首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Salt stress proteins induced in Listeria monocytogenes   总被引:3,自引:0,他引:3  
The ability of Listeria monocytogenes to tolerate salt stress is of particular importance, as this pathogen is often exposed to such environments during both food processing and food preservation. In order to understand the survival mechanisms of L. monocytogenes, an initial approach using two-dimensional polyacrylamide gel electrophoresis was performed to analyze the pattern of protein synthesis in response to salt stress. Of 400 to 500 visible proteins, the synthesis of 40 proteins (P < 0.05) was repressed or induced at a higher rate during salt stress. Some of the proteins were identified on the basis of mass spectrometry or N-terminal sequence analysis and database searching. Twelve proteins showing high induction after salt stress were similar to general stress proteins (Ctc and DnaK), transporters (GbuA and mannose-specific phosphotransferase system enzyme IIAB), and general metabolism proteins (alanine dehydrogenase, CcpA, CysK, EF-Tu, Gap, GuaB, PdhA, and PdhD).  相似文献   

2.
3.
In Bacillus subtilis, heat shock proteins can be classified into two main groups: specific heat shock proteins (about 5) and general stress proteins (at least 14). Salt stress was very effective in the induction of general stress proteins (5 to 50-fold stimulation), but the synthesis of heat-specific stress proteins was not stimulated. Furthermore there were some proteins whose synthesis was accelerated only by salt stress.  相似文献   

4.
Salt Stress Proteins Induced in Listeria monocytogenes   总被引:2,自引:0,他引:2       下载免费PDF全文
The ability of Listeria monocytogenes to tolerate salt stress is of particular importance, as this pathogen is often exposed to such environments during both food processing and food preservation. In order to understand the survival mechanisms of L. monocytogenes, an initial approach using two-dimensional polyacrylamide gel electrophoresis was performed to analyze the pattern of protein synthesis in response to salt stress. Of 400 to 500 visible proteins, the synthesis of 40 proteins (P < 0.05) was repressed or induced at a higher rate during salt stress. Some of the proteins were identified on the basis of mass spectrometry or N-terminal sequence analysis and database searching. Twelve proteins showing high induction after salt stress were similar to general stress proteins (Ctc and DnaK), transporters (GbuA and mannose-specific phosphotransferase system enzyme IIAB), and general metabolism proteins (alanine dehydrogenase, CcpA, CysK, EF-Tu, Gap, GuaB, PdhA, and PdhD).  相似文献   

5.
6.
Effect of ELF magnetic fields on protein synthesis in Escherichia coli K12   总被引:1,自引:0,他引:1  
Escherichia coli K12 was used as a model system to determine whether ELF magnetic fields (MFs) are a general stress factor. The cells were exposed to ELF MFs (5-100 Hz) at a maximum intensity of 14 mT r. m.s. for circularly polarized MFs and 10 mT r.m.s. for vertically polarized MFs. The response of the cells to the MFs was estimated from the change in protein synthesis by using 2D PAGE. Approximately 1,000 proteins were separated on the 2D gels. The stress-responsive proteins such as CH10, DNAK, CH60, RECA, USPA, K6P1 and SODM were identified from the SWISS-2DPAGE database on the 2D gels. These proteins respond to most stress factors, including temperature change, chemical compounds, heavy metals, and nutrients. When the bacterial cells were exposed to each MF at 5-100 Hz under aerobic conditions (6.5 h) or at 50 Hz under anaerobic conditions (16 h) at the maximum intensity (7.8 to 14 mT r.m.s.), no reproducible changes were observed in the 2D gels. Changes in protein synthesis were detected by 2D PAGE with exposure to heat shock (50 degrees C for 30 min) or under anaerobic conditions (no bubbling for 16 h). Increases in the levels of synthesis of the stress proteins were observed in heat-shocked cells (CH60, CH10, HTPG, DNAK, HSLV, IBPA and some unidentified proteins) and in cells grown under anaerobic conditions (DNAK, PFLB, RECA, USPA and many unidentified proteins). These results suggest that 2D PAGE is sufficient to detect cell responses to environmental stress. The high-intensity ELF MFs (14 mT at power frequency) did not act as a general stress factor.  相似文献   

