首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protection against cellular stress from various sources, such as nutritional, physical, pathogenic, or oncogenic, results in the induction of both intrinsic and extrinsic cellular protection mechanisms that collectively limit the damage these insults inflict on the host. The major extrinsic protection mechanism against cellular stress is the immune system. Indeed, it has been well described that cells that are stressed due to association with viral infection or early malignant transformation can be directly sensed by the immune system, particularly natural killer (NK) cells. Although the ability of NK cells to directly recognize and respond to stressed cells is well appreciated, the mechanisms and the breadth of cell-intrinsic responses that are intimately linked with their activation are only beginning to be uncovered. This review will provide a brief introduction to NK cells and the relevant receptors and ligands involved in direct responses to cellular stress. This will be followed by an in-depth discussion surrounding the various intrinsic responses to stress that can naturally engage NK cells, and how therapeutic agents may induce specific activation of NK cells and other innate immune cells by activating cellular responses to stress.  相似文献   

3.
Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post-translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA.  相似文献   

4.
Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel‐associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell‐based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature.  相似文献   

5.
6.
Cells are continuously exposed to reactive oxygen species (ROS) generated by aerobic metabolism. Excessively generated ROS causes severe dysfunctions to cells as oxidative stress. On the other hand, there is increasing evidence that ROS plays important roles as a signaling intermediate that induces a wide variety of cellular responses such as proliferation, differentiation, senescence, and apoptosis. To transmit physiological ROS-mediated signals and to adapt to oxidative stress, cells are equipped with various intracellular signal transduction systems, represented by mitogen-activated protein kinase (MAPK) cascades. Apoptosis signal-regulating kinase 1 (ASK1) is an upstream regulator of the stress-activated MAPK cascades and has been shown to play critical roles in ROS-mediated cellular responses. Here, we highlight the roles of members of the ASK family, which consists of ASK1 and newly characterized ASK2, in ROS signaling with their possible involvement in human diseases.  相似文献   

7.
The JNK signaling cascade is critical for cellular responses to a variety of environmental and cellular stimuli. Although gene expression aspects of JNK signal transduction are well studied, there are minimal data on the physiological impact of JNK signaling. To bridge this gap, we investigated how JNK impacted physiology in HeLa cells. We observed that inhibition of JNK activity and JNK silencing with siRNA reduced the level of reactive oxygen species (ROS) generated during anisomycin-induced stress in HeLa cells. Silencing p38 had no significant impact on ROS generation under anisomycin stress. Moreover, JNK signaling mediated amplification of ROS production during stress. Mitochondrial superoxide production was shown to be the source of JNK-induced ROS amplification, as an NADPH oxidase inhibitor demonstrated little impact on JNK-mediated ROS generation. Using mitochondrial isolation from JNK null fibroblasts and targeting the mitochondrial scaffold of JNK, Sab, we demonstrated that mitochondrial JNK signaling was responsible for mitochondrial superoxide amplification. These results suggest that cellular stress altered mitochondria, causing JNK to translocate to the mitochondria and amplify up to 80% of the ROS generated largely by Complex I. This work demonstrates that a sequence of events exist for JNK mitochondrial signaling whereby ROS activates JNK, thereby affecting mitochondrial physiology, which can have effects on cell survival and death.  相似文献   

8.
9.
10.
Progenitor cells that are the basis for all blood cell production share the bone marrow with more mature elements of the adaptive immune system. Specialized niches within the bone marrow guide and, at times, constrain the development of haematopoietic stem and progenitor cells (HSPCs) and lineage-restricted immune progenitor cells. Specific niche components are organized into distinct domains to create a diversified landscape in which specialized cell differentiation or population expansion programmes proceed. Local cues that reflect the tissue and organismal state affect cellular interactions to alter the production of a range of cell types. Here, we review the organization of regulatory elements in the bone marrow and discuss how these elements provide a dynamic means for the host to modulate stem cell and adaptive immune cell responses to physiological challenges.  相似文献   

11.
Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.  相似文献   

12.
Reactive oxygen species (ROS) encompass a variety of diverse chemical species including superoxide anions, hydrogen peroxide, hydroxyl radicals and peroxynitrite, which are mainly produced via mitochondrial oxidative metabolism, enzymatic reactions, and light-initiated lipid peroxidation. Over-production of ROS and/or decrease in the antioxidant capacity cause cells to undergo oxidative stress that damages cellular macromolecules such as proteins, lipids, and DNA. Oxidative stress is associated with ageing and the development of age-related diseases such as cancer and age-related macular degeneration. ROS activate signaling pathways that promote cell survival or lead to cell death, depending on the source and site of ROS production, the specific ROS generated, the concentration and kinetics of ROS generation, and the cell types being challenged. However, how the nature and compartmentalization of ROS contribute to the pathogenesis of individual diseases is poorly understood. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of cell oxidative stress signaling, which will then provide novel therapeutic opportunities to interfere with disease progression via targeting specific signaling pathways. Currently, Dr. Qin's work is focused on inflammatory and oxidative stress responses using the retinal pigment epithelial (RPE) cells as a model. The study of RPE cell inflammatory and oxidative stress responses has successfully led to a better understanding of RPE cell biology and identification of potential therapeutic targets.  相似文献   

