首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione S-transferase fromOctopus vulgaris hepatopancreas was purified to apparent homogeneity by single glutathione-Sepharose-4B affinity chromatography with overall yield 46% and purification 249-fold. The enzyme was a homodimer with subunitM r 24,000, which was smaller than that of the octopus lens S-crystallin (M r 27,000) with glutathione-S-transferase-like structure. Both proteins showed substrate specificities similar to/-type isozyme of glutathione S-transferase. Under native conditions, both proteins exhibited multiple forms upon polyacrylamide gel electrophoresis or isoelectric focusing, albeit with distinct mobilities; however, only one kind of N-terminal amino acid sequence was determined for the multiple forms of each protein. The hepatopancreatic GST, withpI value 6.6–7.3, dissociated into two monomers in an acidic or alkaline environment. Two amino acid residues, withpK a values 5.69±0.14 and 9.03±0.11 were involved in the subunit interactions of the hepatopancreatic enzyme.Abbreviations PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - IEF isoelectric focusing - GSH glutathione - GST glutathione S-transferase - CDNB 1-chloro-2,4-dinitrobenzene - EA ethacrynic acid [2,3-dichloro-4-(2-methylenebutyryl) phenoxy)acetic acid]  相似文献   

2.
  1. Download : Download high-res image (256KB)
  2. Download : Download full-size image
  相似文献   

3.
S-crystallin is a major lens protein present in the octopus and squid of Cephalopods. To facilitate the cloning of the protein, cDNA was constructed from the poly(A)+RNA of octopus lenses, and amplification by polymerase chain reaction (PCR) was carried out with two primers designed according to the 5'- and 3'-coding regions of S-crystallin gene. Sequencing two of 15 positive clones obtained shows 37-44% similarity in nucleotide and 23-30% similarity in amino acid sequences as compared with mammalian glutathione S-transferases (GST), revealing that S-crystallins exist as a multigene family and probably derived from GST by gene duplication and subsequent mutational base replacements.  相似文献   

4.
S H Chiou 《FEBS letters》1988,241(1-2):261-264
Lens crystallins were isolated from cephalopods, octopus and squid. Two protein fractions were obtained from the octopus in contrast to only one crystallin from the squid. The native molecular mass for these purified fractions and their polypeptide compositions were determined by gel filtration, sedimentation analysis, and SDS-gel electrophoresis. Octopod and decapod lenses share one common major squid-type crystallin of 29 kDa, with one additional novel crystallin present only in the octopus lens. This newly-characterized crystallin (termed omega-crystallin) exists as a tetrameric protein of 230 kDa, consisting of 4 identical subunits of approx. 59 kDa. It is distinct from the previously known crystallins both in amino acid composition and subunit structure. N-terminal sequence analysis indicated that the omega-crystallin is N-terminally blocked, whereas the major octopus crystallin is identical to the reported squid crystallin with regard to the first 25 residues of protein sequence. Sequence similarity between this major cephalopod crystallin and glutathione S-transferase were found, which suggested some enzymatic role of crystallins inside the cephalopod lens.  相似文献   

5.
The eye lens crystallins of the octopus Octopus dofleini were identified by sequencing abundant proteins and cDNAs. As in squid, the octopus crystallins have subunit molecular masses of 25-30 kDa, are related to mammalian glutathione S-transferases (GST), and are encoded in at least six genes. The coding regions and deduced amino acid sequences of four octopus lens cDNAs are 75-80% identical, while their non-coding regions are entirely different. Deduced amino acid sequences show 52-57% similarity with squid GST-like crystallins, but only 20-25% similarity with mammalian GST. These data suggest that the octopus and squid lens GST-like crystallin gene families expanded after divergence of these species. Northern blot hybridization indicated that the four octopus GST-like crystallin genes examined are lens-specific. Lens extracts showed about 40 times less GST activity using 1-chloro-2,4-dinitrobenzene as substrate than liver extracts of the octopus, indicating that the major GST-like crystallins are specialized for a lens structural role. A prominent 59-kDa crystallin polypeptide, previously observed in octopus but not squid and called omega-crystallin (Chiou, S.-H. (1988) FEBS Lett. 241, 261-264), has been identified as an aldehyde dehydrogenase. Since cytoplasmic aldehyde dehydrogenase is a major protein in elephant shrew lenses (eta-crystallin; Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269) the octopus aldehyde dehydrogenase crystallin provides the first example of a similar enzyme-crystallin in vertebrates and invertebrates. The use of detoxification stress proteins (GST and aldehyde dehydrogenase) as cephalopod crystallins indicates a common strategy for recruitment of enzyme-crystallins during the convergent evolution of vertebrate and invertebrate lenses. For historical reasons we propose that the octopus GST-like crystallins, like those of the squid, are called S-crystallins.  相似文献   

