首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The characteristics of aerobic granules at steady state and the effects of starvation time on the stability of aerobic granules during the long-term operation were investigated in three sequencing batch reactors (SBRs R1–R3). The SBRs were operated with a cycle time of 1.5, 4.0, and 8.0 h, respectively, which resulted in a starvation time of 0.8, 3.3, and 7.3 h in three reactors, respectively. Results showed that aerobic granules were successfully cultivated in the three reactors, but the granules in R2 with a starvation time of 3.3 h showed the highest density and the best settleability at steady state. It is obvious that the starvation time has an optimum value in terms of settleability of granules. In addition, it was found that the coexistence of a minority of fluffy granules with smooth granules was the potential unstable factor in R1 with a starvation time of 0.8 h at the steady state. The sudden dominance of fluffy granules in R1 after the 160-day operation led to the operation failure of the reactor R1, whereas the granules in R2 with a starvation time of 3.3 h and R3 with a starvation time of 7.3 h showed good stability during the long-term operation. As short starvation time leads to the instability of granules, and long starvation time is not advisable for practical application due to low efficiency, starvation time should be controlled in a reasonable range.  相似文献   

2.
Aerobic granular sludge technology has been extensively studied over the past 20 years and is regarded as the upcoming new standard for biological treatment of domestic and industrial wastewaters. Aerobic granules (AG) are dense, compact, self-immobilized microbial aggregates that allow better sludge-water separation and thereby higher biomass concentrations in the bioreactor than conventional activated sludge aggregates. This brings potential practical advantages in terms of investment cost, energy consumption and footprint. Yet, despite the relevant advances regarding the process of AG formation, instability of AG during long-term operation is still seen as a major barrier for a broad practical application of this technology. This paper presents an up-to-date review of the literature focusing on AG stability, aiming to contribute to the identification of key factors for promoting long-term stability of AG and to a better understanding of the underlying mechanisms. Operational conditions leading to AG disintegration are described, including high organic loads, particulate substrates in the influent, toxic feed components, aerobic feeding and too short famine periods. These operational and influent wastewater composition conditions were shown to influence the micro-environment of AG, consequently affecting their stability. Granule stability is generally favored by the presence of a dense core, with microbial growth throughout the AG depth being a crucial intrinsic factor determining its structural integrity. Accordingly, possible practical solutions to improve granule long-term stability are described, namely through the promotion of minimal substrate concentration gradients and control of microbial growth rates within AG, including anaerobic, plug-flow feeding and specific sludge removal strategies.  相似文献   

3.
This work aims at exploring the intergeneric coaggregation of the pairs of strains, Acinetobacter calcoaceticus I6 and Bacillus thuringiensis I2 or Candida tropicalis I9 (with GenBank accession numbers EU250016, EU036759, and DQ515822) isolated from phenol-degrading aerobic granules. The I2 and I6 are functionally similar stains, while the I6 and I9 are functionally dissimilar strains. The lectin-saccharide interaction controlled the coaggregation of both the I2+I6 and I6+I9 pairs, with the protein adhesin being associated with the strain I6, and the complementary galactosamine-like or fucose-like sugar receptor with the strain I2 or I9, respectively. The rod-like I2 cells bridged the clusters of I2 or I6 cells to form aggregates, while the small I6 cells attached on and modified the surface of I9 to form aggregates.  相似文献   

4.
This study isolated nine strains of aerobic phenol-degrading granules. These isolates (I1–I9) were characterized using 16S rRNA gene sequencing, with γ-Proteobacteria as the dominant strains in the aerobic granules. While most strains demonstrated either high phenol-degrading capabilities or auto-aggregation capabilities, three isolates, I2, I6, and I8 showed both features. These findings contradict the previous view that auto-aggregation and phenol degradation are mutually exclusive in aerobic granules. Strains I2 and I8 independently formed single-culture aerobic granules except for I3. Anti-microbial activity test results indicated that strains I2 and I8 inhibited growth of strain I3. However, co-culturing I3 with I2 or I8 helped to form granules.  相似文献   