7.
Haloferax volcanii and Halomonas elongata have been selected as representatives of halophilic Archaea and Bacteria, respectively, to analyze the responses to various osmolarities at the protein synthesis level. We have identified a set of high-salt-related proteins (39, 24, 20, and 15.5 kDa in H. elongata; 70, 68, 48, and 16 kDa in H. volcanii) whose synthesis rates increased with increasing salinities. A different set of proteins (60, 42, 15, and 6 kDa for H. elongata; 63, 44, 34, 18, 17, and 6 kDa for H. volcanii), some unique for low salinities, was induced under low-salt conditions. For both organisms, and especially for the haloarchaeon, adaptation to low-salt conditions involved a stronger and more specific response than adaptation to high-salt conditions, indicating that unique mechanisms may have evolved for low-salinity adaptation. In the case of H. volcanii, proteins with a typical transient response to osmotic shock, induced by both hypo- and hyperosmotic conditions, probably corresponding to described heat shock proteins and showing the characteristics of general stress proteins, have also been identified. Cell recovery after a shift to low salinities was immediate in both organisms. In contrast, adaptation to higher salinities in both cases involved a lag period during which growth and general protein synthesis were halted, although the high-salt-related proteins were induced rapidly. In H. volcanii, this lag period corresponded exactly to the time needed for cells to accumulate adequate intracellular potassium concentrations, while extrusion of potassium after the down-shift was immediate. Thus, reaching osmotic balance must be the main limiting factor for recovery of cell functions after the variation in salinity.  相似文献   

8.
Signal transduction pathway involved in glucose deprivation-induced oxidative stress were investigated in human breast carcinoma cells (MCF-7/ADR). In MCF-7/ADR, glucose deprivation-induced prolonged activation of c-Jun N-terminal kinase (JNK1) as well as cytoxicity and the accumulation of oxidized glutathione. Glucose deprivation also caused significant increases in total glutathione, cysteine, gamma-glutamylcysteine, and immunoreactive proteins corresponding to the catalytic as well as regulatory subunits of gamma-glutamylcysteine, and immunoreactive proteins corresponding to the catalytic as well as regulatory subunits of gamma-glutamylcysteine synthetase, suggesting that the synthesis of glutathione increased as an adaptive response. Expression of a catalytically inactive dominant negative JNK1 in MCF-7/ADR inhibited glucose deprivation- induced cell death and the accumulation of oxidized glutathione as well as altered the duration of JNK activation from persistent (> 2 h) to transient (30 min). In addition, stimulation of glutathione synthesis during glucose deprivation was not observed in cells expressing the highest levels of dominant negative protein. Finally, a linear dose response suppression of oxidized glutathione accumulation was noted for clones expressing increasing levels of dominant negative JNK1 during glucose deprivation. These results show that expression of a dominant negative JNK1 protein was capable of suppressing persistent JNK activation as well as oxidative stress and cytotoxicity caused by glucose deprivation in MCF-7/ADR. These findings support the hypothesis that JNK signaling pathways may control the expression of proteins contributing to cell death mediated by metabolic oxidative stress during glucose deprivation. Finally, these results support the concept that JNK signaling-induced shifts in oxidative metabolism may provide a general mechanism for understanding the diverse biological effects seen during the activation of JNK signaling cascades.  相似文献   

9.
10.
The response of exponentially growing cultures of Escherichia coli to abrupt shifts in hydrostatic pressure was studied. A pressure upshift to 546 atm (55,304 kPa) of hydrostatic pressure profoundly perturbed cell division, nucleoid structure, and the total rate of protein synthesis. The number of polypeptides synthesized at increased pressure was greatly reduced, and many proteins exhibited elevated rates of synthesis relative to total protein synthesis. We designated the latter proteins pressure-induced proteins (PIPs). The PIP response was transient, with the largest induction occurring approximately 60 to 90 min postshift. Fifty-five PIPs were identified. Many of these proteins are also induced by heat shock or cold shock. The PIP demonstrating the greatest pressure induction was a basic protein of 15.6 kDa. High pressure inhibits growth but does not inhibit the synthesis of stringently controlled proteins. Cold shock is the only additional signal which has been found to elicit this type of response. These data indicate that elevated pressure induces a unique stress response in E. coli, the further characterization of which could be useful in delineating its inhibitory nature.  相似文献   

11.
The legume root rot disease caused by the oomycete pathogen Aphanomyces euteiches is one major yield reducing factor in legume crop production. A comparative proteomic approach was carried out in order to identify proteins of the model legume Medicago truncatula which are regulated after an infection with A. euteiches. Several proteins were identified by two dimensional gel electrophoresis to be differentially expressed after pathogen challenge. Densitometric evaluation of expression values showed different regulation during the time-course analysed. Proteins regulated during the infection were identified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Among the differentially expressed proteins, two encoded putative cell wall proteins and two were designated as small heat shock proteins. Furthermore, an isoform of the chalcone-O-methyltransferase was found to be increased in infected roots. The majority of induced proteins belonged to the family of class 10 of pathogenesis related proteins (PR10). Previously, various PR10-like proteins have been shown to be regulated by general stress or abscisic acid (ABA). Therefore, these proteins were further investigated concerning their regulation in response to drought stress and exogenous ABA-application. Complex regulation patterns were identified: three of the A. euteiches-induced PR10-like proteins were also induced by exogenous ABA- but none of them is induced after drought stress. In contrast, three of these proteins are down-regulated by drought stress. Hence, the strong expression of different PR10-family members and their regulation profiles indicates that this set of proteins plays a major role during root adaptations to various stress conditions.  相似文献   

