首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural killer T (NKT) cells are known to produce Th17 cytokine IL-17 in addition to Th1/2 cytokines. In this study, the ability of NKT cells to produce IL-22, another Th17 cytokine, was examined in mice. When murine spleen cells were stimulated with α-galactosyl ceramide, a ligand for NKT cells, not only Th1/2 cytokines (IFN-γ, IL-4) but Th17 cytokines (IL-17, IL-22) were produced. NKT cells isolated from splenocytes released IL-17 and IL-22 following CD3, CD3/IL-2 or CD3/CD28 stimulation, in which CD3/CD28 costimulation was most effective. Production of IL-17 and IL-22 in CD4+ and CD8+ T cells from splenocytes was little, if any, even after CD3/CD28 costimulation. Treatment with IL-6/TGF-β decreased CD3/CD28-stimulated production of IL-22, but not that of IL-17, in NKT cells. These findings show for the first time that NKT cells are a cell source of IL-22, and that expression of two Th17 cytokines might be regulated in NKT cells by different mechanisms.  相似文献   

2.
Multiple reports confirm elevated circulating IL‐17 levels and increased numbers of Th17 lymphocytes in patients with non‐segmental vitiligo. Additionally, melanocyte damaging characteristics have been ascribed to IL‐17. A single‐arm pilot study using secukinumab in active non‐segmental vitiligo was conducted. The large majority of patients developed additional skin depigmentations limiting further enrollment. Overall, laboratory analysis revealed no change in secreted chemokines or Th subsets. Th17 lymphocytes correlated with Th2, Th9, and Th22 cells while an inverse link with Th1 cells and serum sCD25 levels was observed. In contrast, Th17.1 cells correlated positively with Th1 lymphocytes. Confirmatory results were found in an independent group of patients with vitiligo showing a significant increase in Th17.1 and Th1 lymphocytes in progressive vitiligo patients compared to healthy controls, which was not found for Th17 cells. These results do not support a direct pathogenic role of IL‐17 or Th17 cells in vitiligo. Nonetheless, a delicate Th17/Th17.1/Th1 balance seems evident which changes markedly according to disease activity. This may offer new treatment options by interfering with cytokines that drive differentiation of Th17 cells toward Th1.  相似文献   

3.

Background

Vitiligo is a common skin disorder, characterized by progressive skin de-pigmentation due to the loss of cutaneous melanocytes. The exact cause of melanocyte loss remains unclear, but a large number of observations have pointed to the important role of cellular immunity in vitiligo pathogenesis.

Methodology/Principal Findings

In this study, we characterized T cell and inflammation-related dermal dendritic cell (DC) subsets in pigmented non-lesional, leading edge and depigmented lesional vitiligo skin. By immunohistochemistry staining, we observed enhanced populations of CD11c+ myeloid dermal DCs and CD207+ Langerhans cells in leading edge vitiligo biopsies. DC-LAMP+ and CD1c+ sub-populations of dermal DCs expanded significantly in leading edge and lesional vitiligo skin. We also detected elevated tissue mRNA levels of IL-17A in leading edge skin biopsies of vitiligo patients, as well as IL-17A positive T cells by immunohistochemistry and immunofluorescence. Langerhans cells with activated inflammasomes were also noted in lesional vitiligo skin, along with increased IL-1ß mRNA, which suggest the potential of Langerhans cells to drive Th17 activation in vitiligo.

Conclusions/Significance

These studies provided direct tissue evidence that implicates active Th17 cells in vitiligo skin lesions. We characterized new cellular immune elements, in the active margins of vitiligo lesions (e.g. populations of epidermal and dermal dendritic cells subsets), which could potentially drive the inflammatory responses.  相似文献   

4.
Although non‐segmental vitiligo (NSV) results from the autoimmune destruction of melanocytes, the detailed immune mechanisms have not yet been fully elucidated. Th17 cells have been identified to be implicated in human autoimmune diseases. In this study, the frequencies of peripheral blood Th17 cells and serum levels of IL‐17A and Th17 cell‐related cytokines were examined in 45 patients with active NSV compared to 45 race‐, gender‐, and age‐matched healthy controls. Our results showed increased circulating Th17 cell frequencies and elevated serum IL‐17A, TGF‐β1, and IL‐21 levels in patients with NSV. Meanwhile, the increased Th17 cell frequencies are positively correlated with serum TGF‐β1 level, and the body surface area of lesions is positively correlated with elevated TGF‐β1 and IL‐21 levels and Th17 cell frequencies. Furthermore, positive correlation was identified between Th17 and Th1 cell frequencies in patients with NSV. These results further indicate the potential involvement of Th17 cells and the collaborative contribution of Th17 and Th1 in NSV development, and suggest that the elevated serum TGF‐β1 and IL‐21 levels could contribute to enhanced Th17 cell differentiation in NSV.  相似文献   

