity and histone H4 modifications. HDAC11, which binds Cdt1 and replication origins during S-phase, potently inhibits Cdt1-induced chromatin unfolding and re-replication, suppresses MCM loading, and binds Cdt1 more efficiently in the presence of Geminin. We also demonstrate that chromatin at endogenous origins is more accessible in G1 relative to S-phase. These results provide evidence that histone acetylation promotes MCM loading via enhanced chromatin accessibility. This process is regulated positively by Cdt1 and HBO1 in G1 and repressed by Geminin-HDAC11 association with Cdt1 in S-phase, and represents a novel form of replication licensing control.  相似文献   

6.
7.
All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2~7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity.  相似文献   

8.
The efficiency of metazoan origins of DNA replication is known to be enhanced by histone acetylation near origins. Although this correlates with increased MCM recruitment, the mechanism by which such acetylation regulates MCM loading is unknown. We show here that Cdt1 induces large-scale chromatin decondensation that is required for MCM recruitment. This process occurs in G1, is suppressed by Geminin and requires HBO1 HAT activity and histone H4 modifications. HDAC11, which binds Cdt1 and replication origins during S phase, potently inhibits Cdt1-induced chromatin unfolding and re-replication, suppresses MCM loading and binds Cdt1 more efficiently in the presence of Geminin. We also demonstrate that chromatin at endogenous origins is more accessible in G1 relative to S phase. These results provide evidence that histone acetylation promotes MCM loading via enhanced chromatin accessibility. This process is regulated positively by Cdt1 and HBO1 in G1 and repressed by Geminin-HDAC11 association with Cdt1 in S phase and represents a novel form of replication licensing control.Key words: Cdt1, HBO1, HDAC11, chromatin, DNA replication  相似文献   

9.
Geminin is an unstable regulatory protein that affects both cell division and cell differentiation. Geminin inhibits a second round of DNA synthesis during S and G(2) phase by binding the essential replication protein Cdt1. Geminin is also required for entry into mitosis, either by preventing replication abnormalities or by down-regulating the checkpoint kinase Chk1. Geminin overexpression during embryonic development induces ectopic neural tissue, inhibits eye formation, and perturbs the segmental patterning of the embryo. In order to define the structural and functional domains of the geminin protein, we generated over 40 missense and deletion mutations and tested their phenotypes in biological and biochemical assays. We find that geminin self-associates through the coiled-coil domain to form dimers and that dimerization is required for activity. Geminin contains a typical bipartite nuclear localization signal that is also required for its destruction during mitosis. Nondegradable mutants of geminin interfere with DNA replication in succeeding cell cycles. Geminin's Cdt1-binding domain lies immediately adjacent to the dimerization domain and overlaps it. We constructed two nonbinding mutants in this domain and found that they neither inhibited replication nor permitted entry into mitosis, indicating that this domain is necessary for both activities. We identified several missense mutations in geminin's Cdt1 binding domain that were deficient in their ability to inhibit replication yet were still able to allow mitotic entry, suggesting that these are separate functions of geminin.  相似文献   

10.
11.
12.
13.
Faithful duplication of the genetic material requires that replication origins fire only once per cell cycle. Central to this control is the tightly regulated formation of prereplicative complexes (preRCs) at future origins of DNA replication. In all eukaryotes studied, this entails loading by Cdc6 of the Mcm2-7 helicase next to the origin recognition complex (ORC). More recently, another factor, named Cdt1, was shown to be essential for Mcm loading in fission yeast and Xenopus as well as for DNA replication in Drosophila and humans. Surprisingly, no Cdt1 homolog was found in budding yeast, despite the conserved nature of origin licensing. Here we identify Tah11/Sid2, previously isolated through interactions with topoisomerase and Cdk inhibitor mutants, as an ortholog of Cdt1. We show that sid2 mutants lose minichromosomes in an ARS number-dependent manner, consistent with ScCdt1/Sid2 being involved in origin licensing. Accordingly, cells partially depleted of Cdt1 replicate DNA from fewer origins, whereas fully depleted cells fail to load Mcm2 on chromatin and fail to initiate but not elongate DNA synthesis. We conclude that origin licensing depends in S. cerevisiae as in other eukaryotes on both Cdc6 and Cdt1.  相似文献   

14.
Metazoans limit origin firing to once per cell cycle by oscillations in cyclin-dependent kinases and the replication licensing inhibitor geminin. Geminin inhibits pre-replication complex assembly by preventing Cdt1 from recruiting the minichromosome maintenance proteins to chromatin. Geminin depletion results in genomic over-replication in Drosophila and human cell lines. Here, we show that loss of geminin affects other cell cycle-dependent events in addition to DNA replication. Geminin inactivation causes centrosome overduplication without passage through mitosis in human normal and cancer cells. Centrosomes are microtubule-organizing centres that are duplicated during S phase and have an important role in the fidelity of chromosome transmission by nucleating the mitotic spindle. Consistent with this, geminin-depleted cells show multiple mitotic defects, including multipolar spindles, when driven into mitosis by checkpoint abrogation. These results show that the consequences of geminin loss exceed its immediate role in DNA replication and extend to promoting chromosome mis-segregation in mitosis.  相似文献   

