首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To study a possible adaptation of the symbiosis between white clover (Trifolium repens L.) and Rhizobium leguminosarum biovar trifolii with regard to light and temperature at northern latitudes, local seed populations of white clover and isolates of R. leguminosarum biovar trifolii from 3 different latitudes in Norway, 58°48'N, 67°20'N and 69°22'N, were used. The commercial cultivar Undrom was used as a reference plant. The experiments were done at 18 and 9°C under controlled conditions in a phytotron during the natural growing season at 69° 39'N. Growth of the plants was evaluated by number and size of leaves, dry matter production and total N-content. At 18°C the white clover plants were harvested twice while at 9°C there was only one growth period. The results from first harvest at 18°C and total growth at 9°C, showed that white clover populations from northern Norway had a lower growth potential than the population from the south and cv. Undrom. This difference was not apparent in the second growth period at 18°C. Growth of the plants from seeds to first harvest was enhanced by mineral nitrogen compared to plants dependent on Rhizobium only. However, after a second growth period dry weight and total nitrogen content of the plants with nitrogen fixation were comparable to the plants receiving mineral nitrogen. Statistical analysis showed that the most important factor for the variation in dry matter production was the plant population. Within the populations at 9°C and at first harvest at 18°C, there were no significant differences in dry matter production with different Rhizobium inoculum. In the second growth period at 18°C, different inoculum gave significantly different amount of dry matter within a population. The results showed a significant interaction between plant population and Rhizobium inoculum, and the results indicated that plants from the north gave higher yield when nodulated by Rhizobium from the north than from the south.  相似文献   

2.
 Ryegrass, white clover and Rhizobium isolated from the corresponding clover nodules, were harvested from a natural pasture in the Massif Central mountains (France). The specificity between Lolium, Trifolium and Rhizobium, and the genetic diversity of Rhizobium were examined. This study showed that: 1) Natural neighbouring combinations of white clover and ryegrass, re-planted together in pots, accumulated a higher biomass than non-neighbouring ones. This increase of mass is higher in the presence of the native strain of Rhizobium. 2) When white clover was inoculated with a mixture of Rhizobium strains, nodules were more often formed by its native strain. 3) The genetical diversity of the Rhizobium leguminosarum biovar trifolii was very high, as revealed by electrophoresis of esterases on seven substrates. These results support the hypothesis that there is a co-adaptation between white clover, ryegrass and Rhizobium Received: 25 March 1996 / Accepted: 13 September 1996  相似文献   

3.
Spontaneous mutants of Rhizobium trifolii 24AR5 which did not produce exopoly-saccharide were isolated. The non-mucoid mutants formed small white and ineffective nodules on both red and white clover. These nodules contained infection threads, but only a small number of bacteria were released into nodule cells, and bacteroids were rarely observed. The non-mucoid phenotype was not complemented by the symbiotic plasmid (pJB5JI) of Rhizobium leguminosarum.  相似文献   

4.
Thirty one strains of Rhizobium leguminosarum biovar trifolii isolated from the North and South American continents, New Guinea, USSR, Turkey and Australia, nodulated P. andersonii ineffectively when grown in plant growth tubes and in Leonard jars. Nodules were slow to form, sometimes taking over 100 days. Reisolates of R. leguminosarum biovar trifolii from P. andersonii nodulated Trifolium repens and their identity was confirmed using serological techniques. Dual occupation of nodules by Rhizobium and Bradyrhizobium in P. andersonii is reported. The reduced effectiveness of the Bradyrhizobium symbiosis depended on the relative numbers of Rhizobium occupants in this dual system. R. leguminosarum biovar trifolii and Bradyrhizobium strains from Parasponia were able to co-exist in nodules on P. andersonii and maintain similar populations in the rhizosphere and on culture media. Bradyrhizobium strains, separated from R. leguminosarum biovar trifolii, were able to initiate and form nodule-like structures on T. repens. Bradyrhizobium bacteria were identified as the sole occupants of the cells of the nodule-like structures on Trifolium repens using an immunogold labelling technique applied to ultrathin sectins. The re-isolates of Bradyrhizobium obtained from these nodule-like structures on T. repens were able to effectively nodulate P. andersonii.  相似文献   