5.
6.
Chronic inflammatory diseases are characterized by local tissue injury caused by immunocompetent cells, in particular CD4(+) T lymphocytes, that are involved in the pathogenesis of these disorders via the production of distinctive sets of cytokines. Here, we have characterized single CD4(+) T cells that infiltrate inflamed tissue taken from patients with psoriasis, Crohn's disease, rheumatoid arthritis, or allergic asthma. Results from a cytokine production and gene profile analysis identified a population of in vivo differentiatedretinoid-related orphan receptor gamma-expressing T cells, producing high levels of IL-17, that can represent up to 30% of infiltrating T lymphocytes. Activated Th17 cells produced IL-26, TNF-alpha, lymphotoxin-beta, and IL-22. IL-17 and IL-22 concentrations secreted by tissue infiltrating Th17 cells could reach up to 100 nM and were inversely correlated with the production of Th1- and Th2-associated cytokines. In addition, tissue-infiltrating Th17 cells are also characterized by high cell surface expression of CCR6, a chemokine receptor that was not expressed by Th1 and Th2 cells, isolated from the same lesions, and by the production of CCL20/MIP3alpha, a CCR6 ligand, associated with tissue infiltration. Culture supernatants of activated Th17 cells, isolated from psoriatic lesions, induced the expression of gene products associated with inflammation and abnormal keratinocyte differentiation in an IL-17 and IL-22-dependent manner. These results show that tissue-infiltrating Th17 cells contribute to human chronic inflammatory disease via the production of several inflammatory cytokines and the creation of an environment contributing to their migration and sequestration at sites of inflammation.  相似文献   

7.
Th17 cells, a recently discovered inflammatory T cell subtype, have been implicated with autoimmune disorders. However, mechanism of generation or functions of intratumoral Th17 cells are still unclear. We have been investigating the mechanism of induction and role of Th17 cells in malignant gliomas using primary tumor as well as cell lines. We report here that: (1) a higher frequency of Th17 cells in gliomas were associated with higher number of myeloid (CD11b) cells as well as the expression of TGF-β1 or IL-6; (2) conditioned medium from glioma cells (Gl CM) induced Th17 cell differentiation, which was inhibited by anti-TGF-β1 and anti-IL-6; (3) glioma-associated monocytes secreted Th17-promoting cytokines IL-1β and IL-23; (4) CM from glioma and monocyte co-culture (Gl+Mo CM) induced high frequency of Th17 cells in naïve T cell culture, which was abrogated by anti-IL-1β and anti-IL-23 antibodies; (5) In vitro Gl+Mo CM-mediated Th17 generation was associated with a decrease in IFN-γ and a concomitant increase in IL-10 secretion. Anti-TGF-β1, but not anti-IL-6, significantly reversed this cytokine profile. These results demonstrate prevalence of Th17 cells in gliomas and implicate the cytokines derived from the tumor as well as infiltrating myeloid cells in the induction of Th17 cells in glioma microenvironment. Moreover, the data also suggest that glioma-associated Th17 cells may contribute to immune-suppression via TGF-β1-induced IL-10 secretion. Further studies on the mechanism of tumor-infiltration, developmental pathways, and pro-/anti-tumor functions of Th17 cells will provide rationale for developing novel adjuvant immunotherapeutic strategies for malignant gliomas.  相似文献   

8.
Zhang C  Zhang J  Yang B  Wu C 《Cytokine》2008,42(3):345-352
Recent evidence from several studies indicated that IL-17-producing Th17 cells can represent the key effector cells in the induction and development of autoimmune disorders. Cyclosporine A (CsA) is a commonly used immunosuppressant to treat lots of autoimmune diseases including rheumatoid arthritis (RA). Here, we demonstrated that PBMCs and purified CD4+ T cells from healthy individuals and patients with RA could be induced to produce large amounts of IL-17 after stimulation with anti-CD3 plus anti-CD28 mAbs. Phenotypic analysis indicated that the majority of IL-17-producing cells were Th17 cells with memory phenotype. The addition of CsA into cell cultures significantly inhibited the IL-17 production by Th17 cells at protein and at mRNA levels. Compared to the PBMCs from normal individuals, PBMCs from the patients with RA produced higher levels of IL-17 that was also significantly inhibited by CsA both at protein and at mRNA levels. The mechanism might be the effect of CsA on the T cells activation because the expression of CD69 and CD25 molecules on T cells was markedly reduced in the presence of CsA. Taken together, these results demonstrated that CsA suppressed the IL-17 production and inhibited the Th17 cells differentiation from both healthy individuals and patients with RA.  相似文献   

