共查询到20条相似文献,搜索用时 0 毫秒
1.
Kathleen A. Burke Karlina J. Kauffman C. Samuel Umbaugh Shelli L. Frey Justin Legleiter 《The Journal of biological chemistry》2013,288(21):14993-15005
Huntington disease (HD) is caused by an expanded polyglutamine (poly(Q)) repeat near the N terminus of the huntingtin (htt) protein. Expanded poly(Q) facilitates formation of htt aggregates, eventually leading to deposition of cytoplasmic and intranuclear inclusion bodies containing htt. Flanking sequences directly adjacent to the poly(Q) domain, such as the first 17 amino acids on the N terminus (Nt17) and the polyproline (poly(P)) domain on the C-terminal side of the poly(Q) domain, heavily influence aggregation. Additionally, htt interacts with a variety of membraneous structures within the cell, and Nt17 is implicated in lipid binding. To investigate the interaction between htt exon1 and lipid membranes, a combination of in situ atomic force microscopy, Langmuir trough techniques, and vesicle permeability assays were used to directly monitor the interaction of a variety of synthetic poly(Q) peptides with different combinations of flanking sequences (KK-Q35-KK, KK-Q35-P10-KK, Nt17-Q35-KK, and Nt17-Q35-P10-KK) on model membranes and surfaces. Each peptide aggregated on mica, predominately forming extended, fibrillar aggregates. In contrast, poly(Q) peptides that lacked the Nt17 domain did not appreciably aggregate on or insert into lipid membranes. Nt17 facilitated the interaction of peptides with lipid surfaces, whereas the poly(P) region enhanced this interaction. The aggregation of Nt17-Q35-P10-KK on the lipid bilayer closely resembled that of a htt exon1 construct containing 35 repeat glutamines. Collectively, this data suggests that the Nt17 domain plays a critical role in htt binding and aggregation on lipid membranes, and this lipid/htt interaction can be further modulated by the presence of the poly(P) domain. 相似文献
2.
Trevino RS Lauckner JE Sourigues Y Pearce MM Bousset L Melki R Kopito RR 《The Journal of biological chemistry》2012,287(35):29722-29728
The pathogenesis of most neurodegenerative diseases, including transmissible diseases like prion encephalopathy, inherited disorders like Huntington disease, and sporadic diseases like Alzheimer and Parkinson diseases, is intimately linked to the formation of fibrillar protein aggregates. It is becoming increasingly appreciated that prion-like intercellular transmission of protein aggregates can contribute to the stereotypical spread of disease pathology within the brain, but the mechanisms underlying the binding and uptake of protein aggregates by mammalian cells are largely uninvestigated. We have investigated the properties of polyglutamine (polyQ) aggregates that endow them with the ability to bind to mammalian cells in culture and the properties of the cell surface that facilitate such uptake. Binding and internalization of polyQ aggregates are common features of mammalian cells and depend upon both trypsin-sensitive and trypsin-resistant saturable sites on the cell surface, suggesting the involvement of cell surface proteins in this process. polyQ aggregate binding depends upon the presence of a fibrillar amyloid-like structure and does not depend upon electrostatic interaction of fibrils with the cell surface. Sequences in the huntingtin protein that flank the amyloid-forming polyQ tract also influence the extent to which aggregates are able to bind to cell surfaces. 相似文献
3.