5.
Abstract Plasmid-minus derivatives of Rhizobium leguminosarum biovar trifolii have been isolated. Cured strains lacked symbiotic properties, however they showed increased heavy metal resistance. In the presence of 70 ppm chromium the parent strain, unlike cured derivatives, is unable to grow explanta but can nevertheless nodulate clover.
We propose that rhizobia can circumvent exposure to the heavy metal by entering the plant roots.
Acetylene reduction tests showed that nodulated plants, grown in the presence of 10 ppm of chromium, had an increased nitrogenase activity compared to the control plants.  相似文献   

6.
7.
The Rhizobium leguminosarum bv trifolii exoB gene has been isolated by heterologous complementation of an exoB mutant of R. meliloti. We have cloned a chromosomal DNA fragment from the R. leguminosarum bv trifolii genome that contains an open reading frame of 981 bp showing 80% identity at the amino acid level to the UDP-glucose 4-epimerase of R. meliloti. This enzyme produces UDP-galactose, the donor of galactosyl residues for the lipid-linked oligosaccharide repeat units of various heteropolysaccharides of rhizobia. An R. leguminosarum bv trifoliiexoB disruption mutant differed from the wild type in the structure of both the acidic exopolysaccharide and the lipopolysaccharide. The acidic exopolysaccharide made by our wild-type strain is similar to the Type 2 exopolysaccharide made by other R. leguminosarum bv trifolii wild types. The exopolysaccharide made by the exoB mutant lacked the galactose residue and the substitutions attached to it. The exoB mutant induced the development of abnormal root nodules and was almost completely unable to invade plant cells. Our results stress the importance of exoB in the Rhizobium-plant interaction. Received: 31 May 1996 / Accepted: 18 December 1996  相似文献   

8.
Abstract After the introduction of Rhizobium leguminosarum biovar trifolii into a loamy sand and a silt loam, high recovery percentages were determined using quantitative immunofluorescence. Soil type, but not inoculum density between 104 and 108 cells per gram of soil, significantly influenced the recovery percentage of the immunofluorescence technique. Recovery percentages determined using selective plating were independent of either soil type or inoculum density and exceeded those determined by immunofluorescence.
The serological and genetic markers used for detection were stable during 55 days of incubation in phosphate-buffered saline and soil extract solution. After the introduction of R. leguminosarum biovar trifolii into both sterilized soil types, the population increased to 0.5–1×109 cells per gram of soil, but a decline was demonstrated in non-sterile loamy sand and silt loam during incubation of 90 days at 15°C. Starvation of rhizobial cells in the phosphate-buffered saline and soil extract solution, as well as incubation in both soil types, resulted in a significant decrease in mean cell size.  相似文献   