6.
Three proteins have been identified in the eye lens of the octopus, Octopus dofleini. A 22 kDa protein comprising 3-5% of the soluble protein of the lens is 35-43% identical to a family of phosphatidylethanolamine-binding proteins of vertebrates. Other members of this family include the immunodominant antigen of the filarial parasite, Onchocerca volvulus, putative odorant-binding proteins of Drosophila and a protein with unknown function of Caenorhabditis elegans. We have called this protein O-crystallin on the basis of its abundance in the transparent lens. O-Crystallin mRNA was detected only in the lens. Two tryptic peptides of another octopus lens protein, less abundant than O-crystallin, showed 80% identity to arginine kinase of invertebrates, a relative of creatine kinase of vertebrates. Finally, ferritin cDNA was isolated as an abundant cDNA from the octopus lens library. Northern blots showed that ferritin mRNA is not lens-specific.  相似文献   

7.
Summary It was found by using the CPK molecular model that holes on the complexes of four nucleotides (C4N) on the tRNAs, namely complexes of the anticodon bases with the discriminator base at 4th position of 3 end, had lock and key relations to the corresponding protein amino acids. Various general features of the universal and mitochondrial genetic codes were easily explained in terms of the C4N model. The recognition mechanism of the tRNA by the aminoacyl-tRNA-synthetase is closely correlated with the formation of the C4N on the Rossmann fold on the synthetase. The meaning of the hypermodification of the tRNA base next to the third anticodon base and other phenomena were also discussed.  相似文献   

8.
Achondroplasia (ACH), the most common form of short-limbed dwarfism, and its related disorders are caused by constitutively activated point-mutated fibroblast growth factor receptor 3 (FGFR3). Recent studies have provided a large body of evidence to prove chondrocyte proliferation and differentiation in these disorders. However, little is known about the possible effects of the FGFR3 mutants on apoptosis of chondrocytes. In the present study, we analyzed apoptosis using a chondrogenic cell line, ATDC5, expressing the FGFR3 mutants causing ACH and thanatophoric dysplasia, which is a more severe neonatal lethal form comprising type I and type II. We found that the introduction of these mutated FGFR3s into ATDC5 cells decreased mRNA expression of parathyroid hormone-related peptide (PTHrP) and induced apoptosis. Importantly, replacement of PTHrP prevented the apoptotic changes in ATDC5 cells expressing ACH mutant. Insulin-like growth factor (IGF)-I, which is an important mediator of growth hormone (GH), also reduced apoptosis in ATDC5 cells expressing ACH mutant. IGF-I prevented apoptosis through the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, indicating the mechanisms by which GH treatment improves disturbed bone growth in ACH.  相似文献   

9.
10.
Molecular basis for the antiandrogen withdrawal syndrome   总被引:4,自引:0,他引:4  
In patients with prostate cancer who manifest disease progression during combined androgen blockade therapy, discontinuation of antiandrogen treatment might result in prostate-specific antigen decline, often associated with clinical improvement. The response called antiandrogen withdrawal syndrome is thus acknowledged as a general phenomenon. However, molecular mechanisms responsible for this syndrome are not completely understood. This article outlines the proposed mechanisms, including alterations of androgen receptor gene and its coregulatory proteins and activation of the signal transduction pathway, and the potential therapeutic approaches based on the specific mechanisms.  相似文献   