There are now 10 expanded CAG repeat diseases in which both disease risk and age of onset are strongly dependent on the repeat length of the polyglutamine (polyQ) sequence in the disease protein. Large, polyQ-rich inclusions in patient brains and in cell and animal models are consistent with the involvement of polyQ aggregation in the disease mechanism. This possibility is reinforced by studies showing strong repeat length dependence to the aggregation process, qualitatively mirroring the repeat length dependence of disease risk. Our understanding of the underlying biophysical principles that mediate the repeat length dependence of aggregation, however, is far from complete. A previous study of simple polyQ peptides showed that N*, the size of the critical nucleus that controls onset of aggregation, decreases from unfavorable tetramer to favorable monomer over the range Q23 to Q26. These data, however, do not explain why, for all peptides exhibiting N* ∼ 1, spontaneous aggregation rates continue to increase with increasing repeat length. Here we describe a novel kinetics analyses that maps out the nonlinear dependence with repeat length of a nucleation efficiency term that is likely related to aspects of nucleus structure. This trend accounts for why nucleus size increases to tetrameric at repeat lengths of Q23 or below. Intriguingly, both aggregation and age of onset trend with repeat length in similar ways, exhibiting large changes per added Gln at low repeat lengths and small changes per added Gln at relatively long repeat lengths. Fibril stability also increases with repeat length in a nonlinear fashion. 相似文献
4.
Yuji Saitoh Nobuhiro Fujikake Yuma Okamoto H. Akiko Popiel Yusuke Hatanaka Morio Ueyama Mari Suzuki Sébastien Gaumer Miho Murata Keiji Wada Yoshitaka Nagai 《The Journal of biological chemistry》2015,290(3):1442-1453
Oligomer formation and accumulation of pathogenic proteins are key events in the pathomechanisms of many neurodegenerative diseases, such as Alzheimer disease, ALS, and the polyglutamine (polyQ) diseases. The autophagy-lysosome degradation system may have therapeutic potential against these diseases because it can degrade even large oligomers. Although p62/sequestosome 1 plays a physiological role in selective autophagy of ubiquitinated proteins, whether p62 recognizes and degrades pathogenic proteins in neurodegenerative diseases has remained unclear. In this study, to elucidate the role of p62 in such pathogenic conditions in vivo, we used Drosophila models of neurodegenerative diseases. We found that p62 predominantly co-localizes with cytoplasmic polyQ protein aggregates in the MJDtr-Q78 polyQ disease model flies. Loss of p62 function resulted in significant exacerbation of eye degeneration in these flies. Immunohistochemical analyses revealed enhanced accumulation of cytoplasmic aggregates by p62 knockdown in the MJDtr-Q78 flies, similarly to knockdown of autophagy-related genes (Atgs). Knockdown of both p62 and Atgs did not show any additive effects in the MJDtr-Q78 flies, implying that p62 function is mediated by autophagy. Biochemical analyses showed that loss of p62 function delays the degradation of the MJDtr-Q78 protein, especially its oligomeric species. We also found that loss of p62 function exacerbates eye degeneration in another polyQ disease fly model as well as in ALS model flies. We therefore conclude that p62 plays a protective role against polyQ-induced neurodegeneration, by the autophagic degradation of polyQ protein oligomers in vivo, indicating its therapeutic potential for the polyQ diseases and possibly for other neurodegenerative diseases. 相似文献
5.
The DNAJB6 and DNAJB8 Protein Chaperones Prevent Intracellular Aggregation of Polyglutamine Peptides
Judith Gillis Sabine Schipper-Krom Katrin Juenemann Anna Gruber Silvia Coolen Rian van den Nieuwendijk Henk van Veen Hermen Overkleeft Joachim Goedhart Harm H. Kampinga Eric A. Reits 《The Journal of biological chemistry》2013,288(24):17225-17237
Fragments of proteins containing an expanded polyglutamine (polyQ) tract are thought to initiate aggregation and toxicity in at least nine neurodegenerative diseases, including Huntington''s disease. Because proteasomes appear unable to digest the polyQ tract, which can initiate intracellular protein aggregation, preventing polyQ peptide aggregation by chaperones should greatly improve polyQ clearance and prevent aggregate formation. Here we expressed polyQ peptides in cells and show that their intracellular aggregation is prevented by DNAJB6 and DNAJB8, members of the DNAJ (Hsp40) chaperone family. In contrast, HSPA/Hsp70 and DNAJB1, also members of the DNAJ chaperone family, did not prevent peptide-initiated aggregation. Intriguingly, DNAJB6 and DNAJB8 also affected the soluble levels of polyQ peptides, indicating that DNAJB6 and DNAJB8 inhibit polyQ peptide aggregation directly. Together with recent data showing that purified DNAJB6 can suppress fibrillation of polyQ peptides far more efficiently than polyQ expanded protein fragments in vitro, we conclude that the mechanism of DNAJB6 and DNAJB8 is suppression of polyQ protein aggregation by directly binding the polyQ tract. 相似文献
6.