9.
Yanni  Youssef G.  Rizk  R.Y.  Corich  V.  Squartini  A.  Ninke  K.  Philip-Hollingsworth  S.  Orgambide  G.  de Bruijn  F.  Stoltzfus  J.  Buckley  D.  Schmidt  T.M.  Mateos  P.F.  Ladha  J.K.  Dazzo  Frank B. 《Plant and Soil》1997,194(1-2):99-114
For over 7 centuries, production of rice (Oryza sativa L.) in Egypt has benefited from rotation with Egyptian berseem clover (Trifolium alexandrinum). The nitrogen supplied by this rotation replaces 25- 33% of the recommended rate of fertilizer-N application for rice production. This benefit to the rice cannot be explained solely by an increased availability of fixed N through mineralization of N- rich clover crop residues. Since rice normally supports a diverse microbial community of internal root colonists, we have examined the possibility that the clover symbiont, Rhizobium leguminosarum bv. trifolii colonizes rice roots endophytically in fields where these crops are rotated, and if so, whether this novel plant-microbe association benefits rice growth. MPN plant infection studies were performed on macerates of surface-sterilized rice roots inoculated on T. alexandrinum as the legume trap host. The results indicated that the root interior of rice grown in fields rotated with clover in the Nile Delta contained 106 clover-nodulating rhizobial endophytes g fresh weight of root. Plant tests plus microscopical, cultural, biochemical, and molecular structure studies indicated that the numerically dominant isolates of clover-nodulating rice endophytes represent 3 – 4 authentic strains of R. leguminosarum bv. trifolii that were Nod Fix on berseem clover. Pure cultures of selected strains were able to colonize the interior of rice roots grown under gnotobiotic conditions. These rice endophytes were reisolated from surface-sterilized roots and shown by molecular methods to be the same as the original inoculant strains, thus verifying Koch's postulates. Two endophytic strains of R. leguminosarum bv. trifolii significantly increased shoot and root growth of rice in growth chamber experiments, and grain yield plus agronomic fertilizer N-use efficiency of Giza-175 hybrid rice in a field inoculation experiment conducted in the Nile Delta. Thus, fields where rice has been grown in rotation with clover since antiquity contain Fix strains of R. leguminosarum bv. trifolii that naturally colonize the rice root interior, and these true rhizobial endophytes have the potential to promote rice growth and productivity under laboratory and field conditions.  相似文献   

10.
A collection of 121 isolates of Rhizobium leguminosarum biovar (bv.) trifolii was obtained from root nodules of Trifolium subterraneum L. (subclover) plants growing in an established pasture. The collection consisted of a single isolate from each of 18 plants sampled from seven microplots. The following year, a further 28 and 27 isolates were collected from the first and seventh sampling points, respectively. Analysis of restriction fragment length polymorphisms (RFLPs) of both chromosomal and Sym (symbiotic) plasmid DNA and multilocus enzyme electrophoresis (MLEE) were used to assess the diversity, genetic relationships and structure of this population. Symbiotic effectiveness tests were used to examine the symbiotic phenotype of each isolate collected in the first year. Analysis of RFLPs of the first year isolates revealed 13 chromosomal types and 25 Sym plasmid types. Similar Sym plasmid types were grouped into 14 families containing 1–6 members. No new chromosomal types and six new Sym plasmid types were detected in the second year. The symbiotic effectiveness of the first year isolates of the same Sym plasmid type was similar. Significant differences in symbiotic effectiveness were detected between different Sym plasmid types in the same plasmid family. Representative isolates of each chromosomal type Sym plasmid type identified in the first year were analysed using multilocus enzyme electrophoresis. Mean genetic diversity per locus was high (0.559). Enzyme electrophoresis revealed 17 electrophoretic types (ETs). Ouster analysis of the enzyme data revealed large genetic diversity amongst the ETs. Strong linkage disequilibrium was observed for the population as a whole, i.e. clonal population structure, but significantly less disequilibrium was observed among a cluster of ETs suggesting that recombination occurred between ETs within the cluster. Our results revealed that a population of naturally occurring isolates of Rhizobium leguminosarum bv. trifolii can be genetically diverse and support the possibility that recombination plays a role in generating new genotypes.  相似文献   

