首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular properties and modulation of the identified neurons of the posterior cardiac plate-pyloric system in the stomatogastric ganglion of a stomatopod, Squilla oratoria, were studied electrophysiologically. Each class of neurons involved in the cyclic bursting activity was able to trigger an endogenous, slow depolarizing potential (termed a driver potential) which sustained bursting. Endogenous oscillatory properties were demonstrated by the phase reset behavior in response to brief stimuli during ongoing rhythm. The driver potential was produced by membrane voltage-dependent activation and terminated by an active repolarization. Striking enhancement of bursting properties of all the cell types was induced by synaptic activation via extrinsic nerves, seen as increases in amplitude or duration of driver potentials, spiking rate during a burst, and bursting rate. The motor pattern produced under the influence of extrinsic modulatory inputs continued for a long time, relative to that in the absence of activation of modulatory inputs. Voltage-dependent conductance mechanisms underlying postinhibitory rebound and driver potential responses were modified by inputs. It is concluded that endogenous cellular properties, as well as synaptic circuitry and extrinsic inputs, contribute to generation of the rhythmic motor pattern, and that a motor system and its component neurons have been highly conserved during evolution between stomatopods and decapods.Abbreviations AB anterior burster neuron - CoG commissural ganglion - CPG central pattern generator - lvn lateral ventricular nerve - OG oesophageal ganglion - pcp posterior cardiac plate - PCP pcp constrictor neuron - PD pyloric dilator neuron - PY pyloric constrictor neuron - son superior oesophageal nerve - STG stomatogastric ganglion - stn stomatogastric nerve  相似文献   

2.
3.
Summary In the stomatogastric ganglion (STG) of Homarus gammarus, pacemaker neurons of the pyloric central pattern generator are entrained by a network oscillator (CPO) contained in the commissural ganglion. A consequence of CPO's influence is that the spontaneous pyloric period can take one of several absolute values, most commonly displaying a bimodal distribution. These discrete values correspond to different coordination modes with the CPO rhythm. Moreover, the oscillation period of pyloric pacemaker neurons varies discontinuously with their membrane potential. This behavior persists when the mean pyloric period is modified by different perfusion salines but disappears when the STG is disconnected from the anterior ganglia. Under these conditions, pyloric pacemaker neurons are deprived of CPO inputs and behave like independent oscillators whose period varies continuously as a function of the membrane potential. The modulatory pyloric suppressor neurons (PS), which are known to decrease the oscillatory capabilities of the pyloric pacemakers, can change the coordination mode between these neurons and the CPO. PS can provoke discontinuous variations in the pyloric period as a function of their firing frequency. Finally, the nonlinear behavior of the pyloric pattern generator described in Homarus also occurs in Jasus lalandii, in which the existence of a CPO has not yet been demonstrated.Abbreviations AB anterior burster neuron - ASW artificial seawater - COG commissural ganglion - CP commissural pyloric neuron - CPG central pattern generator - CPO commissural pyloric oscillator - IC inferior cardiac neuron - ivn inferior ventricular nerve - LP lateral pyloric neuron - OG esophageal ganglion - PD pyloric dilator neuron - PDn pyloric dilator nerve - PS pyloric suppressor neuron - son superior esophageal nerve - PY pylonic neuron - STG stomatogastric ganglion - stn stomatogastric nerve - vlvn ventral branch of the lateral ventricular nerve Maître de conférence à l'U.E.R. de Médecine et de Pharmacie, 2 rue Dr Marcland, 87025 Limoges Cedex, France.  相似文献   

4.
Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons) allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO) model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron) and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency) similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA) to each of these four groups. PCA identified a set of three maximal conductances (leak current, Leak; a persistent K current, K2; and of a persistent Na+ current, P) that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of Leak, K2, and P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained.  相似文献   

