首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The visible and near infrared magnetic circular dichroism (MCD) spectra of equilibrium high-spin ferrous derivatives of myoglobin, hemoglobin, horseradish peroxidase and mitochondrial cytochrome c oxidase at 15 K are compared with those of the corresponding proteins in nonequilibrium conformations produced by low-temperature photodissociation of CO-complexes of these proteins as well as of O2-complexes of myoglobin and hemoglobin. Over all the spectral region (450-800 nm) the intensities of MCD bands of hemoproteins studied in equilibrium conformation are shown to be strongly temperature-dependent, including a negative band at ca. 630 nm and positive bands at ca. 690 nm and at ca. 760 nm. In contrast to the absorption spectra, the low-temperature MCD spectra of high-spin ferrous hemoproteins differ significantly, reflecting the peculiarities in the heme iron coordination sphere which are created by a protein conformation. The MCD spectra reveal clearly the structural changes in the heme environment which occur on ligand binding. On the basis of assignment of d leads to d and charge-transfer transitions in the near infrared region the correlation is suggested between the wavelength position of the MCD band at approx. 690 nm and the value of iron out-of-plane displacement as well as between the location of the band at approx. 760 nm and the Fe-N epsilon (proximal histidine) bond strength (length) in equilibrium and nonequilibrium conformations of the hemoproteins studied. The high sensitivity of low-temperature MCD spectra to geometry at heme iron is discussed.  相似文献   

2.
In order to probe the active site of the heme protein indoleamine 2,3-dioxygenase, magnetic and natural circular dichroism (MCD and CD) and electron paramagnetic resonance (EPR) studies of the substrate (L-tryptophan)-free and substrate-bound enzyme with and without various exogenous ligands have been carried out. The MCD spectra of the ferric and ferrous derivatives are similar to those of the analogous myoglobin and horseradish peroxidase species. This provides strong support for histidine imidazole as the fifth ligand to the heme iron of indoleamine 2,3-dioxygenase. The substrate-free native ferric enzyme exhibits predominantly high-spin EPR signals (g perpendicular = 6, g parallel = 2) along with weak low-spin signals (g perpendicular = 2.86, 2.28, 1.60); similar EPR, spin-state and MCD features are found for the benzimidazole adduct of ferric myoglobin. This suggests that the substrate-free ferric enzyme has a sterically hindered histidine imidazole nitrogen donor sixth ligand. Upon substrate binding, noticeable MCD and EPR spectral changes are detected that are indicative of an increased low spin content (from 30 to over 70% at ambient temperature). Concomitantly, new low spin EPR signals (g = 2.53, 2.18, 1.86) and MCD features characteristic of hydroxide complexes of histidine-ligated heme proteins appear. For almost all of the other ferric and ferrous derivatives, only small substrate effects are observed with MCD spectroscopy, while substantial substrate effects are seen with CD spectroscopy. Thus, changes in the heme coordination structure of the ferric enzyme and in the protein conformation at the active site of the ferric and ferrous enzyme are induced by substrate binding. The observed substrate effects on the ferric enzyme may correlate with the previously observed kinetic substrate inhibition of indoleamine 2,3-dioxygenase activity, while such effects on the ferrous enzyme suggest the possibility that the substrate is activated during turnover.  相似文献   

3.
Magnetic circular dichroism (MCD) spectra were observed for native (Fe(III)) horseradish peroxidase (peroxidase, EC 1.11.1.7), its alkaline form and fluoro- and cyano-derivatives, and also for reduced (Fe(II)) horseradish peroxidase and its carbonmonoxy-- and cyano- derivatives. MCD spectra were obtained for the cyano derivative of Fe(III) horseradish peroxidase, and reduced horseradish peroxidase and its carbonmonoxy- derivative nearly identical with those for the respective myoglobin derivatives. The alkaline form of horseradish peroxidase exhibits a completely different MCD spectrum from that of myoglobin hydroxide. Thus it shows an MCD spectrum which falls into the ferric low-spin heme grouping. Native horseradish peroxidase and its fluoro derivatives show almost identical MCD spectra with those for the respective myoglobin derivatives in the visible region, though some changes were detected in the Soret region. Therefore it is concluded that the MCD spectra on the whole are sensitive to the spin state of the heme iron rather than to the porphyrin structures. The cyanide derivative of reduced horseradish peroxidase exhibited a characteristic MCD spectrum of the low-spin ferrous derivative like oxy-myoglobin.  相似文献   

