首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alternative splicing increases the coding capacity of genes through the production of multiple protein isoforms by the conditional use of splice sites and exons. Many alternative splice sites are regulated by the presence of purine-rich splicing enhancer elements (ESEs) located in the downstream exon. Although the role of ESEs in alternative splicing of the major class U2-dependent introns is well established, no alternatively spliced minor class U12-dependent introns have so far been described. Although in vitro studies have shown that ESEs can stimulate splicing of individual U12-dependent introns, there is no direct evidence that the U12-dependent splicing system can respond to ESEs in vivo. To investigate the ability of U12-dependent introns to use alternative splice sites and to respond to ESEs in an in vivo context, we have constructed two sets of artificial minigenes with alternative splicing pathways and evaluated the effects of ESEs on their alternative splicing patterns. In minigenes with alternative U12-dependent 3' splice sites, a purine-rich ESE promotes splicing to the immediately upstream 3' splice site. As a control, a mutant ESE has no stimulatory effect. In minigene constructs with two adjacent U12-dependent introns, the predominant in vivo splicing pattern results in the skipping of the internal exon. Insertion of a purine-rich ESE into the internal exon promotes the inclusion of the internal exon. These results show that U12-dependent introns can participate in alternative splicing pathways and that U12-dependent splice sites can respond to enhancer elements in vivo.  相似文献   

2.
In metazoans, splicing of introns from pre-mRNAs can occur by two pathways: the major U2-dependent or the minor U12-dependent pathways. Whereas the U2-dependent pathway has been well characterized, much about the U12-dependent pathway remains to be discovered. Most of the information regarding U12-type introns has come from in vitro studies of a very few known introns of this class. To expand our understanding of U12-type splicing, especially to test the hypothesis that the simple base-pairing mechanism between the intron and U12 snRNA defines the branchpoint of U12-dependent introns, additional in vitro splicing substrates were created from three putative U12-type introns: the third intron of the Xenopus RPL1 a gene (XRP), the sixth intron of the Xenopus TFIIS.oA gene (XTF), and the first intron of the human Sm E gene (SME). In vitro splicing in HeLa nuclear extract confirmed U12-dependent splicing of each of these introns. Surprisingly, branchpoint mapping of the XRP splicing intermediate shows use of the upstream rather than the downstream of two consecutive adenosines within the branchpoint sequence (BPS), contrary to the prediction based on alignment with the sixth intron of human P120, a U12-dependent intron whose branch site was previously determined. Also, in the SME intron, the position of the branchpoint A residue within the region base paired with U12 differs from that in P120 and XTF. Analysis of these three additional introns therefore rules out simple models for branchpoint selection by the U12-type spliceosome.  相似文献   

3.
Bacteriophage T4 contains three self-splicing group I introns in genes in de novo deoxyribonucleotide biosynthesis (in td, coding for thymidylate synthase and in nrdB and nrdD, coding for ribonucleotide reductase). Their presence in these genes has fueled speculations that the introns are retained within the phage genome due to a possible regulatory role in the control of de novo deoxyribonucleotide synthesis. To study whether sequences in the upstream exon interfere with proper intron folding and splicing, we inhibited translation in T4-infected bacteria as well as in bacteria containing recombinant plasmids carrying the nrdB intron. Splicing was strongly reduced for all three T4 introns after the addition of chloramphenicol during phage infection, suggesting that the need for translating ribosomes is a general trait for unperturbed splicing. The splicing of the cloned nrdB intron was markedly reduced in the presence of chloramphenicol or when translation was hindered by stop codons inserted in the upstream exon. Several exon regions capable of forming putative interactions with nrdB intron sequences were identified, and the removal or mutation of these exon regions restored splicing efficiency in the absence of translation. Interestingly, splicing of the cloned nrdB intron was also reduced as cells entered stationary phase and splicing of all three introns was reduced upon the T4 infection of stationary-phase bacteria. Our results imply that conditions likely to be frequently encountered by natural phage populations may limit the self-splicing efficiency of group I introns. This is the first time that environmental effects on bacterial growth have been linked to the regulation of splicing of phage introns.  相似文献   

4.
Alternative splicing and bioinformatic analysis of human U12-type introns   总被引:1,自引:0,他引:1  
U12-type introns exist, albeit rarely, in a variety of multicellular organisms. Splicing of U12 intron-containing precursor mRNAs takes place in the U12-type spliceosome that is distinct from the major U2-type spliceosome. Due to incompatibility of these two spliceosomes, alternative splicing involving a U12-type intron may give rise to a relatively complicated impact on gene expression. We studied alternative U12-type intron splicing in an attempt to gain more mechanistic insights. First, we characterized mutually exclusive exon selection of the human JNK2 gene, which involves an unusual intron possessing the U12-type 5′ splice site and the U2-type 3′ splice site. We demonstrated that the long and evolutionary conserved polypyrimidine tract of this hybrid intron provides important signals for inclusion of its downstream alternative exon. In addition, we examined the effects of single nucleotide polymorphisms in the human WDFY1 U12-type intron on pre-mRNA splicing. These results provide mechanistic implications on splice-site selection of U12-type intron splicing. We finally discuss the potential effects of splicing of a U12-type intron with genetic defects or within a set of genes encoding RNA processing factors on global gene expression.  相似文献   