5.
A model of bursting activity in the RPal neuron of the snailHelix pomatia has been developed. In this model, calcium conductances do not play a key role in generation of slow oscillations of membrane potential (MP). The possibility of simulating the maintenance of bursting in the presence of cadmium ions is shown. Inclusion in the model of the calcium-inactivated calcium conductance makes it possible to reproduce both adaptation of the neuron to constant polarizing current, which modifies bursting, and the development of slow inward current when MP is clamped at different phases at the slow wave. In our simulations, the characteristic properties of bursts (such as an increase in the frequency of action potentials and a decrease in spike undershoot at the beginning of a burst) are due to the cumulative inactivation of potassium current. The advantages of the presented mathematical model of bursting compared with other models are discussed.Neirofiziologiya/Neurophysiology, Vol. 26, No. 5, pp. 373–381, September–October, 1994.  相似文献   

6.
Activity patterns of the constituent neurons of the posterior cardiac plate-pyloric system in the stomatogastric ganglion of the mantis shrimp Squilla oratoria were studied by recording spontaneous burst discharges intracellularly from neuronal somata. These neurons were identified electrophysiologically, and synaptic connections among them were qualitatively analysed. The posterior cardiac plate constrictor, pyloric constrictor, pyloric dilator and ventricular dilator motoneurons, and the pyloric interneuron were involved in the posterior cardiac plate-pyloric system. All the cell types could produce slow burst-forming potentials which led to repetitive spike discharges. These neurons generated sequentially patterned outputs. Most commonly, the posterior cardiac plate neuron activity was followed by the activity of pyloric constrictor neurons, and then by the activity of pyloric dilator/pyloric interneuron, and ventricular dilator neurons. The motoneurons and interneuron in the posterior cardiac plate-pyloric system were connected to each other either by electrical or by inhibitory chemical synapses, and thus constructed the neural circuit characterized by a wiring diagram which was structurally similar to the pyloric circuit of decapods. The circuitry in the stomatogastric ganglion was strongly conserved during evolution between stomatopods and decapods, despite significant changes in the peripheral structure of the foregut. There were more electrical synapses in stomatopods, and more reciprocal inhibitory synapses in decapods.Abbreviations EJP excitatory junctional potential - IPSP inhibitory postsynaptic potential - CoG commissural ganglion - CPG central pattern generator - ion inferior oesophageal nerve - OG oesophageal ganglion - pcp posterior cardiac plate - son superior oesophageal nerve - STG stomatogastric ganglion - stn stomatogastric nerve - PY pyloric constrictor - PD pyloric dilator - VD ventricular dilator - AB pyloric interneuron - lvn lateral ventricular nerves - tcpm transverse cardiac plate muscle  相似文献   

7.
Kuang GH  Liu YH  Ren W 《生理学报》2012,64(3):275-281
The stomatogastric ganglion (STG) of shellfish includes 30 neurons and produces pyloric rhythms. It is the common model to study central pattern generator (CPG). Regulation of pyloric rhythms not only is related to the property of single neurons in STG but also depends on the connections and property of the whole neuronal network. It has been found that transient potassium current (I(A)) and hyperpolarization-activated cation current (I(h)) exist in certain types of neurons of STG. However, roles played by these two currents in maintaining and regulating the pyloric rhythms are unknown. In the present study, in vitro electrophysiological recordings were performed on crayfish STG to examine the role played by I(A) and I(h) in regulation of pyloric rhythm. 4AP (2 mmol/L), a specific inhibitor of I(A), caused a decrease in pyloric cycle (P < 0.01), an increase in PD (pyloric dilator) ratio, a decrease in PY (pyloric) ratio (P < 0.01) and delay of phases of LP and PY firing. ZD7288 (100 μmol/L), a specific inhibitor of I(h), caused a decrease in pyloric cycle (P < 0.01), an increase in PD ratio (P < 0.01), an increase in LP (lateral pyloric) ratio (P < 0.01), a decrease in PY ratio (P < 0.01) and delay of phases of LP and PY firing. These results indicate that I(A) and I(h) play important roles in regulating pyloric rhythms in crayfish STG.  相似文献   