5.
Compared to activated sludge flocs, aerobic granules have a regular shape, and a compact and dense structure which enhances settleability, higher biomass retention, multi-microbial functions, higher tolerance to toxicity, greater tolerance to shock loading, and relatively low excess sludge production. The potential for improved process efficiency and cost-effectiveness can be attractive when it is applied to both municipal and industrial wastewaters. This review discusses potential applications of aerobic granulation technology in wastewater treatment while drawing attention to relevant findings such as diffusion gradients existing in aerobic granules which help the biomass cope with inhibitory compounds and the ability of granules to continue degradation of inhibitory compounds at extreme acid and alkaline pHs.  相似文献   

6.
Starvation is not a prerequisite for the formation of aerobic granules   总被引:1,自引:0,他引:1  
Activated sludge with sludge volume index (SVI)30 of 77 ml g−1 and SVI30 of 433 ml g−1 was inoculated to start up reactors R1 and R2, respectively. In both R1 and R2, cycle time of 1 h and the influent chemical oxygen demand (COD) concentrations of 1,000 mg l−1 were employed. Initial settling time of 2 min resulted in the loss of a substantial amount of biomass as wash-out and high effluent COD concentrations within the first week of operation. This implied that there was no starvation phase in each cycle of R1 and R2 during the first week of operation. However, aerobic granules with a size above 400 μm formed by day 7. Thus, it was concluded that starvation was not a prerequisite for the formation of aerobic granules. When cycle time was 1 h, the instability of aerobic granules was observed. When cycle time was prolonged to 1.5 h and granular sludge of 200 ml was used to start up reactor R3, the reactor R3 reached steady state within 1 week. SVI, size, and the morphology of granular sludge in R3 remained stable during the 47-day operation, which indicated that prolonged starvation time had positive effects on the stability of aerobic granules.  相似文献   

7.
The survival of the inoculated microbial culture is critical for successful bioaugmentation but impossible to predict precisely. As an alternative strategy, bioaugmentation of a group of microorganisms may improve reliability of bioaugmentation. This study evaluated simultaneous bioaugmentation of two functionally similar bacterial strains in aerobic granules. The two strains, Pandoraea sp. PG-01 and Rhodococcus erythropolis PG-03, showed high phenol degradation and growth rates in phenol medium, but they were characterized as having a poor aggregation activity and weak bioflocculant-producing and biofilm-forming abilities. In the spatially homogeneous batch conditions, strain PG-01 with higher growth rates outcompeted strain PG-03. However, the two strains could stably coexist in the spatially heterogeneous conditions. Then the two strains were mixed and bioaugmented into activated sludge in two sequencing batch reactors, which were operated with the different settling times of 5 and 30 min, respectively. Aerobic granules were developed only in the reactor with a settling time of 5 min. Fluorescence in situ hybridization and denaturing gradient gel electrophoresis showed that the two strains could coexist in aerobic granules but not in activated sludge. These findings suggested that the compact structure of aerobic granules provided spatial isolation for coexistence of competitively superior and inferior strains with similar functions.  相似文献   

8.
The contributions of loosely bound extracellular polymeric substances (LB-EPS), tightly bound EPS (TB-EPS), residual sludge (the sludge left after EPS extraction) and functional groups such as amine, carboxyl, phosphate and lipid on aerobic granules on biosorption of four different dyes (Reactive Brilliant Blue KN-R (KN-R), Congo Red (CR), Reactive Brilliant Red K-2G (RBR) and Malachite Green (MG)) were investigated. EPS may be responsible for biosorption of cationic dyes. However, residual sludge always made greater contribution than that of EPS. The biosorption mechanisms were dependent on the functional groups on aerobic granules and dyes’ chemical structures. The lipid and phosphate groups might be the main binding sites for KN-R biosorption. Amine, carboxyl, phosphate and lipid were all responsible for the binding of CR. The lipid fractions played an important role for RBR biosorption. For MG, the phosphate groups gave the largest contribution.  相似文献   

