首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avian and rodent malaria sporozoites selectively invade different vertebrate cell types, namely macrophages and hepatocytes, and develop in distantly related vector species. To investigate the role of the circumsporozoite (CS) protein in determining parasite survival in different vector species and vertebrate host cell types, we replaced the endogenous CS protein gene of the rodent malaria parasite Plasmodium berghei with that of the avian parasite P. gallinaceum and control rodent parasite P. yoelii. In anopheline mosquitoes, P. berghei parasites carrying P. gallinaceum and rodent parasite P. yoelii CS protein gene developed into oocysts and sporozoites. Plasmodium gallinaceum CS expressing transgenic sporozoites, although motile, failed to invade mosquito salivary glands and to infect mice, which suggests that motility alone is not sufficient for invasion. Notably, a percentage of infected Anopheles stephensi mosquitoes showed melanotic encapsulation of late stage oocysts. This was not observed in control infections or in A. gambiae infections. These findings shed new light on the role of the CS protein in the interaction of the parasite with both the mosquito vector and the rodent host.  相似文献   

2.
The circumsporozoite protein (CSP) plays a key role in malaria sporozoite infection of both mosquito salivary glands and the vertebrate host. The conserved Regions I and II have been well studied but little is known about the immunogenic central repeat region and the N-terminal region of the protein. Rodent malaria Plasmodium berghei parasites, in which the endogenous CS gene has been replaced with the avian Plasmodium gallinaceum CS (PgCS) sequence, develop normally in the A. stephensi mosquito midgut but the sporozoites are not infectious. We therefore generated P. berghei transgenic parasites carrying the PgCS gene, in which the repeat region was replaced with the homologous region of P. berghei CS (PbCS). A further line, in which both the N-terminal region and repeat region were replaced with the homologous regions of PbCS, was also generated. Introduction of the PbCS repeat region alone, into the PgCS gene, did not rescue sporozoite species-specific infectivity. However, the introduction of both the PbCS repeat region and the N-terminal region into the PgCS gene completely rescued infectivity, in both the mosquito vector and the mammalian host. Immunofluorescence experiments and western blot analysis revealed correct localization and proteolytic processing of CSP in the chimeric parasites. The results demonstrate, in vivo, that the repeat region of P. berghei CSP, alone, is unable to mediate sporozoite infectivity in either the mosquito or the mammalian host, but suggest an important role for the N-terminal region in sporozoite host cell invasion.  相似文献   

3.
The malaria parasite sporozoite sequentially invades mosquito salivary glands and mammalian hepatocytes; and is the Plasmodium lifecycle infective form mediating parasite transmission by the mosquito vector. The identification of several sporozoite-specific secretory proteins involved in invasion has revealed that sporozoite motility and specific recognition of target cells are crucial for transmission. It has also been demonstrated that some components of the invasion machinery are conserved between erythrocytic asexual and transmission stage parasites. The application of a sporozoite stage-specific gene knockdown system in the rodent malaria parasite, Plasmodium berghei, enables us to investigate the roles of such proteins previously intractable to study due to their essentiality for asexual intraerythrocytic stage development, the stage at which transgenic parasites are derived. Here, we focused on the rhoptry neck protein 11 (RON11) that contains multiple transmembrane domains and putative calcium-binding EF-hand domains. PbRON11 is localised to rhoptry organelles in both merozoites and sporozoites. To repress PbRON11 expression exclusively in sporozoites, we produced transgenic parasites using a promoter-swapping strategy. PbRON11-repressed sporozoites showed significant reduction in attachment and motility in vitro, and consequently failed to efficiently invade salivary glands. PbRON11 was also determined to be essential for sporozoite infection of the liver, the first step during transmission to the vertebrate host. RON11 is demonstrated to be crucial for sporozoite invasion of both target host cells – mosquito salivary glands and mammalian hepatocytes – via involvement in sporozoite motility.  相似文献   