8.
We made a computational model of a single neuron to study the effect of the small conductance (SK) Ca2+-dependent K+ channel on spike frequency adaptation. The model neuron comprised a Na+ conductance, a Ca2+ conductance, and two Ca2+-independent K+ conductances, as well as a small and a large (BK) Ca2+-activated K+ conductance, a Ca2+ pump, and mechanisms for Ca2+ buffering and diffusion. Sustained current injection that simulated synaptic input resulted in a train of action potentials (APs) which in the absence of the SK conductance showed very little adaptation with time. The transfer function of the neuron was nearly linear, i.e., both asymptotic spike rate as well as the intracellular free Ca2+ concentration ([Ca2+]i) were approximately linear functions of the input current. Adding an SK conductance with a steep nonlinear dependence on [Ca2+]i (. Pflügers Arch. 422:223-232; K?hler, Hirschberg, Bond, Kinzie, Marrion, Maylie, and Adelman. 1996. Science. 273:1709-1714) caused a marked time-dependent spike frequency adaptation and changed the transfer function of the neuron from linear to logarithmic. Moreover, the input range the neuron responded to with regular spiking increased by a factor of 2.2. These results can be explained by a shunt of the cell resistance caused by the activation of the SK conductance. It might turn out that the logarithmic relationships between the stimuli of some modalities (e.g., sound or light) and the perception of the stimulus intensity (Fechner's law) have a cellular basis in the involvement of SK conductances in the processing of these stimuli.  相似文献   

9.
To determine why elements of central pattern generators phase lock in a particular pattern under some conditions but not others, we tested a theoretical pattern prediction method. The method is based on the tabulated open loop pulsatile interactions of bursting neurons on a cycle-by-cycle basis and was tested in closed loop hybrid circuits composed of one bursting biological neuron and one bursting model neuron coupled using the dynamic clamp. A total of 164 hybrid networks were formed by varying the synaptic conductances. The prediction of 1:1 phase locking agreed qualitatively with the experimental observations, except in three hybrid circuits in which 1:1 locking was predicted but not observed. Correct predictions sometimes required consideration of the second order phase resetting, which measures the change in the timing of the second burst after the perturbation. The method was robust to offsets between the initiation of bursting in the presynaptic neuron and the activation of the synaptic coupling with the postsynaptic neuron. The quantitative accuracy of the predictions fell within the variability (10%) in the experimentally observed intrinsic period and phase resetting curve (PRC), despite changes in the burst duration of the neurons between open and closed loop conditions.  相似文献   

10.
Central pattern generators (CPGs) frequently include bursting neurons that serve as pacemakers for rhythm generation. Phase resetting curves (PRCs) can provide insight into mechanisms underlying phase locking in such circuits. PRCs were constructed for a pacemaker bursting complex in the pyloric circuit in the stomatogastric ganglion of the lobster and crab. This complex is comprised of the Anterior Burster (AB) neuron and two Pyloric Dilator (PD) neurons that are all electrically coupled. Artificial excitatory synaptic conductance pulses of different strengths and durations were injected into one of the AB or PD somata using the Dynamic Clamp. Previously, we characterized the inhibitory PRCs by assuming a single slow process that enabled synaptic inputs to trigger switches between an up state in which spiking occurs and a down state in which it does not. Excitation produced five different PRC shapes, which could not be explained with such a simple model. A separate dendritic compartment was required to separate the mechanism that generates the up and down phases of the bursting envelope (1) from synaptic inputs applied at the soma, (2) from axonal spike generation and (3) from a slow process with a slower time scale than burst generation. This study reveals that due to the nonlinear properties and compartmentalization of ionic channels, the response to excitation is more complex than inhibition.  相似文献   