Claire H. Michel Satish Kumar Dorothea Pinotsi Alan Tunnacliffe Peter St. George-Hyslop Eckhard Mandelkow Eva-Maria Mandelkow Clemens F. Kaminski Gabriele S. Kaminski Schierle 《The Journal of biological chemistry》2014,289(2):956-967
Understanding the formation and propagation of aggregates of the Alzheimer disease-associated Tau protein in vivo is vital for the development of therapeutics for this devastating disorder. Using our recently developed live-cell aggregation sensor in neuron-like cells, we demonstrate that different variants of exogenous monomeric Tau, namely full-length Tau (hTau40) and the Tau-derived construct K18 comprising the repeat domain, initially accumulate in endosomal compartments, where they form fibrillar seeds that subsequently induce the aggregation of endogenous Tau. Using superresolution imaging, we confirm that fibrils consisting of endogenous and exogenous Tau are released from cells and demonstrate their potential to spread Tau pathology. Our data indicate a greater pathological risk and potential toxicity than hitherto suspected for extracellular soluble Tau. 相似文献
7.
Saskia Polling Yee-Foong Mok Yasmin M. Ramdzan Bradley J. Turner Justin J. Yerbury Andrew F. Hill Danny M. Hatters 《The Journal of biological chemistry》2014,289(10):6669-6680
Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate self-aggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion subtypes, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis. Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis (PulSA) to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the nonaggregating forms, regardless of whether cells had inclusions or not, whereas 72Q was almost exclusively monomeric until inclusions formed. We propose that mutations leading to JUNQ inclusions induce a constitutively “misfolded” state exposing hydrophobic side chains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. Poly(Q) is not misfolded in this same sense due to universal polar side chains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control. 相似文献
8.
Nyström S Mishra R Hornemann S Aguzzi A Nilsson KP Hammarström P 《The Journal of biological chemistry》2012,287(31):25975-25984
The role of the polymorphism Met or Val in position 129 in the human prion protein is well documented regarding disease susceptibility and clinical manifestations. However, little is known about the molecular background to this phenomenon. We investigated herein the conformational stability, amyloid fibrillation kinetics, and seeding propensity of different 129 mutants, located in β-strand 1 of PrP (Met(129) (WT), M129A, M129V, M129L, M129W, M129P, M129E, M129K, and M129C) in HuPrP(90-231). The mutations M129V, M129L, M129K, and M129C did not affect stability (midpoints of thermal denaturation, T(m) = 65-66 °C), whereas the mutants M129A and M129E and the largest side chain M129W were destabilized by 3-4 °C. The most destabilizing substitution was M129P, which lowered the T(m) by 7.2 °C. All mutants, except for M129C, formed amyloid-like fibrils within hours during fibril formation under near physiological conditions. Fibril-forming mutants showed a sigmoidal kinetic profile and showed shorter lag times during seeding with preformed amyloid fibrils implicating a nucleated polymerization reaction. In the spontaneous reactions, the lag time of fibril formation was rather uniform for the mutants M129A, M129V, and M129L resembling the wild type. When the substituted amino acid had a distinct feature discriminating it from the wild type, such as size (M129W), charge (M129E, M129K), or rotational constraint (M129P), the fibrillation was impeded. M129C did not form ThT/Congo red-positive fibrils, and non-reducing SDS-PAGE of M129C during fibrillation conditions at different time points revealed covalent dimer formation already 15 min after fibrillation reaction initiation. Position 129 appears to be a key site for dictating PrP receptiveness toward recruitment into the amyloid state. 相似文献
9.