9.
10.
11.
IL-17A and IL-17F are related homodimeric proteins of the IL-17 family produced by Th17 cells. In this study, we show that mouse Th17 cells also produce an IL-17F/A heterodimeric protein. Whereas naive CD4(+) T cells differentiating toward the Th17 cell lineage expressed IL-17F/A in higher amounts than IL-17A/A homodimer and in lower amounts than IL-17F/F homodimer, differentiated Th17 cells expressed IL-17F/A in higher amounts than either homodimer. In vitro, IL-17F/A was more potent than IL-17F/F and less potent than IL-17A/A in regulating CXCL1 expression. Neutralization of IL-17F/A with an IL-17A-specific Ab, and not with an IL-17F-specific Ab, reduced the majority of IL-17F/A-induced CXCL1 expression. To study these cytokines in vivo, we established a Th17 cell adoptive transfer model characterized by increased neutrophilia in the airways. An IL-17A-specific Ab completely prevented Th17 cell-induced neutrophilia and CXCL5 expression, whereas Abs specific for IL-17F or IL-22, a cytokine also produced by Th17 cells, had no effects. Direct administration of mouse IL-17A/A or IL-17F/A, and not IL-17F/F or IL-22, into the airways significantly increased neutrophil and chemokine expression. Taken together, our data elucidate the regulation of IL-17F/A heterodimer expression by Th17 cells and demonstrate an in vivo function for this cytokine in airway neutrophilia.  相似文献   

12.
13.
Th17 cells, which produce IL-17 and IL-22, promote autoimmunity in mice and have been implicated in the pathogenesis of autoimmune/inflammatory diseases in humans. However, the Th17 immune response in the aging process is still not clear. In the present study, we found that the induction of IL-17-produing CD4+ T cells was significantly increased in aged individuals compared with young healthy ones. The mRNA expression of IL-17, IL-17F, IL-22, and RORC2 was also significantly increased in aged people. Similar to humans, Th17 cells as well as mRNAs encoding IL-17, IL-22 and RORγt were dramatically elevated in naïve T cells from aged mouse compared to young ones. In addition, CD44 positive IL-17-producing CD4+ T cells were significantly higher in aged mice, suggesting that memory T cells are an important source of IL-17 production. Furthermore, the percentage of IL-17-produing CD4+ T cells generated in co-culture with dendritic cells from either aged or young mice did not show significant differences, suggesting that dendritic cells do not play a primary role in the elevation of Th17 cytokines in aged mouse cells. Importantly, transfer of CD4+CD45Rbhi cells from aged mice induced more severe colitis in RAG−/− mice compared to cells from young mice, Taken together, these results suggest that Th17 immune responses are elevated in aging humans and mice and may contribute to the increased development of inflammatory disorders in the elderly.  相似文献   

14.
Interleukin (IL)-17 is a proinflammatory cytokine which induces differentiation and migration of neutrophils through induction of cytokines and chemokines including granulocyte-colony stimulating factor and CXCL8/IL-8. IL-17-producing CD4(+) T cells (Th17) have pivotal role in pathogenesis of autoimmune diseases. IL-17 is also involved in protective immunity against various infections. IL-17 has important role in induction of neutrophil-mediated protective immune response against extracellular bacterial or fungal pathogens such as Klebsiella pneumoniae and Candida albicans. Importance of IL-17 in protection against intracellular pathogens including Mycobacterium has also been reported. Interestingly, not only CD4(+) T cells but atypical CD4(-)CD8(-) T cells expressing T cell receptor (TCR) gammadelta produce IL-17, and IL-17 producing cells participate in both innate and acquired immune response to infections. Furthermore, neutrophil induction may not be the only mechanism of IL-17-mediated protective immunity. IL-17 seems to participate in host defense through regulation of cell-mediated immunity or induction of antimicrobial peptides such as beta-defensins. In this review, we summarize recent progress on the role of IL-17 in immune response against infections, and discuss possible application of IL-17 in prevention and treatment of infectious diseases.  相似文献   