4.
Absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of beef liver catalase at pH 5.0 and 6.9, and its complexes with NaF, KCNO, NaCNS, NaN3 and NaCN, have been measured between 250 nm and 700 nm at room temperature. The pH 6.9 native catalase MCD shows the presence of several additional transitions not resolved in the absorption spectrum. While these bands can be seen in the spectra of all the derivatives, with the exception of the cyanide, their relative intensities changes considerably between complexes. Of special interest in the MCD of ferric hemes is the signal intensity at about 400 nm and 620 nm. The data indicate that the MCD intensity at 620 nm increases as the high spin iron porphyrin fraction increases, reaching a maximum with the fluoride complex. The 430 nm band intensity increases as the proportion of low spin iron increases, reaching a maximum with the cyanide complex. The MCD spectra also indicate clearly the existence of spin mixtures in the complexes with CNO-, CNS-, and N3-, where both the 430 nm and 620 nm bands have appreciable intensity. It is significant that despite almost identical absorption spectra the CNS- complex has higher fraction of low spin iron than either the CNO- or the N3- species. The differences between the pH 5 and 6.9 MCD spectra of the native catalase suggest that the environment of the heme centre is sensitive to protonation.  相似文献   

5.
The behavior of charge transfer band, appearing at 600-650 nm in ferric high spin derivatives of myoglobin and hemoglobin, was studied under various conditions by low temperature optical and magnetic circular dichroism spectroscopy. Optical absorption spectra have demonstrated that: (1) The charge transfer band at 630 nm of myoglobin (Fe3+)-H2O (pH 7.0) at room temperature split into three bands, 627 nm, 645 nm and 664 nm (shoulder) at 77 degrees K, whereas that of hemoglobin (Fe3+)-H2O showed no splitting. (2) By lowering the pH value from 7.5 to 4.3 this splitting in myoglobin was observed to disappear only in the presence of a small amount of phosphate ion, accompanying a midpoint at pH 6.7 +/- 0.1. This does not originate from the released hemin. (3) Hemin (pH 7.55) showed no splitting of the charge transfer band at 77 degrees K. (4) This splitting depended on the species of 6th ligand. For myoglobin-F- the splitting could scarcely be observed, whereas the proton-donating ligands such as HCOOH and CH3OH exhibit the splitting as well as H2O. Magnetic circular dichroism spectra have demonstrated that: (5) The charge transfer band at 600-500 nm indicated Faraday A term and B term. (6) A negative B term band was observed at 650 nm for myoglobin-H2O in the glassic solvent of potassium glycerophosphate-glycerol, whereas it was not observed for hemoglobin-H2O. Several discussions were performed on the origin of splitting of the charge transfer band in myoglobin-H2O. It is now concluded that the hydrogen bond between the 6th ligand and the distal histidine contributes to the splitting of the charge transfer band around 630 nm for myoglobin Fe3+)-H2O at low temperature and that disappearance of the splitting at low pH is originated from the presence of phosphate ion.  相似文献   

6.
Electronic absorption and magnetic circular dichroism (MCD) spectroscopic data at 4 degrees C are reported for exogenous ligand-free ferric forms of cytochrome c peroxidase (CCP) in comparison with two other histidine-ligated heme proteins, horseradish peroxidase (HRP) and myoglobin (Mb). In particular, we have examined the ferric states of yeast wild-type CCP (YCCP), CCP (MKT) which is the form of the enzyme that is expressed in and purified from E. coli, and contains Met-Lys-Thr (MKT) at the N-terminus, CCP (MKT) in the presence of 60% glycerol, lyophilized YCCP, and alkaline CCP (MKT). The present study demonstrates that, while having similar electronic absorption spectra, the MCD spectra of ligand-free ferric YCCP and CCP (MKT) are somewhat varied from one another. Detailed spectral analyses reveal that the ferric form of YCCP, characterized by a long wavelength charge transfer (CT) band at 645 nm, exists in a predominantly penta-coordinate state with spectral features similar to those of native ferric HRP rather than ferric Mb (His/water hexa-coordinate). The electronic absorption spectrum of ferric CCP (MKT) is similar to those of the penta-coordinate states of ferric YCCP and ferric HRP including a CT band at 645 nm. However, its MCD spectrum shows a small trough at 583 nm that is absent in the analogous spectra of YCCP and HRP. Instead, this trough is similar to that seen for ferric myoglobin at about 585 nm, and is attributed (following spectral simulations) to a minor contribution (< or = 5%) in the spectrum of CCP (MKT) from a hexa-coordinate low-spin species in the form of a hydroxide-ligated heme. The MCD data indicate that the lyophilized sample of ferric YCCP (lambda CT = 637 nm) contains considerably increased amounts of hexa-coordinate low-spin species including both His/hydroxide and bis-His species. The crystal structure of a spectroscopically similar sample of CCP (MKT) (lambda CT = 637 nm) solved at 2.0 A resolution is consistent with His/hydroxide coordination. Alkaline CCP (pH 9.7) is proposed to exist as a mixture of hexa-coordinate, predominantly low-spin complexes with distal His 52 and hydroxide acting as distal ligands based on MCD spectral comparisons.  相似文献   