11.
In Crustacea the central pattern generator for the pyloric motor rhythm (filtration to the midgut) is known to be located within the stomatogastric ganglion (STG); its cycling activity is known to be organized by three endogenous burster neurons acting as pacemakers and driving 11 follower neurons. In Homarus, recordings from the isolated stomatogastric nervous system (Fig. 1) indicate that (1) the pyloric output can be generated only when the STG is afferented (i.e., connected to the more rostral oesophageal and commissural ganglia) (Fig. 2) and (2) the deafferntation of the STG results in a complete loss of the bursting properties of the pacemaker neurons (Fig. 4). Manipulation of the STG inputs responsible for unmasking the properties of the pacemakers strongly suggests that (1) they are not phasic inputs (Fig. 5) and (2) they are long-term acting inputs (Fig. 6). These results provide evidence for a neural all-or-none control of the bursting properties of the pacemaker neurons of a motor pattern generator.  相似文献   

12.
Spike generation in cortical neurons depends on the interplay between diverse intrinsic conductances. The phase response curve (PRC) is a measure of the spike time shift caused by perturbations of the membrane potential as a function of the phase of the spike cycle of a neuron. Near the rheobase, purely positive (type I) phase-response curves are associated with an onset of repetitive firing through a saddle-node bifurcation, whereas biphasic (type II) phase-response curves point towards a transition based on a Hopf-Andronov bifurcation. In recordings from layer 2/3 pyramidal neurons in cortical slices, cholinergic action, consistent with down-regulation of slow voltage-dependent potassium currents such as the M-current, switched the PRC from type II to type I. This is the first report showing that cholinergic neuromodulation may cause a qualitative switch in the PRCs type implying a change in the fundamental dynamical mechanism of spike generation.  相似文献   

13.
We investigate spike initiation and propagation in a model axon that has a slow regenerative conductance as well as the usual Hodgkin-Huxley type sodium and potassium conductances. We study the role of slow conductance in producing repetitive firing, compute the dispersion relation for an axon with an additional slow conductance, and show that under appropriate conditions such an axon can produce a traveling zone of secondary spike initiation. This study illustrates some of the complex dynamics shown by excitable membranes with fast and slow conductances.  相似文献   

14.
Persistent use-dependent changes in the intrinsic neuronal excitability determine the long-term dynamics of the activity of these neurons. In synergy with the long-lasting modification of synaptic transmission, such changes in the excitability presumably contribute to the formation of a memory trace in the brain. Nevertheless, neither particular transmembrane ion conductances implicated in the intrinsic plasticity nor the mechanisms of regulation of such conductances have been identified in most neurons where this plasticity was observed. In our model study, we tried to determine those membrane conductances in cerebellar granule cells (GrCs) whose changes can result in a persistent increase in the input resistance and a decrease in the spike threshold observed after high-frequency stimulation of presynaptic neurons. For this purpose, published experimental results were simulated with the use of a slightly modified model of the electroresponsiveness of rat cerebellar GrCs. It was concluded that experimentally observed changes in the input resistance of the neuron, in the minimum current step needed to fire action potentials (APs), in the spike threshold, in the average spike frequency, and in the delay of the first spike may be caused only by changes in the background voltage-independent potassium conductance and persistent sodium conductance. Hyperpolarization-directed shifts in the activation and inactivation curves of fast sodium channels are also possible. The observed changes in the intrinsic excitability evoke the shift in the peak of the frequency-response curve in such a manner that it becomes close to the frequency of oscillations recorded in the cerebellar granular layer during realization of voluntary movements. Neirofiziologiya/Neurophysiology, Vol. 38, No. 2, pp. 119–130, March–April, 2006.  相似文献   