Lamberto GR Torres-Monserrat V Bertoncini CW Salvatella X Zweckstetter M Griesinger C Fernández CO 《The Journal of biological chemistry》2011,286(37):32036-32044
The fibrillation of amyloidogenic proteins is a critical step in the etiology of neurodegenerative disorders such as Alzheimer and Parkinson diseases. There is major interest in the therapeutic intervention on such aberrant aggregation phenomena, and the utilization of polyaromatic scaffolds has lately received considerable attention. In this regard, the molecular and structural basis of the anti-amyloidogenicity of polyaromatic compounds, required to evolve this molecular scaffold toward therapeutic drugs, is not known in detail. We present here biophysical and biochemical studies that have enabled us to characterize the interaction of metal-substituted, tetrasulfonated phthalocyanines (PcTS) with α-synuclein (AS), the major protein component of amyloid-like deposits in Parkinson disease. The inhibitory activity of the assayed compounds on AS amyloid fibril formation decreases in the order PcTS[Ni(II)] ~ PcTS > PcTS[Zn(II)] > PcTS[Al(III)] ≈ 0. Using NMR and electronic absorption spectroscopies we demonstrated conclusively that the differences in binding capacity and anti-amyloid activity of phthalocyanines on AS are attributed to their relative ability to self-stack through π-π interactions, modulated by the nature of the metal ion bound at the molecule. Low order stacked aggregates of phthalocyanines were identified as the active amyloid inhibitory species, whose effects are mediated by residue specific interactions. Such sequence-specific anti-amyloid behavior of self-stacked phthalocyanines contrasts strongly with promiscuous amyloid inhibitors with self-association capabilities that act via nonspecific sequestration of AS molecules. The new findings reported here constitute an important contribution for future drug discovery efforts targeting amyloid formation. 相似文献
10.
Alexandra Silva Ana Viana de Almeida Sandra Macedo-Ribeiro 《Journal of structural biology》2018,201(2):139-154
Polyglutamine (polyQ) repeat-containing proteins are widespread in the human proteome but only nine of them are associated with highly incapacitating neurodegenerative disorders. The genetic expansion of the polyQ tract in disease-related proteins triggers a series of events resulting in neurodegeneration. The polyQ tract plays the leading role in the aggregation mechanism, but other elements modulate the aggregation propensity in the context of the full-length proteins, as implied by variations in the length of the polyQ tract required to trigger the onset of a given polyQ disease. Intrinsic features such as the presence of aggregation-prone regions (APRs) outside the polyQ segments and polyQ-flanking sequences, which synergistically participate in the aggregation process, are emerging for several disease-related proteins. The inherent polymorphic structure of polyQ stretches places the polyQ proteins in a central position in protein–protein interaction networks, where interacting partners may additionally shield APRs or reshape the aggregation course. Expansion of the polyQ tract perturbs the cellular homeostasis and contributes to neuronal failure by modulating protein–protein interactions and enhancing toxic oligomerization. Post-translational modifications further regulate self-assembly either by directly altering the intrinsic aggregation propensity of polyQ proteins, by modulating their interaction with different macromolecules or by modifying their withdrawal by the cell quality control machinery. Here we review the recent data on the multifaceted aggregation pathways of disease-related polyQ proteins, focusing on ataxin-3, the protein mutated in Machado-Joseph disease. Further mechanistic understanding of this network of events is crucial for the development of effective therapies for polyQ diseases. 相似文献
11.