7.
The absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of valency hybrid hemoglobins and their constituents (alpha + and beta chains for alpha 2+beta 2, alpha and beta + chains for alpha 2 beta 2+: + denotes ferric heme) were measured in the Soret region for F-, H2O, N3- and CN- derivatives. Absorption and MCD spectra of valency hybrid hemoglobins were very similar to the arithmetic mean of respective spectra of their corresponding component chains in all derivatives. The Soret MCD intensity around 408 nm for various complexes of valency hybrid hemoglobins seems to reflect the spin state of ferric chains. Upon ferric and deoxy ferrous subunit association to make the deoxy valency hybrid hemoglobins, only the high-spin forms bound with F- and H2O of alpha 2+beta 2 displayed a blue shift in the peak position around 430 nm and those of alpha 2 beta 2+ an increase in intensity around 430 nm. The blue shift and the increase in intensity were considered to be caused by the structural changes in deoxy beta chains of alpha 2+beta 2 and deoxy alpha chains of alpha beta 2+, respectively. These spectral changes were interpreted on the basis of their oxygen-equilibrium properties. In contrast to absorption and MCD spectra, the CD spectra of valency hybrid hemoglobins were markedly different from the simple addition of those of their component chains in all derivatives examined. The large part of CD spectral changes upon subunit association were interpreted as changes in the heme vicinity accompanied by formation of the alpha 1 beta 1 subunit contact.  相似文献   

8.
Magnetic circular dichroism (MCD) spectroscopy has been utilized to characterize the change in coordination structure in native ferric sperm whale myoglobin upon cyanogen bromide-modification. Comparison of the MCD properties of the ferric high-spin state of cyanogen bromide-modified myoglobin (BrCN-Mb) with those of native ferric horseradish peroxidase and Aplysia myoglobin suggests that ferric BrCN-Mb is a potential MCD model for the pentacoordinate state of ferric high-spin histidine-ligated heme proteins. These five-coordinate heme proteins afford a relatively weak and unsymmetric signal in the Soret region of the MCD spectrum. In contrast, native ferric myoglobin and the benzohydroxamic acid adduct of ferric horseradish peroxidase show a strong and symmetric derivative-shaped Soret MCD signal which is indicative of hexacoordination with water and histidine axial ligands. Therefore it seems that MCD spectroscopy could be used to probe the presence of water ligated to the distal side of ferric high-spin heme proteins. The MCD spectra of the ferric-azide, ferrous-deoxy and ferrous-CO forms of BrCN-Mb have also been measured and compared to those of analogous native myoglobin complexes. The present MCD study has been extended to include new ligands, NO, thiocyanate and cyanate, which bind to ferric BrCN-Mb. With exogenous ligands such as CO, NO and thiocyanate, the coordination structures of the BrCN-Mb complexes are similar to those of the respective native myoglobin adducts. In the case of ferrous-deoxy and ferric-cyanate BrCN-Mb, however, the altered MCD spectra (and EPR for the latter) reveal changes in electronic structure which likely correlate with alterations of the coordination environment of these BrCN-Mb derivatives. Data are also presented which support the proposed tetrazole-bound structure for azide-treated BrCN-Mb (Hori, H., Fujii, M., Shiro, Y., Iizuka, T., Adachi, S. and Morishima, I. (1989) J. Biol. Chem. 264, 5715-5719) and the inability of the distal histidine of BrCN-Mb to stabilize the ferric ligand-bound state.  相似文献   