5.
Invertases are responsible for the breakdown of sucrose to fructose and glucose. In all but one plant invertase gene, the second exon is only 9 nt in length and encodes three amino acids of a five-amino-acid sequence that is highly conserved in all invertases of plant origin. Sequences responsible for normal splicing (inclusion) of exon 2 have been investigated in vivo using the potato invertase, invGF gene. The upstream intron 1 is required for inclusion whereas the downstream intron 2 is not. Mutations within intron 1 have identified two sequence elements that are needed for inclusion: a putative branchpoint sequence and an adjacent U-rich region. Both are recognized plant intron splicing signals. The branchpoint sequence lies further upstream from the 3' splice site of intron 1 than is normally seen in plant introns. All dicotyledonous plant invertase genes contain this arrangement of sequence elements: a distal branchpoint sequence and adjacent, downstream U-rich region. Intron 1 sequences upstream of the branchpoint and sequences in exons 1, 2, or 3 do not determine inclusion, suggesting that intron or exon splicing enhancer elements seen in vertebrate mini-exon systems are absent. In addition, mutation of the 3' and 5' splice sites flanking the mini-exon cause skipping of the mini-exon, suggesting that both splice sites are required. The branchpoint/U-rich sequence is able to promote splicing of mini-exons of 6, 3, and 1 nt in length and of a chicken cTNT mini-exon of 6 nt. These sequence elements therefore act as a splicing enhancer and appear to function via interactions between factors bound at the branchpoint/U-rich region and at the 5' splice site of intron 2, activating removal of this intron followed by removal of intron 1. This first example of splicing of a plant mini-exon to be analyzed demonstrates that particular arrangement of standard plant intron splicing signals can drive constitutive splicing of a mini-exon.  相似文献   

6.
The rate of excision of U12-type introns has been reported to be slower than that of U2-type introns, suggesting a rate-limiting bottleneck that could down-regulate genes containing U12-type introns. The mechanistic reasons for this slower rate of intron excision are not known, but lower abundance of the U12-type snRNPs and slower rate of assembly or catalytic activity have been suggested. To investigate snRNP abundance we concentrated on the U4atac snRNA, which is the least abundant of the U12-type snRNAs and is limiting the formation of U4atac/U6atac complex. We identified mouse NIH-3T3 cell line isolates in which the level of both U4atac snRNA and U4atac/U6atac complexes is reduced to 10%-20% of the normal level. We used these cell lines to investigate splicing efficiency by transient transfection of a reporter gene containing a U12-type intron and by quantitative PCR analysis of endogenous genes. The splicing of the reporter U12-type intron was very inefficient, but the activity could be restored by overexpression of U4atac snRNA. Using these U4atac-deficient NIH-3T3 cells, we confirmed the results of previous studies showing that U12-type introns of endogenous genes are, indeed, excised more slowly than U2-type introns, but we found that the rate did not differ from that measured in cells displaying normal levels of U4atac snRNA. Thus our results suggest that the cellular abundance of the snRNPs does not limit U12-type intron splicing under normal conditions.  相似文献   

7.
Two classes of spliceosome are present in eukaryotic cells. Most introns in nuclear pre-mRNAs are removed by a spliceosome that requires U1, U2, U4, U5, and U6 small nuclear ribonucleoprotein particles (snRNPs). A minor class of introns are removed by a spliceosome containing U11, U12, U5, U4atac, and U6 atac snRNPs. We describe experiments that demonstrate that splicing of exon 5 of the rat calcitonin/CGRP gene requires both U2 snRNA and U12 snRNA. In vitro, splicing to calcitonin/ CGRP exon 5 RNA was dependent on U2 snRNA, as preincubation of nuclear extract with an oligonucleotide complementary to U2 snRNA abolished exon 5 splicing. Addition of an oligonucleotide complementary to U12 snRNA increased splicing at a cryptic splice site in exon 5 from <5% to 50% of total spliced RNA. Point mutations in a candidate U12 branch sequence in calcitonin/CGRP intron 4, predicted to decrease U12-pre-mRNA base-pairing, also significantly increased cryptic splicing in vitro. Calcitonin/CGRP genes containing base changes disrupting the U12 branch sequence expressed significantly decreased CGRP mRNA levels when expressed in cultured cells. Coexpression of U12 snRNAs containing base changes predicted to restore U12-pre-mRNA base pairing increased CGRP mRNA synthesis to the level of the wild-type gene. These observations indicate that accurate, efficient splicing of calcitonin/CGRP exon 5 is dependent upon both U2 and U12 snRNAs.  相似文献   