9.
This study attempted to address a fundamental question of whether metabolic behaviors of aerobic granules are different from their counterparts, such as activated sludge and biofilms. A series of respirometric experiments were carried out using mature aerobic granules with mean sizes of 0.75–3.4 mm. Results suggested that metabolism of aerobic granules comprised three consecutive phases: (i) conversion of external dissolved organic carbon to a poly-β-hydroxybutyrate-like substance; (ii) growth of aerobic granules on the stored poly-β-hydroxybutyrate-like substance derived from phase I, and (iii) subsequent endogenous metabolism of aerobic granules. The stoichiometric analysis revealed that the conversion yields of external dissolved organic carbon to the poly-β-hydroxybutyrate-like substance, the growth yields of biomass on storage, and the overall growth yields of biomass on external dissolved organic carbon were not significantly correlated to the sizes of aerobic granules, i.e., the metabolism of aerobic granules would be size independent. The conversion coefficients and growth rates of aerobic granules were found to be comparable with those reported in the activated sludge and biofilms cultures, indicating that there would not be significant difference in the metabolisms of aerobic granules over activated sludge and biofilms. This information will be useful for modeling and designing aerobic granular sludge processes.  相似文献   

10.
The formation and characterization of the aerobic 4-chloroaniline-degrading granules in the three column-type sequencing batch reactors were investigated in this paper. The granular sludge was observed since 15 days after start-up in R2 and R3 which had the high ratio of height to diameter (H/D). Since then and within the subsequent 75 days, the granulation of aerobic sludge was apparently developed by the decreased settling time and gradually increased 4-chloroaniline (4-ClA) concentration to above 400 mg.L(-1) in R1 to R3. The aerobic granules tended to be mature in all reactors continuously operated with 4-ClA loading rates of around 800 g.m(-3).d(-1), and the removal efficiencies of chemical oxygen demand, total nitrogen, and 4-ClA were maintained above 93%, 70%, and 99.9%, respectively. Mature aerobic granules in R1 to R3 featured with the average diameter of 0.78, 1.68, and 1.25 mm, minimal settling velocity of 20.5, 70.1 and 66.6 m.h(-1), specific 4-ClA degradation rates of 0.14, 0.21, and 0.27 g.gVSS(-1).d(-1), and the ratio of proteins to polysaccharides of 8.2, 10.8, and 13.7 mg.mg(-1), respectively. This study demonstrates that the reactor with a high H/D ratio and internal circulation favors the granulation and stabilization of aerobic sludge.  相似文献   

11.
Aerobic granules are the potential tools to develop modern wastewater treatment technologies with improved nutrient removal efficiency. These granules have several promising advantages over conventional activated sludge-based wastewater treatment processes. This technology has the potential of reducing the infrastructure and operation costs of wastewater treatment by 25%, energy requirement by 30%, and space requirement by 75%. The nutrient removal mechanisms of aerobic granules are slightly different from that of the activated sludge. For instance, unlike activated sludge process, according to some reports, as high as 70% of the total phosphorus removed by aerobic granules were attributed to precipitation within the granules. Similarly, aerobic granule-based technology reduces the total amount of sludge produced during wastewater treatment. However, the reason behind this observation is unknown and it needs further explanations based on carbon and nitrogen removal mechanisms. Thus, as a part of the present review, a set of new hypotheses have been proposed to explain the peculiar nutrient removal mechanisms of the aerobic granules.  相似文献   

12.
A lab-scale sequencing batch reactor was operated with alternating anoxic/aerobic conditions for nitrogen removal. Flocs and granules co-existed in the same reactor, with distinct aggregate structure and size, for over 180 days of reactor operation. Process data showed complete nitrogen removal, with temporary nitrite accumulation before full depletion of ammonia in the aerobic phase. Microbial quantification of the biomass by fluorescence in situ hybridisation showed that granules contained most of the nitrite-oxidising bacteria (NOB) whereas the ammonium-oxidising bacteria (AOB) seemed to be more abundant in the flocs. This was supported by microsensor measurements, which showed a higher potential of NO2 uptake than NH4 uptake in the granules. The segregation is possibly linked to the different growth rates of the two types of nitrifiers and the reactor operational conditions, which produced different sludge retention time for flocs and granules. The apparent physical separation of AOB and NOB in two growth forms could potentially affect mass transfer of NO2 from AOB to NOB, but the data presented here shows that it did not impact negatively on the overall nitrogen removal.  相似文献   