9.
The magnetic circular dichroism spectra (MCD) recorded for the visible and near-UV regions of high-spin ferrous derivatives of myoglobin, hemoglobin, hemoglobin dimers and isolated chains as well as of horseradish peroxidase at pH 6.8 and 11.4 have been compared at the room and liquid nitrogen temperatures. The MCD of the Q00- and QV-bands have been shown to be sensitive to structural differences in the heme environment of these hemoproteins. The room temperature visible MCD of native hemoglobin differs from that of myoglobin, hemoglobin dimers and isolated chains as well as from that of model pentacoordinated complex. The MCD of hemoglobin is characterized by the greater value of the MCD intensity ratio of derivative shape A-term in the Q00-band to the A-term in the QV-band. The evidneces are presented for the existence of two pH-dependent forms of ferroperoxidase, the neutral peroxidase shows the "hemoglobin-like" MCD, while the alkaline ferroperoxidase is characterized by the "myoglobin-like" MCD spectrum in the visible region. The differences in the MCD of deoxyhemoglobin and neutral ferroperoxidase as compared with other high-spin ferrous hemoproteins are considered to result from the constraints on heme group imposed by quaternary and/or tertiary protein structure. The differences between hemoporteins which are seen at the room temperature become more pronounced at liquid nitrogen temperature. Except the peak at approximately 580 nm in the MCD of deoxymyoglobin and reduced peroxidase at pH 11.4 the visible MCD does not show appreciable temperature dependent C-terms. The nature of the temperature dependent effect at approximately 580 nm is not clear. The Soret MCD of all hemoproteins studied are similar and are predominantly composed of the derivative-shaped C-terms as revealed by the increase of the MCD peaks approximately in accordance with Boltzmann distribution. The interpretation of temperature-dependent MCD observed for the Soret band has been made in terms of porphyrin to Fe-iron charge-transfer electronic transition which may be assigned as b( pi) leads to 3d. This charge-transfer band is strongly overlapped with usual B(pi --pi*) band resulting in diffuse Soret band. Adopting that only two normal vibrations are sinphase with charge-transfer transition the extracted C-terms of the Soret MCD have been fitted by theoretical dispersion curves.  相似文献   

10.
The intensity of the Soret magnetic circular dichroism (MCD) spectra of various complexes of methemoglobin subunits (α+ and β+) as well as methemoglobin (metHb A) was correlated well with the spin states of ferric heme. Upon the subunit association, spin state transition toward higher spin was observed only in high spin derivatives and the changes in spin state were due to mainly those of β+ chains. The effect of an allostric effector, inositol hexaphosphate (IHP), on the MCD spectra of metHb A derivatives was observed much significantly for high spin forms than low spin ones.  相似文献   

11.
Effects of substitution of vinyl groups of hemin with formyl groups on the optical and ligand binding properties of horse heart ferric myoglobin were investigated. The peak positions as well as the line shapes of the absorption spectra of the ferric derivatives of three kinds of formylmyoglobin, 2-vinyl-4-formyl-, 2-formyl-4-vinyl-, and 2,4-diformylmyoglobins depend on the number and the position of the formyl groups. Absorption maxima in the Soret region of the acid forms of these ferric formylmyoglobins in 0.1 M potassium phosphate buffer, pH 6.0, at 20 degrees were 415.2, 422, and 429 nm, respectively. The acid forms of these formylmyoglobins exhibit absorption spectra of the mixture of high- and low spin states at ambient temperature. Since proto-, deutero- and mesomyoglobins have a high spin state under the same condition, the increase of the low spin iron in these formylmyoglobins may be due to the strong electron withdrawal by the formyl groups toward the periphery of the porphyrin ring. The affinities of these ferric formylmyoglobins and protomyoglobin for N3-, F-, OCN-, and SCN- increased in the order of proto-, monoformyl-monovinyl-, 2,4-diformyl-myoglobin, which corresponds to the increasing order of electron-withdrawing power of the porphyrin side chains. The pKa values of the acid-alkaline transition decreased in the same order. Although the ferric forms of the two isomeric monoformyl-monovinylmyoglobins exhibited different optical spectra, the dissociation constants of the complexes of these isomers for various ligands were similar to each other. The pKa values of the acid-alkaline transition were also similar. These results indicate that affinities of ferric myoglobin for ligands, in contrast to those of the ferrous form for oxygen and carbon monoxide (Sono, M., and Asakura, T. (1975) J. Biol. Chem. 250, 5527-5232 and Sono, M., Smith, P.D., McCray, J.A., and Asakura, T. (1976) J. Biol. Chem 251, 1418-1426), are not affected by the position of modifications at the two vinyl groups, but are determinedby the number of the formyl groups and that two vinyl groups at position 2 and 4 are equivalent in the binding of various ligands by ferric myoglobin. The electron density of the ferric iron appears to be similar for the two isomeric monoformyl-monovinylmyoglobins.  相似文献   