13.
Reactive oxygen species (ROS) acts as a second messenger to trigger biological responses in low concentrations, while it is implicated to be toxic to biomolecules in high concentrations. Mild inhibition of respiratory chain Complex I by metformin at physiologically relevant concentrations stimulates production of low-level mitochondrial ROS. The ROS seems to induce anti-oxidative stress response via activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase (GPx), which results in not only elimination of ROS but also activation of cellular responses including resistance to apoptosis, metabolic changes, cell proliferation, senescence prevention, lifespan extension, and immune T cell activation against cancers, regardless of its effect controlling blood glucose level and T2DM. Although metformin's effect against T2DM, cancers, and ageing, are believed mostly attributed to the activation of AMP-activated protein kinase (AMPK), the cellular responses involving metformin-ROS-Nrf2 axis might be another natural asset to improve healthspan and lifespan.  相似文献   

14.
Natural killer (NK) cells are the prototypical members of the recently identified family of innate lymphoid cells (ILCs). Thanks to their cytotoxic and secretory functions, NK cells play a key role in the immune response to cells experiencing various forms of stress, including viral infection and malignant transformation. Autophagy is a highly conserved network of degradative pathways that participate in the maintenance of cellular and organismal homeostasis as they promote adaptation to adverse microenvironmental conditions. The relevance of autophagy in the development and functionality of cellular components of the adaptive immune system is well established. Conversely, whether autophagy also plays an important role in the biology of ILC populations such as NK cells has long remained elusive. Recent experimental evidence shows that ablating Atg5 (autophagy-related 5, an essential component of the autophagic machinery) in NK cells and other specific ILC populations results in progressive mitochondrial damage, reactive oxygen species (ROS) overgeneration, and regulated cell death, hence interrupting ILC development. Moreover, disrupting the interaction of ATG7 with phosphorylated FOXO1 (forkhead box O1) in the cytosol of immature NK cells prevents autophagic responses that are essential for NK cell maturation. These findings suggest that activating autophagy may support the maturation of NK cells and other ILCs that manifest antiviral and anticancer activity.  相似文献   

15.
Plants often face the challenge of severe environmental conditions, which include various biotic and abiotic stresses that exert adverse effects on plant growth and development. During evolution, plants have evolved complex regulatory mechanisms to adapt to various environmental stressors. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species (ROS), which are subsequently converted to hydrogen peroxide (H2O2). Even under normal conditions, higher plants produce ROS during metabolic processes. Excess concentrations of ROS result in oxidative damage to or the apoptotic death of cells. Development of an antioxidant defense system in plants protects them against oxidative stress damage. These ROS and, more particularly, H2O2, play versatile roles in normal plant physiological processes and in resistance to stresses. Recently, H2O2 has been regarded as a signaling molecule and regulator of the expression of some genes in cells. This review describes various aspects of H2O2 function, generation and scavenging, gene regulation and cross-links with other physiological molecules during plant growth, development and resistance responses.  相似文献   

16.
The prevailing models of stress induced Programmed Cell Death (PCD) posit that excess extracellular chemicals interact with or enter cells and disrupts cellular homeostasis. This activates signalling cascades involving the mitochondria, an increase in the steady state levels of Reactive Oxygen Species (ROS) as well as the activation of Bax and caspases. Further, the increased ROS also causes cellular damage that triggers or enhances PCD responses. The models have been modified in a number of ways, for example to include the existence of caspase and Bax independent forms of PCD. More recently, the ubiquity of ROS has also been challenged in part based on the failure of anti-oxidants to protect from diseases with increased intensity of oxidative stress. Here we focus on a number of other, often overlooked, observations regarding stress mediated responses that may further increase our mechanistic understanding of PCD. These include the concept of the “milieu intérieur” which suggests that cells actively protect themselves (adaptive homeostasis) in part by limiting entry to most extracellular chemicals. Of similar importance, stress also increases the levels of other stress inducible second messengers including ceramide, iron and calcium. This review focuses on the concept that stress is an agonist that conveys information that is transduced into the cell to activate the appropriate genetically encoded cell death and survival responses.  相似文献   