13.
Aerobic granules efficient at degrading methyl tert-butyl ether (MTBE) were successfully developed in a well-mixed sequencing batch reactor (SBR). Treatment efficiency of MTBE in the reactor during the stable operations exceeded 99.8%, and effluent MTBE was consistently below 800 mug/L. The specific MTBE degradation rate was observed to increase with increasing MTBE initial concentrations from 25 to 400 mg/L, peaked at 18.2 mg-MTBE/g-VSS h, and declined with further increases in MTBE concentration as substrate inhibition effects became significant. There was a good fit between these biodegradation data and the Haldane equation (R (2) = 0.976). Microbial community DNA profiling was carried out using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction amplified 16S rDNA. The aerobic granule was found to contain a wide diversity of microorganisms. More than 70% similarity among the samples in the time period examined indicated a highly stable microbial community as the reactor reached the stable operation.  相似文献   

14.
Aerobic granules efficient at degrading methyl tert-butyl ether (MTBE) with ethanol as a cosubstrate were successfully developed in a well-mixed sequencing batch reactor (SBR). Aerobic granules were first observed about 100 days after reactor startup. Treatment efficiency of MTBE in the reactor during stable operation exceeded 99.9%, and effluent MTBE was in the range of 15–50 μg/L. The specific MTBE degradation rate was observed to increase with increasing MTBE initial concentration from 25 to 500 mg/L, which peaked at 22.7 mg MTBE/g (volatile suspended solids)·h and declined with further increases in MTBE concentration as substrate inhibition effects became significant. Microbial-community deoxyribonucleic acid profiling was carried out using denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16S ribosomal ribonucleic acid. The reactor was found to be inhabited by several diverse bacterial species, most notably microorganisms related to the genera Sphingomonas, Methylobacterium, and Hyphomicrobium vulgare. These organisms were previously reported to be associated with MTBE biodegradation. A majority of the bands in the reactor represented a group of organisms belonging to the FlavobacteriaProteobacteria–Actinobacteridae class of bacteria. This study demonstrates that MTBE can be effectively degraded by aerobic granules under a cosubstrate condition and gives insight into the microorganisms potentially involved in the process.  相似文献   

15.
Distribution of extracellular polymeric substances in aerobic granules   总被引:5,自引:0,他引:5  
Extracellular matrix provides an architectural structure and mechanical stability for aerobic granules. Distributions of cells and extracellular polymeric substances (EPS), including proteins, α- and β-d-glucopyranose polysaccharides, in acetate-fed granules and phenol-fed granules were probed using a novel quadruple staining scheme. In acetate-fed granules, protein and β-d-glucopyranose polysaccharides formed the core, whereas, the cells and α-d-glucopyranose polysaccharides accumulated in the granule outer layers. Based on these experimental findings, this study indicated that different conclusions can be obtained regarding EPS distributions when granules were stained differently. The core of phenol-fed granules, conversely, was formed principally by proteins; whereas, the cells and α- and β-d-glucopyranose polysaccharides were accumulated at an outer filamentous layer. Using a series of confocal laser scanning microscope (CLSM) images whose threshold values were determined via Otsu’s scheme, the three-dimensional distributions of cells and EPS were produced using a polygonal surface model. Structural information extracted can be applied in further development of comprehensive granule models.  相似文献   

16.
This study investigated the biodegradability of extracellular polymeric substances (EPS) produced by aerobic granules. Aerobic granules were precultivated with synthetic wastewater in a lab-scale sequencing batch reactor. EPS were extracted from aerobic granules and were then fed as the sole carbon source to their own producers. Results showed that about 50% of EPS produced by aerobic granules could be utilized by their producers under aerobic starvation condition. The average biodegradation rate of the granule EPS in terms of chemical oxygen demand was five times slower than that of acetate, but 50 times faster than that of nonbiodegradable EPS produced by aerobic granules. The nonbiodegradable EPS was mainly found on the outer shell of aerobic granule. EPS produced by aerobic granules basically comprised two major components, i.e., biodegradable and nonbiodegradable EPS. The biodegradable EPS could serve as a useful energy source to sustain the growth of aerobic granules under starvation. This study provides experimental evidence that part of the EPS produced by aerobic granules would be biodegradable, but only nonbiodegradable EPS would play a crucial role in maintaining the structural integrity of aerobic granule.  相似文献   