15.
Yanow SK  Lygerou Z  Nurse P 《The EMBO journal》2001,20(17):4648-4656
Cdc18/Cdc6 and Cdt1 are essential initiation factors for DNA replication. In this paper we show that expression of Cdc18 in fission yeast G2 cells is sufficient to override the controls that ensure one S phase per cell cycle. Cdc18 expression in G2 induces DNA synthesis by re-firing replication origins and recruiting the MCM Cdc21 to chromatin in the presence of low levels of Cdt1. However, when Cdt1 is expressed together with Cdc18 in G2, cells undergo very rapid, uncontrolled DNA synthesis, accumulating DNA contents of 64C or more. Our data suggest that Cdt1 may potentiate re-replication by inducing origins to fire more persistently, possibly by stabilizing Cdc18 on chromatin. In addition, low level expression of a mutant form of Cdc18 that cannot be phosphorylated by cyclin-dependent kinases is not sufficient to induce replication in G2, but does so only when co-expressed with Cdt1. Thus, regulation of both Cdc18 and Cdt1 in G2 plays a crucial role in preventing the re-initiation of DNA synthesis until the next cell cycle.  相似文献   

16.
17.
The proper coordination between DNA replication and mitosis during cell-cycle progression is crucial for genomic stability. During G2 and mitosis, Set8 catalyzes monomethylation of histone H4 on lysine 20 (H4K20me1), which promotes chromatin compaction. Set8 levels decline in S phase, but why and how this occurs is unclear. Here, we show that Set8 is targeted for proteolysis in S phase and in response to DNA damage by the E3 ubiquitin ligase, CRL4(Cdt2). Set8 ubiquitylation occurs on chromatin and is coupled to DNA replication via a specific degron in Set8 that binds PCNA. Inactivation of CRL4(Cdt2) leads to Set8 stabilization and aberrant H4K20me1 accumulation in replicating cells. Transient S phase expression of a Set8 mutant lacking the degron promotes premature H4K20me1 accumulation and chromatin compaction, and triggers a checkpoint-mediated G2 arrest. Thus, CRL4(Cdt2)-dependent destruction of Set8 in S phase preserves genome stability by preventing aberrant chromatin compaction during DNA synthesis.  相似文献   

18.
Cdt1 is a conserved replication factor required in licensing the chromosome for a single round of DNA synthesis. The activity of Cdt1 is inhibited by geminin. The mechanism by which geminin interferes with Cdt1 activity is unknown. It is thought that geminin binds to and sequestrate Cdt1. We show that geminin does not interfere with the chromatin association of Cdt1 and that inhibition of DNA synthesis by geminin is observed following its accumulation on chromatin. The binding of geminin to chromatin has been investigated during S phase. We demonstrate that loading of geminin onto chromatin requires Cdt1, suggesting that geminin is targeted at replication origins. We also show that geminin binds chromatin at the transition from the pre-replication to pre-initiation complexes, which overlaps with the release of Cdt1. This regulation is strikingly different from that observed in somatic cells where the chromatin binding of these proteins is mutually exclusive. In contrast to somatic cells, we further show that geminin is stable during the early embryonic cell cycles. These results suggest a specific regulation of origin firing adapted to the rapid cell cycles of Xenopus and indicate that periodic degradation of geminin is not relevant to licensing during embryonic development.  相似文献   

19.
The replication factors Cdt1 and Cdc6 are essential for origin licensing, a prerequisite for DNA replication initiation. Mechanisms to ensure that metazoan origins initiate once per cell cycle include degradation of Cdt1 during S phase and inhibition of Cdt1 by the geminin protein. Geminin depletion or overexpression of Cdt1 or Cdc6 in human cells causes rereplication, a form of endogenous DNA damage. Rereplication induced by these manipulations is however uneven and incomplete, suggesting that one or more mechanisms restrain rereplication once it begins. We find that both Cdt1 and Cdc6 are degraded in geminin-depleted cells. We further show that Cdt1 degradation in cells that have rereplicated requires the PCNA binding site of Cdt1 and the Cul4(DDB1) ubiquitin ligase, and Cdt1 can induce its own degradation when overproduced. Cdc6 degradation in geminin-depleted cells requires Huwe1, the ubiquitin ligase that regulates Cdc6 after DNA damage. Moreover, perturbations that specifically disrupt Cdt1 and Cdc6 degradation in response to DNA damage exacerbate rereplication when combined with geminin depletion, and this enhanced rereplication occurs in both human cells and in Drosophila melanogaster cells. We conclude that rereplication-associated DNA damage triggers Cdt1 and Cdc6 ubiquitination and destruction, and propose that this pathway represents an evolutionarily conserved mechanism that minimizes the extent of rereplication.  相似文献   

20.
The current concept regarding cell cycle regulation of DNA replication is that Cdt1, together with origin recognition complex and CDC6 proteins, constitutes the machinery that loads the minichromosome maintenance complex, a candidate replicative helicase, onto chromatin during the G(1) phase. The actions of origin recognition complex and CDC6 are suppressed through phosphorylation by cyclin-dependent kinases (Cdks) after S phase to prohibit rereplication. It has been suggested in metazoan cells that the function of Cdt1 is blocked through binding to an inhibitor protein, geminin. However, the functional relationship between the Cdt1-geminin system and Cdks remains to be clarified. In this report, we demonstrate that human Cdt1 is phosphorylated by cyclin A-dependent kinases dependent on its cyclin-binding motif. Cdk phosphorylation resulted in the binding of Cdt1 to the F-box protein Skp2 and subsequent degradation. In contrast, in vitro DNA binding activity of Cdt1 was inhibited by the phosphorylation. However, geminin binding to Cdt1 was not affected by the phosphorylation. Finally we provide evidence that inactivation of Cdk1 results in Cdt1 dephosphorylation and rebinding to chromatin in murine FT210 cells synchronized around the G(2)/M phase. Taken together, these findings suggest that Cdt1 function is also negatively regulated by the Cdk phosphorylation independent of geminin binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号