12.
In order to investigate the effect of the alpha beta subunit contacts on the subunit structure of human adult methemoglobin, the hyperfine shifted proton NMR spectra of several high spin complexes (water, cyanate, thiocyanate, formate, fluoride, and nitrite) and low spin complexes (imisazole, azide, and cyanide) of hemoglobin and its isolated subunits were characterized at 220 MHz and 22 degrees C. The spectra of ferric low spin derivatives of the isolated subunits were approximately superimposable on the corresponding hemoglobin spectra. On the other hand, the high spin spectra of the isolated subunits were greatly different from each other. The spectral anomaly in the ferric high spin complexes of the isolated beta subunit were interpreted to indicate other structural change than the hemichrome formation in the beta heme pocket. Difference in the subunit association effect between the high and low spin complexes of the isolated beta subunit was interpreted on the basis of a conformational change of the apoprotein dependent on the spin state of the beta heme iron.  相似文献   

13.
Electron paramagnetic resonance (EPR) and optical spectra are used as probes of the heme and its ligands in ferric and ferrous leghemoglobin. The proximal ligand to the heme iron atom of ferric soybean leghemoglobin is identified as imidazole by comparison of the EPR of leghemoglobin hydroxide, azide, and cyanide with the corresponding derivatives of human hemoglobin. Optical spectra show that ferric soybean leghemoglobin near room temperature is almost entirely in the high spin state. At 77 K the optical spectrum is that of a low spin compound, while at 1.6 K the EPR is that of a low spin form resembling bis-imidazole heme. Acetate binds to ferric leghemoglobin to form a high spin complex as judged from the optical spectrum. The EPR of this complex is that of high spin ferric heme in a nearly axial environment. The complexes of ferrous leghemoglobin with substituted pyridines exhibit optical absorption maxima near 685 nm, whose absorption maxima and extinctions are strongly dependent on the nature of the substitutents of the pyridine ring; electron withdrawing groups on the pyridine ring shift the absorption maxima to lower energy. A crystal field analysis of the EPR of nicotinate derivatives of ferric leghemoblobin demonstrates that the pyridine nitrogen is also bound to the heme iron in the ferric state. These findings lead us to picture leghemoglobin as a somewhat flexible molecule in which the transition region between the E and F helices may act as a hinge, opening a small amount at higher temperature to a stable configuration in which the protein is high spin and can accommodate exogenous ligand molecules and closing at low temperature to a second stable configuration in which the protein is low spin and in which close approach of the E helix permits the distal histidine to become the principal sixth ligand.  相似文献   

14.
The UV-visible absorption and magnetic circular dichroism (MCD) spectra of the ferric, ferrous, CO-ligated forms and kinetic photolysis intermediates of the tetraheme electron-transfer protein cytochrome c3 (Cc3) are reported. Consistent with bis-histidinyl axial coordination of the hemes in this Class III c-type cytochrome, the Soret and visible region MCD spectra of ferric and ferrous Cc3 are very similar to those of other bis-histidine axially coordinated hemeproteins such as cytochrome b5. The MCD spectra indicate low spin state for both the ferric (S = 1/2) and ferrous (S = 0) oxidation states. CO replaces histidine as the axial sixth ligand at each heme site, forming a low-spin complex with an MCD spectrum similar to that of myoglobin-CO. Photodissociation of Cc3-CO (observed photolysis yield = 30%) produces a transient five-coordinate, high-spin (S = 2) species with an MCD spectrum similar to deoxymyoglobin. The recombination kinetics of CO with heme Fe are complex and appear to involve at least five first-order or pseudo first-order rate processes, corresponding to time constants of 5.7 microseconds, 62 microseconds, 425 microseconds, 2.9 ms, and a time constant greater than 1 s. The observed rate constants were insensitive to variation of the actinic photon flux, suggesting noncooperative heme-CO rebinding. The growing in of an MCD signal characteristic of bis-histidine axial ligation within tens of microseconds after photodissociation shows that, although heme-CO binding is thermodynamically favored at 1 atm CO, binding of histidine to the sixth axial site competes kinetically with CO rebinding.  相似文献   