4.
5.
Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans.  相似文献   

6.
Gametocytes are the intraerythrocytic stages of malaria parasites that infect mosquitoes. When gametocytes of the chicken malaria parasite Plasmodium gallinaceum are ingested by a mosquito they become extracellular in the mosquito midgut, form gametes, and fertilize within 10 to 15 min after the insect has taken a blood meal. Gametocytes of P. gallinaceum were infectious when fed to Aedes aegypti mosquitoes in blood meals containing native serum from chickens or from the non-host species, man or sheep. Gametocytes stimulated to undergo gametogenesis and to fertilize in vitro were also infectious when fed to mosquitoes in native chicken serum. However, native serum from most non-host species, including sheep and man, suppressed the infectivity of newly fertilized zygotes to mosquitoes and lysed the zygotes in vitro. These effects were shown to be due to the activity of the alternative pathway of complement (APC) in the serum of the non-host species. After mild trypsin treatment, the zygotes of P. gallinaceum no longer infected mosquitoes in the presence of native chicken serum, although in heat-inactivated chicken serum their infectivity was normal. We conclude that trypsin-sensitive components on the zygotes surface protect them from destruction by the APC of their native host. The ability of gametocytes of P. gallinaceum to infect mosquitoes in the presence of native human serum is probably due to proteases that inactivate the APC of human serum before the gametes and zygotes emerge as extracellular parasites in the blood meal.  相似文献   

7.
The role of species interactions in structuring parasite communities remains controversial. Here, we show that interspecific competition between two avian malaria parasite species, Plasmodium gallinaceum and P. juxtanucleare, occurs as a result of interference during parasite fertilization within the bloodmeal of the mosquito. The significant reduction in the transmission success of P. gallinaceum to mosquitoes, due to the co-infecting P. juxtanucleare, is predicted to have compromised its colonization of regions occupied by P. juxtanucleare and, thus, may have contributed to the restricted global distribution of P. gallinaceum. Such interspecies interactions may occur between human malaria parasites and, thus, impact upon parasite species epidemiology, especially in regions of seasonal transmission.  相似文献   

8.
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.  相似文献   

9.
10.
The malaria parasite sporozoite transmission stage develops and differentiates within parasite oocysts on the Anopheles mosquito midgut. Successful inoculation of the parasite into a mammalian host is critically dependent on the sporozoite's ability to first infect the mosquito salivary glands. Remarkable changes in tissue infection competence are observed as the sporozoites transit from the midgut oocysts to the salivary glands. Our microarray analysis shows that compared to oocyst sporozoites, salivary gland sporozoites upregulate expression of at least 124 unique genes. Conversely, oocyst sporozoites show upregulation of at least 47 genes (upregulated in oocyst sporozoites [UOS genes]) before they infect the salivary glands. Targeted gene deletion of UOS3, encoding a putative transmembrane protein with a thrombospondin repeat that localizes to the sporozoite secretory organelles, rendered oocyst sporozoites unable to infect the mosquito salivary glands but maintained the parasites' liver infection competence. This phenotype demonstrates the significance of differential UOS expression. Thus, the UIS-UOS gene classification provides a framework to elucidate the infectivity and transmission success of Plasmodium sporozoites on a whole-genome scale. Genes identified herein might represent targets for vector-based transmission blocking strategies (UOS genes), as well as strategies that prevent mammalian host infection (UIS genes).  相似文献   

11.
12.
The malarial parasite has two hosts in its life cycle, a vertebrate and a mosquito. We report here that malarial invasion into these hosts is mediated by a protein, designated cell-traversal protein for ookinetes and sporozoites (CelTOS), which is localized to micronemes that are organelles for parasite invasive motility. Targeted disruption of the CelTOS gene in Plasmodium berghei reduced parasite infectivity in the mosquito host approximately 200-fold. The disruption also reduced the sporozoite infectivity in the liver and almost abolished its cell-passage ability. Liver infectivity was restored in Kupffer cell-depleted rats, indicating that CelTOS is necessary for sporozoite passage from the circulatory system to hepatocytes through the liver sinusoidal cell layer. Electron microscopic analysis revealed that celtos-disrupted ookinetes invade the midgut epithelial cell by rupturing the cell membrane, but then fail to cross the cell, indicating that CelTOS is necessary for migration through the cytoplasm. These results suggest that conserved cell-passage mechanisms are used by both sporozoites and ookinetes to breach host cellular barriers. Elucidation of these mechanisms might lead to novel antimalarial strategies to block parasite's transmission.  相似文献   