12.
Heat shock proteins (Hsp) 70 are a ubiquitous family of molecular chaperones involved in many cellular processes. A yeast strain, ssa1/2, with two functionally redundant cytosolic Hsp70s (SSA1 and SSA2) deleted shows thermotolerance comparable to mildly heat-shocked wild type yeast, as well as increased protein synthesis and ubiquitin-proteasome protein degradation. Since mRNA abundance does not always correlate well with protein expression levels it is essential to study proteins directly. We used a gel-based approach to identify stress-responsive proteins in the ssa1/2 mutant and identified 43 differentially expressed spots. These were trypsin-digested and analyzed by nano electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). A total of 22 non-redundant proteins were identified, 11 of which were confirmed by N-terminal sequencing. Nine proteins, most of which were up-regulated (2-fold or more) in the ssa1/2 mutant, proved to be stress-inducible proteins such as molecular chaperones and anti-oxidant proteins, or proteins related to carbohydrate metabolism. Interestingly, a translational factor Hyp2p up-regulated in the mutant was also found to be highly phosphorylated. These results indicate that the cytosolic Hsp70s, Ssa1p and Ssa2p, regulate an abundance of proteins mainly involved in stress responses and protein synthesis.  相似文献   

13.
Bacillus subtilis induced a set of general stress proteins in response to a salt or heat stress. Cells subjected to a mild heat stress showed a protective response which enabled them to survive otherwise lethal temperatures (e.g. 52 degrees C). In a similar way bacteria were enabled to survive toxic concentrations of NaCl by pretreatment with lower salt concentrations. A mild heat shock induced a cross-protection against lethal salt stress. The pretreatment of cells with low salt, however, was less effective in the induction of thermotolerance than a preceding mild heat stress. Three stress proteins were identified on the basis of their N-terminal amino acid sequences as homologues of GroEL, DnaK and ClpP of Escherichia coli. The role of general and specific stress proteins in the induction of thermotolerance/salt tolerance and cross-protection is discussed.  相似文献   

14.
New targets of Arabidopsis thioredoxins revealed by proteomic analysis   总被引:1,自引:0,他引:1  
Proteomics was used to search for putative thioredoxin (TRX) targets in leaves of the model plant, Arabidopsis thaliana. About forty different proteins have been found to be reduced by TRX, after TRX itself has been specifically reduced by its NADPH-dependent reductase. Twenty-one of the identified proteins were already known or recently proposed to be TRX-dependent and nineteen of the proteins were new potential targets. The identified proteins are involved in a wide variety of processes, including the Calvin cycle, metabolism, photosynthesis, folding, defense against oxidative stress and amino acid synthesis. Two proteins from the glycine cleavage complex were also identified as putative TRX targets, and a new role can be postulated in leaves for TRX in defense against herbivores and/or pathogens.  相似文献   

15.
Salinity altered the protein synthesis patterns in two cyanobacterial strains: Anabaena torulosa, a salt-tolerant brackish water strain, and Anabaena sp. strain L-31, a salt-sensitive freshwater strain. The cyanobacterial response to salinity was very rapid, varied with time, and was found to be correlated with the external salt (NaCl) concentration during stress. Salinity induced three prominent types of modification. First, the synthesis of several proteins was inhibited, especially in the salt-sensitive strain; second, the synthesis of certain proteins was significantly enhanced; and third, synthesis of a specific set of proteins was induced de novo by salinity stress. Proteins which were selectively synthesized or induced de novo during salt stress, tentatively called the salt-stress proteins, were confined to an isoelectric pI range of 5.8 to 7.5 and were distributed in a molecular mass range of 12 to 155 kilodaltons. These salt-stress proteins were unique to each Anabaena strain, and their expression was apparently regulated coordinately during exposure to salt stress. In Anabaena sp. strain L-31, most of the salt-stress-induced proteins were transient in nature and were located mainly in the cytoplasm. In A. torulosa, salt-stress-induced proteins were evenly distributed in the membrane and cytoplasmic fractions and were persistent, being synthesized at high rates throughout the period of salinity stress. These initial studies reveal that salinity-induced modification of protein synthesis, as has been demonstrated in higher plant species, also occurs in cyanobacteria and that at least some of the proteins preferentially synthesized during salt stress may be important to cyanobacterial osmotic adaptation.  相似文献   