17.
Immune checkpoint blockade therapy is perhaps the most important development in cancer treatment in recent memory. It is based on decades of investigation into the biology of immune cells and the role of the immune system in controlling cancer growth. While the molecular circuitry that governs the immune system in general—and antitumor immunity in particular—is intensely studied, far less attention has been paid to the role of cellular stress in this process. Proteostasis, intimately linked to cell stress responses, refers to the dynamic regulation of the cellular proteome and is maintained through a complex network of systems that govern the synthesis, folding, and degradation of proteins in the cell. Disruption of these systems can result in the loss of protein function, altered protein function, the formation of toxic aggregates, or pathologies associated with cell stress. However, the importance of proteostasis extends beyond its role in maintaining proper protein function; proteostasis governs how tolerant cells may be to mutations in protein-coding genes and the overall half-life of proteins. Such gene expression changes may be associated with human diseases including neurodegenerative diseases, metabolic disease, and cancer and manifest at the protein level against the backdrop of the proteostasis network in any given cellular environment. In this review, we focus on the role of proteostasis in regulating immune responses against cancer as well the role of proteostasis in determining immunogenicity of cancer cells.  相似文献   

18.
Oxidative stress, primarily due to increased generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), is a feature of many viral infections. ROS and RNS modulate the permissiveness of cells to viral replication, regulate host inflammatory and immune responses, and cause oxidative damage to both host tissue and progeny virus. The lipid-rich nervous system is particularly susceptible to lipid peroxidation, an autocatalytic process that damages lipid-containing structures and yields reactive by-products, which can covalently modify and damage cellular macromolecules. Oxidative injury is a component of acute encephalitis caused by herpes simplex virus type 1 and reovirus, neurodegenerative disease caused by human immunodeficiency virus and murine leukemia virus, and subacute sclerosing panencephalitis caused by measles virus. The extent to which oxidative damage plays a beneficial role for the host by limiting viral replication is largely unknown. An enhanced understanding of the role of oxidative damage in viral infections of the nervous system may lead to therapeutic strategies to reduce tissue damage during viral infection without impeding the host antiviral response.  相似文献   

19.
植物过氧化物酶体在活性氧信号网络中的作用   总被引:2,自引:0,他引:2  
过氧化物酶体是高度动态、代谢活跃的细胞器,主要参与脂肪酸等脂质的代谢及产生和清除不同的活性氧(reactive oxygen species, ROS)。ROS是细胞有氧代谢的副产物。当胁迫长期作用于植物,过量的ROS会引起氧胁迫,损害细胞结构和功能的完整性,导致细胞代谢减缓,活性降低,甚至死亡;但低浓度的ROS则作为分子信号,感应细胞ROS/氧化还原变化,从而触发由环境因素导致的过氧化物酶体动力学以及依赖ROS信号网络改变而产生快速、特异性的应答。ROS也可以通过直接或间接调节细胞生长来控制植物的发育,是植物发育的重要调节剂。此外,过氧化物酶体的动态平衡由ROS、过氧化物酶体蛋白酶及自噬过程调节,对于维持细胞的氧化还原平衡至关重要。本文就过氧化物酶体中ROS的产生和抗氧化剂的调控机制进行综述,以期为过氧化物酶体如何感知环境变化,以及在细胞应答中,ROS作为重要信号分子的研究提供参考。  相似文献   

20.
Hematopoiesis occurs in two phases in Drosophila, with the first completed during embryogenesis and the second accomplished during larval development. The lymph gland serves as the venue for the final hematopoietic program, with this larval tissue well-studied as to its cellular organization and genetic regulation. While the medullary zone contains stem-like hematopoietic progenitors, the posterior signaling center (PSC) functions as a niche microenvironment essential for controlling the decision between progenitor maintenance versus cellular differentiation. In this report, we utilize a PSC-specific GAL4 driver and UAS-gene RNAi strains, to selectively knockdown individual gene functions in PSC cells. We assessed the effect of abrogating the function of 820 genes as to their requirement for niche cell production and differentiation. 100 genes were shown to be essential for normal niche development, with various loci placed into sub-groups based on the functions of their encoded protein products and known genetic interactions. For members of three of these groups, we characterized loss- and gain-of-function phenotypes. Gene function knockdown of members of the BAP chromatin-remodeling complex resulted in niche cells that do not express the hedgehog (hh) gene and fail to differentiate filopodia believed important for Hh signaling from the niche to progenitors. Abrogating gene function of various members of the insulin-like growth factor and TOR signaling pathways resulted in anomalous PSC cell production, leading to a defective niche organization. Further analysis of the Pten, TSC1, and TSC2 tumor suppressor genes demonstrated their loss-of-function condition resulted in severely altered blood cell homeostasis, including the abundant production of lamellocytes, specialized hemocytes involved in innate immune responses. Together, this cell-specific RNAi knockdown survey and mutant phenotype analyses identified multiple genes and their regulatory networks required for the normal organization and function of the hematopoietic progenitor niche within the lymph gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号