13.
Malaria is contracted when Plasmodium sporozoites are inoculated into the vertebrate host during the blood meal of a mosquito. In infected mosquitoes, sporozoites are present in large numbers in the secretory cavities of the salivary glands at the most distal site of the salivary system. However, how sporozoites move through the salivary system of the mosquito, both in resting and feeding mosquitoes, is unknown. Here, we observed fluorescent Plasmodium berghei sporozoites within live Anopheles stephensi mosquitoes and their salivary glands and ducts. We show that sporozoites move in the mosquito by gliding, a type of motility associated with their capacity to invade host cells. Unlike in vitro, sporozoite gliding inside salivary cavities and ducts is modulated in speed and motion pattern. Imaging of sporozoite discharge through the proboscis of salivating mosquitoes indicates that sporozoites need to locomote from cavities into ducts to be ejected and that their progression inside ducts favours their early ejection. These observations suggest that sporozoite gliding allows not only for cell invasion but also for parasite locomotion in host tissues, and that it may control parasite transmission.  相似文献   

14.
ABSTRACT. Monoclonal antibodies that react with the circumsporozoite protein of the avian malaria Plasmodium gallinaceum sporozoites also reacted with circumsporozoite protein of the rodent malaria Plasmodium berghei. Two types of reactivity were identified: 1) two monoclonal antibodies reacted with P. berghei sporozoite protein by enzyme-linked immunosorbent assay, Western blot and indirect immunofluorescence antibody, 2) six other monoclonal antibodies reacted with P. berghei sporozoites by ELISA and Western blot only. We studied whether these differences could be explained by reactivity in enzyme-linked immunosorbent assay with different P. berghei circumsporozoite peptides. Although all P. gallinaceum monoclonal antibodies reacted with the P. berghei repeats, the first group reacted with a conserved peptide sequence, N1, whereas the second group did not. These results suggest that circumsporozoite proteins from P. gallinaceum and P. berghei share common epitopes. the biological significance of our finding is not yet clear. Indeed, the cross-reactive monoclonal antibodies giving a positive indirect immunofluorescence antibody with the P. berghei sporozoites only caused a borderline effect on the living P. berghei parasites in vitro as measured by inhibition of sporozoite infectivity.  相似文献   

15.
Plasmodium sporozoites, the transmission form of the malaria parasite, successively invade salivary glands in the mosquito vector and the liver in the mammalian host. Sporozoite capacity to invade host cells is mechanistically related to their ability to glide on solid substrates, both activities depending on the transmembrane protein TRAP. Here, we show that loss-of- function mutations in two adhesive modules of the TRAP ectodomain, an integrin-like A-domain and a thrombospondin type I repeat, specifically decrease sporozoite invasion of host cells but do not affect sporozoite gliding and adhesion to cells. Irrespective of the target cell, i.e. in mosquitoes, rodents and cultured human or hamster cells, sporozoites bearing mutations in one module are less invasive, while those bearing mutations in both modules are non-invasive. In Chinese hamster ovary cells, the TRAP modules interact with distinct cell receptors during sporozoite invasion, and thus act as independently active pass keys. As these modules are also present in other members of the TRAP family of proteins in Apicomplexa, they may account for the capacity of these parasites to enter many cell types of phylogenetically distant origins.  相似文献   

16.
The circumsporozoite protein of Plasmodium falciparum contains two conserved motifs (regions I and II) that have been proposed to interact with mosquito and vertebrate host molecules in the process of sporozoite invasion of salivary glands and hepatocytes, respectively. To study the function of this protein we have replaced the endogenous circumsporozoite protein gene of Plasmodium berghei with that of P. falciparum and with versions lacking either region I or region II. We show here that P. falciparum circumsporozoite protein functions in rodent parasite and that P. berghei sporozoites carrying the P. falciparum CS gene develop normally, are motile, invade mosquito salivary glands, and infect the vertebrate host. Region I-deficient sporozoites showed no impairment of motility or infectivity in either vector or vertebrate host. Disruption of region II abolished sporozoite motility and dramatically impaired their ability to invade mosquito salivary glands and infect the vertebrate host. These data shed new light on the role of the CS protein in sporozoite motility and infectivity.  相似文献   