15.
Magnetic circular dichroism spectra (MCD) of reduced cytochromes P450 and P420 from rabbit liver microsomes have been recorded and analyzed for the 350-600 nm spectral region in the temperature interval from 2 to 290 K. The shape, intensity and temperature dependence of the MCD of reduced P450 in the Soret region are quite different from that of other high-spin ferrous hemoproteins, whose heme iron is coordinated to the imidazole of histidine (deoxymyoglobin, deoxyhemoglobin, reduced peroxidase and cytochrome c oxidase). Assuming that in the reduced P450 as well as in its CO-complex the protein-derived ligand is mercaptide (RS-) the differences can be explained by the existence of two electronic transitions in the Soret region: the common for hemoproteins pi----pi porphyrin transition and sulfur to porphyrin charge-transfer transition, p+(Sp)----eg (pi). The unusual spectral characteristics of the CO-complex of P450 have been ascribed earlier to strong configurational interaction of these two transitions. From the similarities of the Soret MCD and their temperature dependences for the reduced P420 and for other high-spin ferrous hemoproteins one can conclude that heme iron of the reduced P420 is high-spin and is coordinated to the imidazole of histidine. The zero-field splitting parameter D of the spin Hamiltonian has been estimated from the MCD temperature dependences. The obtained splitting of approximately 30 cm-1 for P450 and of approximately 10 cm-1 for P420 exceeds that for myoglobin and hemoglobin (approximately 5 cm-1).  相似文献   

16.
T Shimizu  T Nozawa  M Hatano  Y Imai  R Sato 《Biochemistry》1975,14(19):4172-4178
Magnetic circular dichroism (MCD) spectra have been measured for cytochrome P-450 (P-450) purified from phenobarbital-induced rabbit liver microsomes. The temperature dependence of some of the MCD spectra has also been determined. The MCD spectrum of oxidized P-450 seems to suggest that it is in a state intermediate between the ferric low-spin states. Model experiments suggest that this anomaly arises from the coordination of a thiolate anion to the heme. Reduced P-450 shows a very peculiar MCD spectrum; the spectrum as well as its temperature dependence suggest that the heme in reduced P-450 is a "mixture" in terms of redox and/or spin states. The MCD spectrum of the CO complex of reduced P-450 exhibits an apparent Faraday A term around 450 nm which consists of about 50% C term and 50% the other terms, indicating that it is not in a purely ferrous low-spin state. The CO complex of reduced cytochrome P-420 (P-420), on the other hand, shows an MCD spectrum characteristic of a ferrous low-spin heme. It is suggested from model experiments that the thiolate anion coordinates to the heme trans to CO in the P-450-CO complex. The Soret region of the MCD spectrum of the EtNC complex of reduced P-450 is characterized by two apparent A terms around 430 and 455 nm, whereas that of the corresponding complex of P-420 has only one apparent A term around 434 nm.  相似文献   

17.
Ground state near-infrared absorption spectra of fully reduced unliganded and fully reduced CO (a2+ CuA+ a3(2+)-CO CuB+) cytochrome c oxidase were investigated. Flash-photolysis time-resolved absorption difference spectra of the mixed-valence (a3+ CuA2+ a3(2+)-CO CuB+) and the fully reduced CO complexes were also studied. A band near 785 nm (epsilon approximately 50 M-1cm-1) was observed in the fully reduced unliganded enzyme and the CO photoproducts. The time-resolved 785 nm band disappeared on the same timescale (t1/2 approximately 7 ms) as CO recombined with cytochrome a3(2+). This band, which is attributed to the unliganded five coordinate ferrous cytochrome a3(2+), has some characteristics of band III in deoxy-hemoglobin and deoxy-myoglobin. A second band was observed at approximately 710 nm (epsilon approximately 80 M-1cm-1) in the fully reduced unliganded and the fully reduced CO complexes. This band, which we assign to the low spin ferrous cytochrome a, appears to be affected by the ligation state at the cytochrome a3(2+) site.  相似文献   