11.
Rab escort proteins (REP) 1 and 2 are closely related mammalian proteins required for prenylation of newly synthesized Rab GTPases by the cytosolic heterodimeric Rab geranylgeranyl transferase II complex (RabGG transferase). REP1 in mammalian cells is the product of the choroideremia gene (CHM). CHM/REP1 deficiency in inherited disease leads to degeneration of retinal pigmented epithelium and loss of vision. We now show that amino acid residues required for Rab recognition are critical for function of the yeast REP homologue Mrs6p, an essential protein that shows 50% homology to mammalian REPs. Mutant Mrs6p unable to bind Rabs failed to complement growth of a mrs6Delta null strain and were found to be dominant inhibitors of growth in a wild-type MRS6 strain. Mutants were identified that did not affect Rab binding, yet prevented prenylation in vitro and failed to support growth of the mrs6Delta null strain. These results suggest that in the absence of Rab binding, REP interaction with RabGG transferase is maintained through Rab-independent binding sites, providing a molecular explanation for the kinetic properties of Rab prenylation in vitro. Analysis of the effects of thermoreversible temperature-sensitive (mrs6(ts)) mutants on vesicular traffic in vivo showed prenylation activity is only transiently required to maintain normal growth, a result promising for therapeutic approaches to disease.  相似文献   

12.
Cytokinins (CKs) are a group of phytohormones that play a crucial role in the regulation of plant growth and development. Identification of the enzymes and the corresponding genes that are involved in CK metabolism allowed us to understand how plants synthesize CKs and adjust CK activity to optimal levels. A major accomplishment toward these goals was the identification of genes for the first enzyme in the CK biosynthetic pathway, adenosine phosphate-isopentenyltransferase (IPT). In Arabidopsis thaliana and Agrobacterium tumefaciens, detailed analyses of IPTs were conducted through not only enzymatic characterization but also molecular structural approaches. These studies revealed the molecular basis for the Agrobacterium-origin of IPT used for the efficient biosynthesis of trans-zeatin that promotes tumorigenesis in host plants. Another landmark in CK research was the identification of CYP735A as an enzyme that converts iP-nucleotide to tZ-nucleotide. Furthermore, the identification of a CK-activating enzyme, LOG, which catalyzes a novel activation pathway, is a remarkable recent achievement in CK research. Collectively, these advances have revealed the complexity of the entire metabolic scheme for CK biosynthesis.  相似文献   

13.
Glucose-galactose malabsorption (GGM) is an autosomal recessive disease that presents in newborn infants as a life-threatening diarrhea. The diarrhea ceases within 1 h of removing oral intake of lactose, glucose, and galactose, but promptly returns with the introduction of one or more of the offending sugars into the diet. Our goal is to determine whether or not mutations in the sodium-glucose cotransporter gene (SGLT1) are responsible for GGM. We first isolated the human cDNA (hSGLT1), mapped the gene and identified its chromosomal location (22q13.1). Our approach was then to screen GGM patients for mutations in hSGLT1 and then determine if these caused defects, in sugar transport using the Xenopus laevis oocyte expression system. In 46 patients we have identified the mutations responsible for GGM. These included missense, nonsense, frame shift, splice site, and promoter mutations. In 30 patients, the same mutations were on both alleles, and the remaining 16 had different mutations on each allele (compound heterozygotes). Several mutations (e.g., C355S) were found in unrelated patients. The nonsense, frame shift, and splice site mutations all produce nonfunctional truncated proteins. In 22 out of the 23 missense mutations tested in the oocyte expression system, the proteins were translated and were stable in the cell, but did not reach the plasma membrane. In four of these mutants, an alanine residue was replaced by a valine, and in two, the trafficking defect was rescued by changing the valine to cysteine. One mutant protein (Q457R) did reach the plasma membrane, but it was unable to transport the sugar across the cell membrane. We conclude that mutations in the SGLT1 gene are the cause of glucose-galactose malabsorption, and sugar transport is impaired mainly because the mutant proteins are either truncated or are not targeted properly to the cell membrane.  相似文献   