17.
Research on Plasmodium sporozoite biology aims at understanding the developmental program steering the formation of mature infectious sporozoites - the transmission stage of the malaria parasite. The recent identification of genes that are vital for sporozoite egress from oocysts and subsequent targeting and transmigration of the mosquito salivary glands allows the identification of mosquito factors required for life cycle completion. Mature sporozoites appear to be equipped with the entire molecular repertoire for successful transmission and subsequent initiation of liver stage development. Innovative malaria intervention strategies that target the early, non-pathogenic phases of the life cycle will crucially depend on our insights into sporozoite biology and the underlying molecular mechanisms that lead the parasite from the mosquito midgut to the liver.  相似文献   

18.
Plasmodium vivax in southern Mexico exhibits different infectivities to 2 local mosquito vectors, Anopheles pseudopunctipennis and Anopheles albimanus. Previous work has tied these differences in mosquito infectivity to variation in the central repeat motif of the malaria parasite's circumsporozoite (csp) gene, but subsequent studies have questioned this view. Here we present evidence that P. vivax in southern Mexico comprised 3 genetic populations whose distributions largely mirror those of the 2 mosquito vectors. Additionally, laboratory colony feeding experiments indicate that parasite populations are most compatible with sympatric mosquito species. Our results suggest that reciprocal selection between malaria parasites and mosquito vectors has led to local adaptation of the parasite. Adaptation to local vectors may play an important role in generating population structure in Plasmodium. A better understanding of coevolutionary dynamics between sympatric mosquitoes and parasites will facilitate the identification of molecular mechanisms relevant to disease transmission in nature and provide crucial information for malaria control.  相似文献   

19.
ABSTRACT. A correlation was observed between in vivo and in vitro activity of six monoclonal antibodies (mAb) against the major circumsporozoite protein of the avian malaria Plasmodium gallinaceum as follows. (1) Two mAb were protective, totally abrogating sporozoite infectivity to chicks, its natural host, in vivo; they caused 100% inhibition of sporozoite invasion (ISI) in vitro to SL-29 chicken fibroblasts and intense ISI to cultured chicken macrophages, as well as inhibited the exoerythrocytic development of sporozoites taken up by macrophages, the initial cell host of P. gallinaceum sporozoites. (2) Two mAb were partially protective in that they reduced sporozoite infectivity to chicks, caused partial ISI to SL-29 and macrophage cells and partial inhibition to the exoerythrocytic development of sporozoites in macrophages in vitro. (3) Two mAb were totally inactive in vivo although they both bound to the sporozoite antigens as detected by indirect immunofluorescence, western blot, and ELISA; they both failed to induce ISI or inhibit the exoerythrocytic development in macrophages. The possible participation of macrophages as the initial cell type involved in sporozoite destruction in the presence of anti-circumsporozoite antibodies is discussed.  相似文献   

20.
Malaria transmission depends on infective stages in the mosquito salivary glands. Plasmodium sporozoites that mature in midgut oocysts must traverse the hemocoel and invade the mosquito salivary glands in a process thought to be mediated by parasite ligands. MAEBL, a homologue of the transmembrane EBP ligands essential in merozoite invasion, is expressed abundantly in midgut sporozoites. Alternative splicing generates different MAEBL isoforms and so it is unclear what form is functionally essential. To identify the MAEBL isoform required for P. falciparum (NF54) sporozoite invasion of salivary glands, we created knockout and allelic replacements each carrying CDS of a single MAEBL isoform. Only the transmembrane form of MAEBL is essential and is the first P. falciparum ligand validated as essential for invasion of Anopheles salivary glands. MAEBL is the first P. falciparum ligand experimentally determined to be essential for this important step in the life cycle where the vector becomes infectious for transmitting sporozoites to people. With an increasing emphasis on advancing vector-based transgenic methods for suppression of malaria, it is important that this type of study, using modern molecular genetic tools, is done with the agent of the human disease. Understanding what P. falciparum sporozoite ligands are critical for mosquito transmission will help validate targets for vector-based transmission-blocking strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号