15.
The motor patterns produced by the stomatogastric ganglion (STG) are strongly influenced by descending modulatory inputs from anterior ganglia. With these inputs intact, in control saline, the motor patterns produced by the stomatogastric nervous system of embryonic and larval lobsters are slower and less regular than those of adult lobsters. We studied the effects of the hormonal modulator, crustacean cardioactive peptide (CCAP) on the discharge patterns of STG motor patterns in embryos, larvae, and adult Maine lobsters, Homarus americanus, with the anterior inputs present and absent. In adults, CCAP initiated robust pyloric rhythms from STGs isolated from their descending control and modulatory inputs. Likewise, CCAP initiated robust activity in isolated embryonic and larval STGs. Nonetheless, quantitative analyses revealed that the frequency and regularity of the STG motor neuron discharge seen in the presence of CCAP in isolated STGs from embryos were significantly lower than those seen late in larval life and in adults under the same conditions. In contrast, when the descending control and modulatory pathways to the STG were left intact, the embryonic and larval burst frequency seen in the presence of CCAP was increased by CCAP, whereas the burst frequency in adults was decreased by CCAP, so that in CCAP the frequencies at all stages were statistically indistinguishable. These data argue that immature embryonic motor patterns seen in the absence of CCAP are a function of immaturity in both the STG and in the descending and modulatory pathways.  相似文献   

16.
1. Results from the companion paper were incorporated into a physiologically realistic computer model of the three principal cell types (PD/AB, LP, PY) of the pyloric network in the stomatogastric ganglion. Parameters for the model were mostly calculated (sometimes estimated) from experimental data rather than fitting the model to observed output patterns. 2. The initial run was successful in predicting several features of the pyloric pattern: the observed gap between PD and LP bursts, the appropriate sequence of the activity periods (PD, LP, PY), and a substantial PY burst not properly simulated by an earlier model. 3. The major discrepancy between model and observed patterns was the too-early occurrence of the PY burst, which resulted in a much shortened LP burst. Motivated by this discrepancy, additional investigations were made of PY properties. A hyperpolarization-enabled depolorization-activated hyperpolarizing conductance change was discovered which may make an important contribution to the late phase of PY activity in the normal burst cycle. Addition of this effect to the model brought its predictions more in line with observed patterns. 4. Other discrepancies between model and observation were instructive and are discussed. The findings force a substantial revision in previously held ideas on pattern production in the pyloric system. More weight must be given to functional properties of individual neurons and less to properties arising purely from network interactions. This shift in emphasis may be necessary in more complicated systems as well. 5. An example has been provided of the value quantitative modeling can be to network physiology. Only through rigorous quantitative testing can qualitative theories of how the nervous system operates be substantiated.  相似文献   

17.
Recordings of the membrane potential from a bursting neuron were used to reconstruct the phase curve for that neuron for a limited set of perturbations. These perturbations were inhibitory synaptic conductance pulses able to shift the membrane potential below the most hyperpolarized level attained in the free running mode. The extraction of the phase resetting curve from such a one-dimensional time series requires reconstruction of the periodic activity in the form of a limit cycle attractor. Resetting was found to have two components. In the first component, if the pulse was applied during a burst, the burst was truncated, and the time until the next burst was shortened in a manner predicted by movement normal to the limit cycle. By movement normal to the limit cycle, we mean a switch between two well-defined solution branches of a relaxation-like oscillator in a hysteretic manner enabled by the existence of a singular dominant slow process (variable). In the second component, the onset of the burst was delayed until the end of the hyperpolarizing pulse. Thus, for the pulse amplitudes we studied, resetting was independent of amplitude but increased linearly with pulse duration. The predicted and the experimental phase resetting curves for a pyloric dilator neuron show satisfactory agreement. The method was applied to only one pulse per cycle, but our results suggest it could easily be generalized to accommodate multiple inputs.  相似文献   

18.
龙虾胃肠神经系统的数值分析   总被引:2,自引:0,他引:2  
利用抑制神经系统的WinnerLess Competition(WLC)模型,通过数值方法分析Mulloney型龙虾胃肠神经系统神经元的电位发放,得到胃研磨囊和幽门神经系统中各个神经元的电位发放和系统的节律变化。结果表明,胃研磨系统内神经元的发放规律显示两侧牙齿和中间牙齿出现切断、挤压和研磨食物等状态,幽门系统内神经元的发放规律显示幽门节律出现依次发放的三个部分。两个神经系统的数值结果,不仅解释了龙虾胃肠神经系统中神经元电位发放与肌肉运动的关系,而且理论再现了龙虾胃肠神经系统的节律变化和实验结果。  相似文献   