Oculopharyngeal muscular dystrophy is a late-onset disease caused by an elongation of a natural 10-alanine segment within the N-terminal domain of the nuclear poly(A)-binding protein 1 (PABPN1) to maximally 17 alanines. The disease is characterized by intranuclear deposits consisting primarily of PABPN1. In previous studies, we could show that the N-terminal domain of PABPN1 forms amyloid-like fibrils. Here, we analyze fibril formation of full-length PABPN1. Unexpectedly, fibril formation was independent of the presence of the alanine segment. With regard to fibril formation kinetics and resistance against denaturants, fibrils formed by full-length PABPN1 had completely different properties from those formed by the N-terminal domain. Fourier transformed infrared spectroscopy and limited proteolysis showed that fibrillar PABPN1 has a structure that differs from native PABPN1. Circumstantial evidence is presented that the C-terminal domain is involved in fibril formation. 相似文献
12.
Protein misfolding and aggregation are exacerbated by aging and diseases of protein conformation including neurodegeneration, metabolic diseases, and cancer. In the cellular environment, aggregates can exist as discrete entities, or heterogeneous complexes of diverse solubility and conformational state. In this study, we have examined the in vivo dynamics of aggregation using imaging methods including fluorescence microscopy, fluorescence recovery after photobleaching (FRAP), and fluorescence correlation spectroscopy (FCS), to monitor the diverse biophysical states of expanded polyglutamine (polyQ) proteins expressed in Caenorhabditis elegans. We show that monomers, oligomers and aggregates co-exist at different concentrations in young and aged animals expressing different polyQ-lengths. During aging, when aggregation and toxicity are exacerbated, FCS-based burst analysis and purified single molecule FCS detected a populational shift toward an increase in the frequency of brighter and larger oligomeric species. Regardless of age or polyQ-length, oligomers were maintained in a heterogeneous distribution that spans multiple orders of magnitude in brightness. We employed genetic suppressors that prevent polyQ aggregation and observed a reduction in visible immobile species with the persistence of heterogeneous oligomers, yet our analysis did not detect the appearance of any discrete oligomeric states associated with toxicity. These studies reveal that the reversible transition from monomers to immobile aggregates is not represented by discrete oligomeric states, but rather suggests that the process of aggregation involves a more complex pattern of molecular interactions of diverse intermediate species that can appear in vivo and contribute to aggregate formation and toxicity. 相似文献
13.
Nucifora LG Burke KA Feng X Arbez N Zhu S Miller J Yang G Ratovitski T Delannoy M Muchowski PJ Finkbeiner S Legleiter J Ross CA Poirier MA 《The Journal of biological chemistry》2012,287(19):16017-16028
Huntington disease is a genetic neurodegenerative disorder that arises from an expanded polyglutamine region in the N terminus of the HD gene product, huntingtin. Protein inclusions comprised of N-terminal fragments of mutant huntingtin are a characteristic feature of disease, though are likely to play a protective role rather than a causative one in neurodegeneration. Soluble oligomeric assemblies of huntingtin formed early in the aggregation process are candidate toxic species in HD. In the present study, we established an in vitro system to generate recombinant huntingtin in mammalian cells. Using both denaturing and native gel analysis, we have identified novel oligomeric forms of mammalian-derived expanded huntingtin exon-1 N-terminal fragment. These species are transient and were not previously detected using bacterially expressed exon-1 protein. Importantly, these species are recognized by 3B5H10, an antibody that recognizes a two-stranded hairpin conformation of expanded polyglutamine believed to be associated with a toxic form of huntingtin. Interestingly, comparable oligomeric species were not observed for expanded huntingtin shortstop, a 117-amino acid fragment of huntingtin shown previously in mammalian cell lines and transgenic mice, and here in primary cortical neurons, to be non-toxic. Further, we demonstrate that expanded huntingtin shortstop has a reduced ability to form amyloid-like fibrils characteristic of the aggregation pathway for toxic expanded polyglutamine proteins. Taken together, these data provide a possible candidate toxic species in HD. In addition, these studies demonstrate the fundamental differences in early aggregation events between mutant huntingtin exon-1 and shortstop proteins that may underlie the differences in toxicity. 相似文献
14.