16.
17.
The methods of centrifugal elutriation, two-dimensional gel electrophoresis, and dual isotopic labeling were applied to the study and identification of a number of purified yeast proteins. The location of polypeptide spots corresponding to specific proteins was determined on two-dimensional gels. A dual-label method was used to determine the rates of synthesis through the cell cycle of the identified proteins as well as to confirm the results of previous studies from our laboratory on unidentified proteins. The identified proteins, and the more generally defined phosphorylated, heat shock, and heat stroke proteins were found to follow the general pattern of exponential increase in rate of synthesis through the cell cycle. In addition, colorimetric enzyme activity assays were used to examine the catabolic enzyme alpha-glucosidase (EC 3.2.1.20). Both the activity and synthesis of alpha-glucosidase were found to be nonperiodic with respect to the cell cycle. These data contrast with earlier reports of periodicity, which employed induction and selection synchrony to study enzyme expression through the yeast cell cycle.  相似文献   

18.
The synthesis of 40 polypeptides in mitochondria was found to be stimulated after transient exposure of human endothelial cells to sublethal levels of hydroperoxides, such as H(2)O(2), using comparative two-dimensional polyacrylamide gel electrophoresis. Eleven proteins were identified; these include 60 kDa heat shock protein (HSP60), a mitochondrial type of 70 kDa HSP (mtHSP70), manganese-dependent superoxide dismutase (MnSOD), three metabolic enzymes in citric acid cycle, two components for respiratory chain complexes, a ribosomal protein for translation in mitochondria (RM12), and an unnamed protein. These proteins are involved in reduction-oxidation and protein biogenesis, suggesting that their synthesis, which is triggered under oxidative stress conditions, is aimed at playing a defensive role in mitochondria. Moreover, mtHSP70, HSP60, MnSOD, and RM12 were revealed as their respective precursor proteins with mitochondrial targeting sequences. The preproteins of HSP60 and mtHSP70 were transiently accumulated in mitochondria after the removal of H(2)O(2) in a processing competent state, while the accumulated preprotein of MnSOD localized inside mitochondria and remained unchanged. Membrane potential of mitochondria and cellular ATP levels were unchanged under these conditions. Taken together, these results suggest that hydroperoxide stress leads to preprotein accumulation, possibly due to the impairment of the protein-processing system in mitochondria, independent of membrane potential dissipation and ATP depletion.  相似文献   

19.
The kinetics of genome-wide responses of gene expression during the acclimation of cells of Synechocystis sp. PCC 6803 to salt stress were followed by DNA-microarray technique and compared to changes in main physiological parameters. During the first 30 min of salt stress, about 240 genes became induced higher than 3-fold, while about 140 genes were repressed. However, most changes in gene expression were only transient and observed among genes for hypothetical proteins. At 24 h after onset of salt stress conditions, the expression of only 39 genes remained significantly enhanced. Among them, many genes that encode proteins essential for salt acclimation were detected, while only a small number of genes for hypothetical proteins remained activated. Following the expression of genes for main functions of the cyanobacterial cell, i.e. PSI, PSII, phycobilisomes, and synthesis of compatible solutes, such as ion homeostasis, distinct kinetic patterns were found. While most of the genes for basal physiological functions were transiently repressed during the 1st h after the onset of salt stress, genes for proteins specifically related to salt acclimation were activated. This gene expression pattern reflects well the changes in main physiological processes in salt-stressed cells, i.e. transient inhibition of photosynthesis and pigment synthesis as well as immediate activation of synthesis of compatible solutes. The results clearly document that following the kinetics of genome-wide expression, profiling can be used to envisage physiological changes in the cyanobacterial cell after certain changes in growth conditions.  相似文献   

20.
The synthesis of adequate amounts of ribosomes is an essential task for the cell. It is therefore not surprising that regulatory circuits exist to organize the synthesis of ribosomal components. It has been shown that defect in ribosome biogenesis (ribosomal stress) induces apoptosis or cell cycle arrest through activation of the tumor suppressor p53. This mechanism is thought to be implicated in the pathophysiology of a group of genetic diseases such as Diamond Blackfan Anemia which are called ribosomopathies. We have identified an additional response to ribosomal stress that includes the activation of eukaryotic translation elongation factor 2 kinase with a consequent inhibition of translation elongation. This leads to a translational reprogramming in the cell that involves the structurally defined group of messengers called terminal oligopyrimidine (TOP) mRNAs which encode ribosomal proteins and translation factors. In fact, while general protein synthesis is decreased by the impairment of elongation, TOP mRNAs are recruited on polysomes causing a relative increase in the synthesis of TOP mRNA-encoded proteins compared to other proteins. Therefore, in response to ribosomal stress, there is a change in the translation pattern of the cell which may help restore a sufficient level of ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号