19.
A stochastic spike train analysis technique is introduced to reveal the correlation between the firing of the next spike and the temporal integration period of two consecutive spikes (i.e., a doublet). Statistics of spike firing times between neurons are established to obtain the conditional probability of spike firing in relation to the integration period. The existence of a temporal integration period is deduced from the time interval between two consecutive spikes fired in a reference neuron as a precondition to the generation of the next spike in a compared neuron. This analysis can show whether the coupled spike firing in the compared neuron is correlated with the last or the second-to-last spike in the reference neuron. Analysis of simulated and experimentally recorded biological spike trains shows that the effects of excitatory and inhibitory temporal integration are extracted by this method without relying on any subthreshold potential recordings. The analysis also shows that, with temporal integration, a neuron driven by random firing patterns can produce fairly regular firing patterns under appropriate conditions. This regularity in firing can be enhanced by temporal integration of spikes in a chain of polysynaptically connected neurons. The bandpass filtering of spike firings by temporal integration is discussed. The results also reveal that signal transmission delays may be attributed not just to conduction and synaptic delays, but also to the delay time needed for temporal integration. Received: 3 March 1997 / Accepted in revised form: 6 November 1997  相似文献   

20.
Summary The muscles of the pyloric region of the stomach of the crab,Cancer borealis, are innervated by motorneurons found in the stomatogastric ganglion (STG). Electrophysiological recording and stimulating techniques were used to study the detailed pattern of innervation of the pyloric region muscles. Although there are two Pyloric Dilator (PD) motorneurons in lobsters, previous work reported four PD motorneurons in the crab STG (Dando et al. 1974; Hermann 1979a, b). We now find that only two of the crab PD neurons innervate muscles homologous to those innervated by the PD neurons in the lobster,Panulirus interrruptus. The remaining two PD neurons innervate muscles that are innervated by pyloric (PY) neurons inP. interruptus. The innervation patterns of the Lateral Pyloric (LP), Ventricular Dilator (VD), Inferior Cardiac (IC), and PY neurons were also determined and compared with those previously reported in lobsters. Responses of the muscles of the pyloric region to the neurotransmitters, acetylcholine (ACh) and glutamate, were determined by application of exogenous cholinergic agonists and glutamate. The effect of the cholinergic antagonist, curare, on the amplitude of the excitatory junctional potentials (EJPs) evoked by stimulation of the pyloric motor nerves was measured. These experiments suggest that the differences in innervation pattern of the pyloric muscles seen in crab and lobsters are also associated with a change in the neurotransmitter active on these muscles. Possible implications of these findings for phylogenetic relations of decapod crustaceans and for the evolution of neural circuits are discussed.Abbreviations ACh acetylcholine - Carb carbamylcholine - cpv muscles of the cardio-pyloric valve - cpv7n nerve innervating muscle cpv7 - cv muscles of the ventral cardiac ossicles - cv1n nerve innervating muscle cvl - cv2n nerve innervating muscle cv2 - EJP excitatory junctional potential - IC inferior cardiac neuron - IV inferior ventricular neuron - IVN inferior ventricular nerve - LP lateral pyloric neuron - LPG lateral posterior gastric neuron - lvn lateral ventricular nerve - mvn medial ventricular nerve - p muscles of the pylorus - PD pyloric dilator neuron - PD in intrinsic PD neuron - PD ex extrinsic PD neuron - pdn pyloric dilator nerve - PY pyloric neuron - pyn pyloric nerve - STG stomatogastric ganglion - VD ventricular dilator neuron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号