11.
Mutch LA  Young JP 《Molecular ecology》2004,13(8):2435-2444
The symbiotic partnerships between legumes and their root-nodule bacteria (rhizobia) vary widely in their degree of specificity, but the underlying reasons are not understood. To assess the potential for host-range evolution, we have investigated microheterogeneity among the shared symbionts of a group of related legume species. Host specificity and genetic diversity were characterized for a soil population of Rhizobium leguminosarum biovar viciae (Rlv) sampled using six wild Vicia and Lathyrus species and the crop plants pea (Pisum sativum) and broad bean (Vicia faba). Genetic variation among 625 isolates was assessed by restriction fragment length polymorphism (RFLP) of loci on the chromosome (ribosomal gene spacer) and symbiosis plasmid (nodD region). Broad bean strongly favoured a particular symbiotic genotype that formed a distinct phylogenetic subgroup of Rlv nodulation genotypes but was associated with a range of chromosomal backgrounds. Host range tests of 80 isolates demonstrated that only 34% of isolates were able to nodulate V. faba. By contrast, 89% were able to nodulate all the local wild hosts tested, so high genetic diversity of the rhizobial population cannot be ascribed directly to the diversity of host species at the site. Overall the picture is of a population of symbionts that is diversified by plasmid transfer and shared fairly indiscriminately by local wild legume hosts. The crop species are less promiscuous in their interaction with symbionts than the wild legumes.  相似文献   

12.
13.
From several native clover species, growing in six different soil types, 170 Rhizobium leguminosarum biovar trifolii strains were isolated, covering the central and southern regions of Portugal. The effectiveness of the strains varied from ineffective to highly effective on T. subterraneum cv. Clare and on T. fragiferum cv. Palestine, with a predominance of medium and high effectiveness on both host plants. The effectiveness was not influenced by provenence (soil or plant), except for the strains from the rankers soils and for the strains isolated from T. pratense, that were ineffective or medium effective on T. subterraneum.Selected strains were evaluated for effectiveness on T. subterraneum cv. Clare, using the commercial strain TA1 as reference. Several of the isolated strains were more effective than TA1, indicating that local strains may be used to produce better inoculants.  相似文献   

14.
15.
Effects of mineral nitrogen (2, 4, 6 and 8 m M NH4NO3) and nodulation with Rhizobium on frost hardiness in seedlings of white clover ( Trifolium repens ) have been studied. Seedlings of a population from Bodø (67°N lat.) were grown in Leonard jars under controlled conditions in a phytotron. For induction of frost hardening, plants were first exposed to 12 h photoperiod conditions for 2 weeks at 18°C, then for 2 weeks at 6°C and finally for 2 weeks at 0.5°C. Frost hardiness after treatments at 6 and 0.5°C was significantly enhanced by increasing nitrogen supply and was positively correlated with total nitrogen content of the stolons. Frost hardiness of nodulated plants correlated to the tissue nitrogen concentration. Content of soluble proteins in stolons decreased during hardening at 6°C but did not change during treatment at 0.5°C. There were minor changes in total amount of free amino acids during hardening. Both absolute and relative amounts of proline and arginine increased, and those of asparagine decreased during hardening. Absolute amounts of all free amino acids increased with increasing nitrogen supply, but the changes during hardening were similar in all treatments. There was a significant increase in the content of soluble carbohydrates during hardening. However, this increase was inversely related to nitrogen supply.  相似文献   

16.
Rhizobium leguminosarum biovar trifolii TA1 grows on 4-hydroxymandelate and enzymes involved in its catabolism are inducible. Strain TA1 does not grown on mandelate or cis, cis-muconate, but spontaneous mutants capable of growth on these substrates were isolated. Enzymes involved in mandelate degradation were also inducible. The presence of intermediates of the mandelate and hydroxymandelate pathways resulted in a significant decrease in some of the enzymes involved in their degradation. Succinate and acetate, end products of the pathways, and glucose caused reductions in the levels of enzymes in the mandelate and hydroxymandelate pathways.  相似文献   