A role for Cu(2+) ions in Alzheimer disease is often disputed, as it is believed that Cu(2+) ions only promote nontoxic amorphous aggregates of amyloid-β (Aβ). In contrast with currently held opinion, we show that the presence of substoichiometric levels of Cu(2+) ions in fact doubles the rate of production of amyloid fibers, accelerating both the nucleation and elongation of fiber formation. We suggest that binding of Cu(2+) ions at a physiological pH causes Aβ to approach its isoelectric point, thus inducing self-association and fiber formation. We further show that Cu(2+) ions bound to Aβ are consistently more toxic to neuronal cells than Aβ in the absence of Cu(2+) ions, whereas Cu(2+) ions in the absence of Aβ are not cytotoxic. The degree of Cu-Aβ cytotoxicity correlates with the levels of Cu(2+) ions that accelerate fiber formation. We note the effect appears to be specific for Cu(2+) ions as Zn(2+) ions inhibit the formation of fibers. An active role for Cu(2+) ions in accelerating fiber formation and promoting cell death suggests impaired copper homeostasis may be a risk factor in Alzheimer disease. 相似文献
15.
CW Bugg JM Isas T Fischer PH Patterson R Langen 《The Journal of biological chemistry》2012,287(38):31739-31746
Misfolding and aggregation of huntingtin is one of the hallmarks of Huntington disease, but the overall structure of these aggregates and the mechanisms by which huntingtin misfolds remain poorly understood. Here we used site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to study the structural features of huntingtin exon 1 (HDx1) containing 46 glutamine residues in its polyglutamine (polyQ) region. Despite some residual structuring in the N terminus, we find that soluble HDx1 is highly dynamic. Upon aggregation, the polyQ domain becomes strongly immobilized indicating significant tertiary or quaternary packing interactions. Analysis of spin-spin interactions does not show the close contact between same residues that is characteristic of the parallel, in-register structure commonly found in amyloids. Nevertheless, the same residues are still within 20 Å of each other, suggesting that polyQ domains from different molecules come into proximity in the fibrils. The N terminus has previously been found to take up a helical structure in fibrils. We find that this domain not only becomes structured, but that it also engages in tertiary or quaternary packing interactions. The existence of spin-spin interactions in this region suggests that such contacts could be made between N-terminal domains from different molecules. In contrast, the C-terminal domain is dynamic, contains polyproline II structure, and lacks pronounced packing interactions. This region must be facing away from the core of the fibrils. Collectively, these data provide new constraints for building structural models of HDx1 fibrils. 相似文献
16.
The accumulation of intracellular protein deposits as inclusion bodies is the common pathological hallmark of most age related
neurodegenerative disorders including polyglutamine diseases. Appearances of aggregates of the misfolded mutant disease proteins
suggest that the cells are unable to efficiently degrade them, and failure of clearance leads to the severe disturbances of
the cellular quality control system. The quality control ubiquitin ligases are now increasingly implicated in the biology
of polyglutamine diseases, Parkinson’s diseases, Amyotrophic lateral sclerosis and Alzheimer’s disease. Here we review the recent studies that have revealed a critical role of E3 ubiquitin ligases in understanding the
pathogenesis of polyglutamine diseases. 相似文献
17.
18.
Dmitry Kryndushkin Natalia Pripuzova Barrington G. Burnett Frank Shewmaker 《The Journal of biological chemistry》2013,288(38):27100-27111
The formation of amyloid aggregates is implicated both as a primary cause of cellular degeneration in multiple human diseases and as a functional mechanism for providing extraordinary strength to large protein assemblies. The recent identification and characterization of several amyloid proteins from diverse organisms argues that the amyloid phenomenon is widespread in nature. Yet identifying new amyloid-forming proteins usually requires a priori knowledge of specific candidates. Amyloid fibers can resist heat, pressure, proteolysis, and denaturation by reagents such as urea or sodium dodecyl sulfate. Here we show that these properties can be exploited to identify naturally occurring amyloid-forming proteins directly from cell lysates. This proteomic-based approach utilizes a novel purification of amyloid aggregates followed by identification by mass spectrometry without the requirement for special genetic tools. We have validated this technique by blind identification of three amyloid-based yeast prions from laboratory and wild strains and disease-related polyglutamine proteins expressed in both yeast and mammalian cells. Furthermore, we found that polyglutamine aggregates specifically recruit some stress granule components, revealing a possible mechanism of toxicity. Therefore, core amyloid-forming proteins as well as strongly associated proteins can be identified directly from cells of diverse origin. 相似文献
19.