14.
15.
16.
CFTR is a member of the ABC (ATP binding cassette) superfamily of transporters. It is a multidomain membrane protein, which utilizes ATP to regulate the flux of its substrate through the membrane. CFTR is distinct in that it functions as a channel and it possesses a unique regulatory R domain. There has been significant progress in understanding the molecular basis for CFTR activity as an ATPase. The dimeric complex of NBD structures seen in prokaryotic ABC transporters, together with the structure of an isolated CF-NBD1, provide a unifying molecular template to model the structural basis for the ATPase activity of CFTR. The dynamic nature of the interaction between the NBDs and the R domain has been revealed in NMR studies. On the other hand, understanding the mechanisms mediating the transmission of information from the cytosolic domains to the membrane and the channel gate of CFTR remains a central challenge.  相似文献   

17.
Short range, liquid-like order of the crystallin proteins accounts for eye lens transparency. The relationship between structural and thermodynamic properties of eye lens was further investigated using osmotic pressure and small-angle X-ray scattering measurements of calf lens alpha-crystallins. The consistency of both data sets confirms that the macroscopic thermodynamic properties are determined by the structural properties accessible to X-ray scattering. In addition, the experimental data were correctly accounted for using a model developed in liquid-state physics: the rescaled mean spherical approximation combined with a Verwey-Overbeek potential. This model provides as best fit parameters the excluded volume, the charge and the diameter of an "equivalent" particle that compare well with the corresponding values found in the literature for alpha-crystallins. As a result, transparency may now be expressed as a function of a few structural parameters, the role of which is discussed. The approach presented here may be extended to studies of the thermodynamic-structural relationships of other protein solutions.  相似文献   

18.
The endoplasmic reticulum (ER) is involved in many critical processes, including protein and lipid synthesis and calcium storage. Morphologically, the ER can be divided into two subdomains: a network of interconnected tubules and interspersed sheets. Until recently, how these different compartments form in a continuous membrane system was unclear. Several classes of integral membrane proteins have been identified in the ER; the reticulons and DP1/Yop1p play roles in the generation of ER tubules, and possibly in stabilizing ER sheets, atlastins and Sey1p are dynamin-like GTPases that facilitate tubular network formation by mediating ER membrane fusion, and Climp63, p180, and kinectin are enriched in ER sheets and influence their formation. In this review, we summarize recent advances in our understanding of how these proteins participate in ER shaping. We also discuss possible mechanisms for regulating ER morphology via the cytoskeleton. Lessons learned about sculpting the ER membrane may be applicable to other organelles.  相似文献   

19.
Nonphenylketonuria hyperphenylalaninemia (non-PKU HPA) is defined as phenylalanine hydroxylase (PAH) deficiency with blood phenylalanine levels below 600 mumol/liter (i.e., within the therapeutic range) on a normal dietary intake. Haplotype analysis at the PAH locus was performed in 17 Danish families with non-PKU HPA, revealing compound heterozygosity in all individuals. By allele-specific oligonucleotide (ASO) probing for common PKU mutations we found 12 of 17 non-PKU HPA children with a PKU allele on one chromosome. To identify molecular lesions in the second allele, individual exons were amplified by polymerase chain reaction and screened for mutations by single-strand conformation polymorphism. Two new missense mutations were identified. Three children had inherited a G-to-A transition at codon 415 in exon 12 of the PAH gene, resulting in the substitution of asparagine for aspartate, whereas one child possessed an A-to-G transition at codon 306 in exon 9, causing the replacement of an isoleucine by a valine in the enzyme. It is further demonstrated that the identified mutations have less impact on the heterozygote's ability to hydroxylate phenylalanine to tyrosine compared to the parents carrying a PKU mutation. The combined effect on PAH activity explains the non-PKU HPA phenotype of the child. The present observations that PKU mutations in combination with other mutations result in the non-PKU HPA phenotype and that particular mutation-restriction fragment length polymorphism haplotype combinations are associated with this phenotype offer the possibility of distinguishing PKU patients from non-PKU individuals by means of molecular analysis of the hyperphenylalaninemic neonate and, consequently, of determining whether a newborn child requires dietary treatment.  相似文献   

20.
The molecular and cellular mechanisms of the effect of synthetic polyions on immunogenesis are discussed in the paper. The data on the basic properties of polyion immune stimulants and on the mechanisms of cellular reactions to these stimulants were used for constructing artificial antigen-polyion complexes having enhanced immunogenic properties. The vaccinating properties of a number of macromolecular complexes conjugated to bacterial and viral antigens are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号