18.
The magnetic circular dichroism (MCD) properties of numerous oxidation and ligation state derivatives of myoglobin and horseradish peroxidase reconstituted with an iron octa-alkylporphyrin (mesoheme IX) have been investigated in order to establish the utility of such porphyrins as models for protoporphyrin IX-containing systems. The MCD spectra of the mesoheme-reconstituted proteins are blue-shifted (4-12 nm) and are somewhat more intense (1.5-2.5 fold) when compared to the spectra of analogous derivatives of native myoglobin and horseradish peroxidase. However, the spectral band patterns of the mesoheme-reconstituted proteins closely resemble those of the native proteins in essentially all cases. These data demonstrate that octa-alkylporphyrins can be productively used as models for protoporphyrin IX in studies of heme proteins with MCD spectroscopy.  相似文献   

19.
UV-visible absorption and magnetic circular dichroism (MCD) data are reported for the cavity mutants of sperm whale H93G myoglobin and human H25A heme oxygenase in their ferric states at 4 degreesC. Detailed spectral analyses of H93G myoglobin reveal that its heme coordination structure has a single water ligand at pH 5.0, a single hydroxide ligand at pH 10.0, and a mixture of species at pH 7.0 including five-coordinate hydroxide-bound, and six-coordinate structures. The five-coordinate aquo structure at pH 5 is supported by spectral similarity to acidic horseradish peroxidase (pH 3.1), whose MCD data are reported herein for the first time, and acidic myoglobin (pH 3.4), whose structures have been previously assigned by resonance Raman spectroscopy. The five-coordinate hydroxide structure at pH 10.0 is supported by MCD and resonance Raman data obtained here and by comparison with those of other known five-coordinate oxygen donor complexes. In particular, the MCD spectrum of alkaline ferric H93G myoglobin is strikingly similar to that of ferric tyrosinate-ligated human H93Y myoglobin, whose MCD data are reported herein for the first time, and that of the methoxide adduct of ferric protoporphyrin IX dimethyl ester (FeIIIPPIXDME). Analysis of the spectral data for ferric H25A heme oxygenase at neutral pH in the context of the spectra of other five-coordinate ferric heme complexes with proximal oxygen donor ligands, in particular the p-nitrophenolate and acetate adducts of FeIIIPPIXDME, is most consistent with ligation by a carboxylate group of a nearby glutamyl (or aspartic) acid residue.  相似文献   

20.
Magnetic circular dichroism (MCD) spectra have been recorded for beef heart cytochrome oxidase and a number of its inhibitor complexes. The resting enzyme exhibits a derivate shape Faraday C term in the Soret region, characteristic of low spin ferric heme, which accounts for 50% of the total oxidase heme a. The remaining heme a (50%) is assigned to the high spin state. MCD temperature studies, comparison with the MCD spectra of heme a-imidazole model compounds, and ligand binding (cyanide, formate) studies are consistent with these spin state assignments in the oxidized enzyme. Furthermore, the ligand binding properties and correlations between optical and MCD parameters indicate that in the resting enzyme the low spin heme a is due solely to cytochrome a3+ and the high spin heme a to cytochrome a33+. The Soret MCD of the reduced protein is interpreted as th sum of two MCD curves: an intense, asymmetric MCD band very similar to that exhibited by deoxymyoglobin which we assign to paramagnetic high spin cytochrome a3(2+) and a weaker, more symmetric MCD contribution, which is attributed to diamagnetic low spin cytochrome a2+. Temperature studies of the Soret MCD intensity support this proposed spin state heterogeneity. Ligand binding (CO, CN-) to the reduced protein eliminates the intense MCD associated with high spin cytochrome a3(2+); however, the band associated with cytochrome a2+ is observed under these conditions as well as in a number of inhibitor complexes (cyanide, formate, sulfide, azide) of the partially reduced protein. The MCD spectra of oxidized, reduced, and inhibitor-complexed cytochrome oxidase show no evidence for heme-heme interaction via spectral parameters. This conclusion is used in conjunction with the fact that ferric, high spin heme exhibits weak MCD intensity to calculate the MCD spectra for the individual cytochromes of the oxidase as well as the spectra for some inhibitor complexes of cytochrome a3. The results are most simply interpreted using the model we have recently proposed to account for the electronic and magnetic properties of cytochrome (Palmer, G., Babcock, F.T., and Vcikery, L.E. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 2206-2210).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号