17.
We have isolated 48 strains of Rhizobium leguminosarum biovar phaseoli from nodules of Phaseolus vulgaris L. cultivated on 32 different soils at 22 various locations in Rwanda, Central Africa. The symbiotic effectiveness of the strains was appraised in the greenhouse by measuring shoots dry matter and total plant nitrogen content after six weeks of growth. Of the strains tested 19%, 58% and 23% were rated very effective, effective and ineffective, respectively. A very significant correlation (r=0.96, P<0.01) was observed between shoots dry matter and total N content. By using the total nitrogen balance method, it was estimated that in the presence of a very effective strain, up to 86% of the N present in the shoots comes from N2 fixation. No significant correlations were observed between the symbiotic effectiveness of the strains and the pH of the soils from which they originated, the tolerance of the strains to acidity or their ability to produce organic acids. The nine very effective strains selected were highly competitive against two ineffective strains with the two P. vulgaris cultivars Rubona-5 and Kiryumukwe.Contribution no 367, Station de recherches, Agriculture Canada.Contribution no 367, Station de recherches, Agriculture Canada.  相似文献   

18.
Abstract: The role of plasmids in the saprophytic growth of Rhizobium is mostly unknown. Plasmid-cured and complemented derivatives of R. leguminosarum bv. trifolii strain W14-2 were used to investigate the role of plasmids in the growth of this strain in sterile soil incubated under favorable moisture and temperature conditions. Strain W14-2 contains four plasmids ( a,b,c,d ). Absence of single plasmids in plasmid-cured derivatives generally did not reduce growth in soil when compared to the wild-type but absence of plasmid a delayed growth. Derivatives were unable to grow in soil when only plasmids a or d were present in cells. When only plasmids b or c were present, growth was delayed and the final population in 7 days was approximately 10% of the wild-type population. When the wild-type was co-inoculated at equal population into soil with derivatives lacking plasmids a , c , or d, the population of the wild-type at 7 days incubation was approximately 10 times larger than those of the derivatives. Elimination of only plasmid b did not reduce the ability of the strain to grow in soil when competing with the wild-type. Plasmids were involved in saprophytic growth of strain W14-2 in soil and may be important to the ecology of Rhizobium .  相似文献   

19.
The variability of the developmental responses of two contrasting cultivars of pea (Pisum sativum) was studied in relation to the genetic diversity of their nitrogen-fixing symbiont Rhizobium leguminosarum bv. viciae. A sample of 42 strains of pea rhizobia was chosen to represent 17 genotypes predominating in indigenous rhizobial populations, the genotypes being defined by the combination of haplotypes characterized with rDNA intergenic spacer and nodD gene regions as markers. We found contrasting effects of the bacterial genotype, especially the nod gene type, on the development of nodules, roots and shoots. A bacterial nod gene type was identified that induced very large, branched nodules, smaller nodule numbers, high nodule biomass, but reduced root and aerial part development. The plants associated with this genotype accumulated less N in shoots, but N concentration in leaves was not affected. The results suggest that the plant could not control nodule development sustaining the energy demand for nodule functioning and its optimal growth. The molecular and physiological mechanisms that may be involved are discussed.  相似文献   

20.
Summary Spontaneous nodules developed on the roots of white clover (Trifolium repens cv. Ladino) in the absence ofRhizobium. A small subpopulation of uninoculated clover plants (0.2%) exhibited white, single-to-multilobed elongated structures on their root systems when grown without fixed nitrogen. Clonal propagation using aseptic stolons confirmed the genetic stability of the observation. Few if any viable bacteria of unknown origin were recovered from surfacesterilized structures. Nodule contents were incapable of eliciting nodulation. Histological observations showed that these structures possessed all the characteristic features of indeterminate nodules, such as active meristem, cortex, endodermal layer, vascular strands, and a central zone with parenchyma cells. Infection threads, intercellular or intracellular bacteria were absent. Instead, numerous starch grains were observed in the central zone, a feature absent in normal nitrogen-fixing nodules. Our observation broadens the concept of spontaneous nodulation, believed to be restricted to alfalfa (Medicago sativa), to other legumes, and suggests a degree of generality among indeterminately nodulated legumes displaying natural heterozygosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号