Angelique R. Ormsby Yasmin M. Ramdzan Yee-Foong Mok Kristijan D. Jovanoski Danny M. Hatters 《The Journal of biological chemistry》2013,288(52):37192-37203
Our capacity for tracking how misfolded proteins aggregate inside a cell and how different aggregation states impact cell biology remains enigmatic. To address this, we built a new toolkit that enabled the high throughput tracking of individual cells enriched with polyglutamine-expanded Htt exon 1 (Httex1) monomers, oligomers, and inclusions using biosensors of aggregation state and flow cytometry pulse shape analysis. Supplemented with gel filtration chromatography and fluorescence-adapted sedimentation velocity analysis of cell lysates, we collated a multidimensional view of Httex1 aggregation in cells with respect to time, polyglutamine length, expression levels, cell survival, and overexpression of protein quality control chaperones hsp40 (DNAJB1) and hsp70 (HSPA1A). Cell death rates trended higher for Neuro2a cells containing Httex1 in inclusions than with Httex1 dispersed through the cytosol at time points of expression over 2 days. hsp40 stabilized monomers and suppressed inclusion formation but did not otherwise change Httex1 toxicity. hsp70, however, had no major effect on aggregation of Httex1 but increased the survival rate of cells with inclusions. hsp40 and hsp70 also increased levels of a second bicistronic reporter of Httex1 expression, mKate2, and increased total numbers of cells in culture, suggesting these chaperones partly rectify Httex1-induced deficiencies in quality control and growth rates. Collectively, these data suggest that Httex1 overstretches the protein quality control resources and that the defects can be partly rescued by overexpression of hsp40 and hsp70. Importantly, these effects occurred in a pronounced manner for soluble Httex1, which points to Httex1 aggregation occurring subsequently to more acute impacts on the cell. 相似文献
20.
Stieren ES El Ayadi A Xiao Y Siller E Landsverk ML Oberhauser AF Barral JM Boehning D 《The Journal of biological chemistry》2011,286(41):35689-35698
Alzheimer disease (AD) is associated with extracellular deposition of proteolytic fragments of amyloid precursor protein (APP). Although mutations in APP and proteases that mediate its processing are known to result in familial, early onset forms of AD, the mechanisms underlying the more common sporadic, yet genetically complex forms of the disease are still unclear. Four single-nucleotide polymorphisms within the ubiquilin-1 gene have been shown to be genetically associated with AD, implicating its gene product in the pathogenesis of late onset AD. However, genetic linkage between ubiquilin-1 and AD has not been confirmed in studies examining different populations. Here we show that regardless of genotype, ubiquilin-1 protein levels are significantly decreased in late onset AD patient brains, suggesting that diminished ubiquilin function may be a common denominator in AD progression. Our interrogation of putative ubiquilin-1 activities based on sequence similarities to proteins involved in cellular quality control showed that ubiquilin-1 can be biochemically defined as a bona fide molecular chaperone and that this activity is capable of preventing the aggregation of amyloid precursor protein both in vitro and in live neurons. Furthermore, we show that reduced activity of ubiquilin-1 results in augmented production of pathogenic amyloid precursor protein fragments as well as increased neuronal death. Our results support the notion that ubiquilin-1 chaperone activity is necessary to regulate the production of APP and its fragments and that diminished ubiquilin-1 levels may contribute to AD pathogenesis. 相似文献