8.
9.
U12-dependent introns are found in small numbers in most eukaryotic genomes, but their scarcity makes accurate characterisation of their properties challenging. A computational search for U12-dependent introns was performed using the draft version of the human genome sequence. Human expressed sequences confirmed 404 U12-dependent introns within the human genome, a 6-fold increase over the total number of non-redundant U12-dependent introns previously identified in all genomes. Although most of these introns had AT-AC or GT-AG terminal dinucleotides, small numbers of introns with a surprising diversity of termini were found, suggesting that many of the non-canonical introns found in the human genome may be variants of U12-dependent introns and, thus, spliced by the minor spliceosome. Comparisons with U2-dependent introns revealed that the U12-dependent intron set lacks the ‘short intron’ peak characteristic of U2-dependent introns. Analysis of this U12-dependent intron set confirmed reports of a biased distribution of U12-dependent introns in the genome and allowed the identification of several alternative splicing events as well as a surprising number of apparent splicing errors. This new larger reference set of U12-dependent introns will serve as a resource for future studies of both the properties and evolution of the U12 spliceosome.  相似文献   

10.
Highly conserved sequences at the 5′ splice site and branch site of U12-dependent introns are important determinants for splicing by U12-dependent spliceosomes. This study investigates the in vivo splicing phenotypes of mutations in the branch site consensus sequence of the U12-dependent intron F from a human NOL1 (P120) minigene. Intron F contains a fully consensus branch site sequence (UUCCUUAAC). Mutations at each position were analyzed for their effects on U12-dependent splicing in vivo. Mutations at most positions resulted in a significant reduction of correct U12-dependent splicing. Defects observed included increased unspliced RNA levels, the activation of cryptic U2-dependent 5′ and 3′ splice sites, and the activation of cryptic U12-dependent branch/3′ splice sites. A strong correlation was observed between the predicted thermodynamic stability of the branch site: U12 snRNA interaction and correct U12-dependent splicing. The lack of a polypyrimidine tract between the branch site and 3′ splice site of U12-dependent introns and the observed reliance on base-pairing interactions for correct U12-dependent splicing emphasize the importance of RNA/RNA interactions during U12-dependent intron recognition and proper splice site selection.  相似文献   

11.
12.
Kim WY  Jung HJ  Kwak KJ  Kim MK  Oh SH  Han YS  Kang H 《The Plant cell》2010,22(12):3951-3962
U12 introns are removed from precursor-mRNA by a U12 intron-specific spliceosome that contains U11 and U12 small nuclear ribonucleoproteins. Although several proteins unique to the U12-type spliceosome have been identified, the manner by which they affect U12-dependent intron splicing as well as plant growth and development remain largely unknown. Here, we assessed the role of U11/U12-31K, a U12-type spliceosomal protein in Arabidopsis thaliana. T-DNA-tagged homozygote lines for U11/U12-31K could not be obtained, and heterozygote mutants were defective for seed maturation, indicating that U11/U12-31K is essential for the normal development of Arabidopsis. Knockdown of U11/U12-31K by artificial microRNA caused a defect in proper U12 intron splicing, resulting in abnormal stem growth and development of Arabidopsis. This defect in proper splicing was not restricted to specific U12-type introns, but most U12 intron splicing was influenced by U11/U12-31K. The stunted inflorescence stem growth was recovered by exogenously applied gibberellic acid (GA), but not by cytokinin, auxin, or brassinosteroid. GA metabolism-related genes were highly downregulated in U11/U12-31K knockdown plants. Importantly, U11/U12-31K was determined to harbor RNA chaperone activity. We propose that U11/U12-31K is an RNA chaperone that is indispensible for proper U12 intron splicing and for normal growth and development of plants.  相似文献   

13.
Plant introns are typically AU-rich or U-rich, and this feature has been shown to be important for splicing. In maize, however, about 20% of the introns exceed 50% GC, and most of them are efficiently spliced. A series of constructs has been designed to analyze the cis requirements for splicing of the GC-rich Bz2 maize intron and two other GC-rich intron derivatives. By manipulating exon, intron and splice site sequences it is shown that exons can play an important role in intron definition: changes in exon sequences can increase splicing efficiency of a GC-rich intron from 17% to 86%. The relative difference, or base compositional contrast, in GC and U content between exon and intron sequences in the vicinity of splice sites, rather than the absolute base-content of the intron or exons, correlates with splicing efficiency. It is also shown that GC-rich intron constructs that are poorly spliced can be partially rescued by an improved 3' splice site.  相似文献   