15.
Adipose tissue-derived mesenchymal stromal cells (ASCs) hold the promise of achieving successful immunotherapeutic results due to their ability to regulate different T-cell fate. ASCs also show significant adaptability to environmental stresses by modulating their immunologic profile. Cell-based therapy for inflammatory diseases requires a detailed understanding of the molecular relation between ASCs and Th17 lymphocytes taking into account the influence of inflammation and cell ratio on such interaction. Accordingly, a dose-dependent increase in Th17 generation was only observed in high MSC:T-cell ratio with no significant impact of inflammatory priming. IL-23 receptor (IL-23R) expression by T cells was not modulated by ASCs when compared to levels in activated T cells, while ROR-γt expression was significantly increased reaching a maximum in high (1:5) unprimed ASC:T-cell ratio. Finally, multiplex immunoassay showed substantial changes in the secretory profile of 15 cytokines involved in the Th17 immune response (IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-22, IL-21, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40, and TNF-α), which was modulated by both cell ratio and inflammatory priming. These findings suggest that Th17 lymphocyte pathway is significantly modulated by ASCs that may lead to immunological changes. Therefore, future ASC-based immunotherapy should take into account the complex and detailed molecular interactions that depend on several factors including inflammatory priming and cell ratio.  相似文献   

16.
Foxp3(+)CD4(+) regulatory T (Treg) cells inhibit immune responses and temper inflammation. IL-17(+)CD4(+) T (Th17) cells mediate inflammation of autoimmune diseases. A small population of IL-17(+)Foxp3(+)CD4(+) T cells has been observed in peripheral blood in healthy human beings. However, the biology of IL-17(+)Foxp3(+)CD4(+) T cells remains poorly understood in humans. We investigated their phenotype, cytokine profile, generation, and pathological relevance in patients with ulcerative colitis. We observed that high levels of IL-17(+)Foxp3(+)CD4(+) T cells were selectively accumulated in the colitic microenvironment and associated colon carcinoma. The phenotype and cytokine profile of IL-17(+)Foxp3(+)CD4(+) T cells was overlapping with Th17 and Treg cells. Myeloid APCs, IL-2, and TGF-β are essential for their induction from memory CCR6(+) T cells or Treg cells. IL-17(+)Foxp3(+)CD4(+) T cells functionally suppressed T cell activation and stimulated inflammatory cytokine production in the colitic tissues. Our data indicate that IL-17(+)Foxp3(+) cells may be "inflammatory" Treg cells in the pathological microenvironments. These cells may contribute to the pathogenesis of ulcerative colitis through inducing inflammatory cytokines and inhibiting local T cell immunity, and in turn may mechanistically link human chronic inflammation to tumor development. Our data therefore challenge commonly held beliefs of the anti-inflammatory role of Treg cells and suggest a more complex Treg cell biology, at least in the context of human chronic inflammation and associated carcinoma.  相似文献   

17.
18.
近年研究发现了效应性辅助性T细胞的新亚群-Th17细胞,它主要分泌IL-17、IL-17F、IL-21和IL-22等细胞因子。Th17细胞及其效应分子被认为与自身免疫病和其他多种疾病相关。该文从Th17细胞的发现、人和小鼠Th17细胞的分化、Th17细胞的效应性因子及与健康和疾病的相关性几个方面对目前的研究进展进行了综述。  相似文献   

19.
TGF-β and IL-6 induce Th17 differentiation, and IL-23 is required for expansion and maintenance of Th17 cells. Recently, it was shown that IL-6 up-regulates IL-23R mRNA in naive CD4+ T cells and therefore IL-6 and IL-23 synergistically promote Th17 differentiation. However, the molecular mechanism whereby IL-6 and IL-23 induce Th17 differentiation and the relevance to TGF-β remain unknown. Here, we found that IL-6 up-regulated IL-23R mRNA expression, and IL-6 and IL-23 synergistically augmented its protein expression. The combination induced Th17 differentiation, and TGF-β1 further enhanced it. IL-6 augmented endogenous TGF-β1 mRNA expression, whereas the amount of TGF-β produced was not enough to induce Th17 differentiation by IL-6 alone. However, unexpectedly, the up-regulation of IL-23R and induction of Th17 differentiation by IL-6 and IL-23 were almost completely inhibited by anti-TGF-β. These results suggest that the induction of IL-23R and Th17 differentiation by IL-6 and IL-23 is mediated through endogenously produced TGF-β.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号