17.
Floccules are another major form of microbial aggregates in aerobic granular sludge systems. Previous studies mainly attributed the persistence of floccules to their relatively faster nutrient uptake and higher growth rate over aerobic granules; however, they failed to unravel the underlying mechanism of the long-term coexistence of these two aggregates. In this work, the existence and function of the floccules in an aerobic granule-dominated sequencing batch reactor were investigated from the view of quorum sensing (QS) and quorum quenching (QQ). The results showed that though the floccules were closely associated with the granules in terms of similar community structures (including the QS- and QQ-related ones), they exhibited a relatively higher QQ-related activity but a lower QS-related activity. A compatible proportion of floccules might be helpful to maintain the QS-related activity and keep the granules stable. In addition, the structure difference was demonstrated to diversify the QS- and QQ-related activities of the floccules and the aerobic granules. These findings could broaden our understanding of the interactions between the coexistent floccules and granules in aerobic granule-dominated systems and would be instructive for the development of the aerobic granular sludge process.  相似文献   

18.
This is the first granulation study except Ferguson [Ferguson LN. Anaerobic codigestion of aircraft deicing fluid and microaerobic studies. M.S. Thesis. Milwaukee, WI, USA: Marquette University; 1999] to develop coupled granules by using a mixture of suspended anaerobic and aerobic cultures exposed to alternating cyclic anaerobic/microaerobic/aerobic conditions. Coupled granules with median sizes of 1.28–1.86 mm and settling velocities of 31–39 m/h were developed, which were comparable to those of both anaerobic and aerobic granules. Coupled granules displayed noteworthy specific methanogenic activity (SMA) and specific oxygen uptake rate (SOUR) as 14–42 mL CH4/g VSS h and 6–47 mg DO/g VSS h, respectively, indicating that they were composed of both anaerobic and aerobic cultures.  相似文献   

19.
Understanding the properties of aerobic sludge granules as hydrogels   总被引:2,自引:0,他引:2  
Aerobic sludge granules are larger, denser microbial aggregates than activated sludge flocs with a smoother and more regular surface, which facilitates greater wastewater treatment intensity. Factors important in their growth are still poorly understood, which is an impediment to the construction and operation of full-scale aerobic sludge granule processes. Data in this article obtained with granules treating an abattoir wastewater provide evidence that aerobic sludge granules are hydrogels. The results also demonstrate a method for characterizing macromolecular associations. The rheological profile of these granules was found to be analogous with that of typical polymer gels. Water uptake or swelling reflects an equilibrium between granule elastic modulus and osmotic pressure, whereby uptake is increased by reducing solute concentration or the elastic modulus. A weakening of the extracellular polymeric substance (EPS) matrix as demonstrated with mechanical spectroscopy was induced by several environmental factors including temperature, pH and ionic strength. Uniform and elastic deformation was observed at low strain. Enzymatic degradation studies indicate that proteins and alpha-polysaccharides were the major granule structural materials. The aerobic sludge granules in the current study were therefore protein-polysaccharide composite physical hydrogels. While aerobic sludge granules treating an abattoir wastewater are used as a case study, many of the fundamental principles detailed here are relevant to other granulation processes. The paradigm established in this study can potentially be applied to better understand the formation of aerobic sludge granules and thus overcome a hurdle in the acceptance of aerobic sludge granulation as an alternative to more traditional wastewater treatment processes.  相似文献   

20.
Summary Ultrastructural morphometric analysis was used to study time-dependent variations in macro and microautophagy in rat hepatocytes. Except during periods of shortterm starvation for up to 24 h, animals were kept under standardized conditions of food intake.In hepatocytes of meal-fed rats the volume fraction of macroautophagic vacuoles is significantly higher at 23:00 h, i.e., immediately before food intake, compared to 11:00 h, i.e., 12 h following feeding. During fasting, macroautophagy drops to a low level.Microautophagic vacuoles in hepatocytes of meal-fed rats, sacrificed at 11:00 or 23:00 h respectively, do not show any significant quantitative differences. However, during 12 h of starvation, the volume fraction of microautophagic vacuoles rises significantly, whereas the numerical density remains constant. Subsequently, during the second 12-h period of fasting, the volume fraction of microautophagic vacuoles remains unchanged, but the numerical density increases. Over a period of 24 h of starvation the volume fraction of the total lysosomal system does not change significantly, whereas the numerical density rises.The time-dependent changes of the macroautophagic vacuolar system correlate with the circadian, food-related variations in the protein content of individual hepatocytes from meal-fed animals. The increase in volume fraction and thereafter in number of microautophagic vacuoles, as observed during starvation, coincides with a large decrease in protein content of individual hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号