14.
15.
Intron lariat formation between the 5' end of an intron and a branchpoint adenosine is a fundamental aspect of the first step in animal and yeast nuclear pre-mRNA splicing. Despite similarities in intron sequence requirements and the components of splicing, differences exist between the splicing of plant and vertebrate introns. The identification of AU-rich sequences as major functional elements in plant introns and the demonstration that a branchpoint consensus sequence was not required for splicing have led to the suggestion that the transition from AU-rich intron to GC-rich exon is a major potential signal by which plant pre-mRNA splice sites are recognized. The role of putative branchpoint sequences as an internal signal in plant intron recognition/definition has been re-examined. Single nucleotide mutations in putative branchpoint adenosines contained within CUNAN sequences in four different plant introns all significantly reduced splicing efficiency. These results provide the most direct evidence to date for preferred branchpoint sequences being required for the efficient splicing of at least some plant introns in addition to the important role played by AU sequences in dicot intron recognition. The observed patterns of 3' splice site selection in the introns studied are consistent with the scanning model described for animal intron 3' splice site selection. It is suggested that, despite the clear importance of AU sequences for plant intron splicing, the fundamental processes of splice site selection and splicing in plants are similar to those in animals.  相似文献   

16.
17.
Several plant genes have their first intron in the 5′ untranslated region (5′ UTR), and such 5′ UTR introns often show several biological functions, including the intron-mediated enhancement of protein expression through an increase of mRNA level (IME), intron-dependent spatial expression, and intron-mediated enhancement of translation. Here, we show another function of the 5′ UTR intron, i.e., the 5′ UTR intron-mediated enhancement of constitutive splicing. The NtFAD3 gene, which encodes a tobacco microsome ω-3 fatty acid desaturase, has a 552 nucleotide-long 5′ UTR intron (intron 1), and the other seven introns are located in the coding sequence. The splicing of the 5′ half region of the NtFAD3 was studied through an in vivo splicing assay using Arabidopsis leaf explants. The low splicing efficiency of intron 2 was much improved when the assay construct harbored intron 1. Deletion of intron 1 and the replacement of intron 1 to the NtFAD3 intron 8 decreased the splicing efficiency of intron 2. The splicing enhancers were redundant and dispersed in the 5′ splice site-proximal, 284-nucleotides region of intron 1. In addition, the interaction among the cis-elements, i.e., the splicing enhancers in the intron 1 and exon 2, were necessary for the efficient splicing of intron 2. The 5′ UTR intron-mediated constitutive splicing was partially inhibited when an SR-like protein, SR45, was deficient. These results indicated a novel function of the 5′ UTR intron, namely an enhancement of the constitutive splicing.  相似文献   

18.
Identical G+1 mutations in three different introns of the gene for type III procollagen (COL3A1) that cause aberrant splicing of RNA were found in three probands with life-threatening variants of Ehlers-Danlos syndrome. Because the three mutations were in a gene with multiple and homologous exons, they provided an interesting test for factors that influence aberrant splicing. The G+1 to A mutation in intron 16 caused extensive exon skipping, the G+1 to A mutation in intron 20 caused both use of a cryptic splice site and retention of all the intron sequences, and the G+1 to A mutation in intron 42 caused efficient use of a single cryptic splice site. The different patterns of RNA splicing were not explained by evaluation of potential cryptic splice sites in the introns by either their homology with 5'-splice sites from other genes or by their delta G(0)37 values for binding to U1 RNA. Instead, the results suggested that the patterns of aberrant RNA splicing were primarily determined by the relative rates at which adjacent introns were normally spliced.  相似文献   

19.
20.
Constitutive splicing of the potato invertase mini-exon 2 (9 nt long) requires a branchpoint sequence positioned around 50 nt upstream of the 5' splice site of the adjacent intron and a U(11) element found just downstream of the branchpoint in the upstream intron [Simpson, Hedley, Watters, Clark, McQuade, Machray and Brown (2000) RNA 6, 422-433]. The sensitivity of this in vivo plant splicing system has been used to demonstrate exon scanning in plants, and to characterize plant intronic elements, such as branchpoint and poly-pyrimidine tract sequences. Plant introns differ from their vertebrate and yeast counterparts in being UA- or U-rich (up to 85% UA). One of the key differences in splicing between plants and other eukaryotes lies in early intron recognition, which is thought to be mediated by UA-binding proteins. We are adopting three approaches to studying the RNA-protein interactions in plant splicing. First, overexpression of plant splicing factors and, in particular, UA-binding proteins, in conjunction with a range of mini-exon mutants. Secondly, the sequences of around 65% of vertebrate and yeast splicing factors have high-quality matches to Arabidopsis proteins, opening the door to identification and analysis of gene knockouts. Finally, to discover plant-specific proteins involved in splicing and in, for example, rRNA or small nuclear RNA processing, green fluorescent protein-cDNA fusion libraries in viral vectors are being screened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号