首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Numerous species of soil bacteria which flourish in the rhizosphere of plants or around plant tissues stimulate plant growth and reduce nematode population by antagonistic behavior. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The effects of six isolates of PGPR Pseudomonas putida, Pseudomonas fluorescens, Serratia marcescens, Bacillus amyloliquefaciens, Bacillus subtilis and Bacillus cereus, were studied on tomato plant growth and root knot nematode reproduction after 45 days from nematode infection. The highest number of shoot dry weight/g (43.00 g) was detected in the plant treated with S. marcescens; then P. putida (34.33 g), B. amyloliquefaciens (31.66 g), P. fluorescens (30.0 g), B. subtilis (29.0 g), B. cereus (27.0 g) and nematode alone (untreated) 20 g/plant. While the highest number of plant height was observed when plant was treated with S. marcescens, P. fluorescens, P. putida, B. amyloliquefaciens and P. putida 52.66, 50.66, 48 and 48 cm respectively. No significant differences were seen between previous treatments but only had significant differences compared with untreated plant. The highest number of fruit/plant was observed when plants were treated with S. marcescens (10.66), then B. amyloliquefaciens (8.66), P. putida (8), P. fluorescens (8) and B. cereus (7.66). No significant differences between the last 4 treatments, but all had significant differences compared with untreated plants. The highest weight of plant yield (g) was observed with S. marcescens (319.6 g/plant) and the lowest weight of plant yield was observed in plants treated with nematode alone (untreated). On the other hand, the lowest numbers of J2/10 g of soil (78), galls/root, (24.33) galls/root, egg masses/root (12.66) and egg/egg masses were observed in the plants treated with S. marcescens.  相似文献   

4.
5.
Salinity stress is limiting growth and productivity of plants in many areas of the world. Plants adopted different strategies to minimize the effect of salt stress. A pot experiment was conducted to investigate the morphological and physiological changes produced in Canola (Brassica napus) by exogenous application of ellagic acid (EA) under saline conditions. EA is an antioxidant, expected to reduce the effect of salinity stress. The seeds of two canola cultivars, Rainbow and Oscar, were soaked for 6?h with different concentrations of EA (0, 55 and 110?µg/ml). The soaked seeds were sown in small pots. Salt stress was imposed on the plants by applying NaCl solutions of different concentrations (0, 60 and 120?mM) and the duration of stress was for four weeks. Salinity stress reduced seed germination and disturbed the morphological and physiological attributes of B. napus. Application of EA as seed soaking reduced the effect of salinity and enhanced the growth of plants. Overall, we could confirm a significant role of EA by inducing salinity tolerance in B. napus.  相似文献   

6.
7.
8.
马瑞霞  冯怡  李萱 《生态学报》2000,20(3):452-457
研究由秸秆腐解产生的化感物质 :阿魏酸 ( t-FA)、对羟基苯甲酸 ( p-HA)和苯甲酸 ( BA)在不同浓度下对厌氧培养的枯草芽孢杆菌 ( Bacillussubtilis)的生长及其反硝化活性的影响。结果表明 ,3种浓度的阿魏酸 ( 5.1 5、2 .58、0 .2 6mmol/L)均表现出对枯草芽孢杆菌的生长有抑制作用。对羟基苯甲酸 ( 0 .3 6、3 .62、7.2 4 mmol/L )对生长影响不明显。 8.1 9mmol/L和 4 .0 9mmol/L的苯甲酸有一定的刺激作用 ,而 0 .4 1 mmol/L的苯甲酸与对照无差别。实验表明枯草芽孢秆菌不仅能转化 NO- 3生成 NO- 2 ,而且还能转化 NO- 2 生成 N2 O。 3种化感物质对 NO- 3的转化均表现抑制作用 ,其抑制作用强弱依次为阿魏酸 >对羟基苯甲酸 >苯甲酸。高浓度的抑制作用强于低浓度。阿魏酸在 5.1 5mmol/L和 2 .58mmol/L浓度下 ,其抑制作用的差异显著性分别为 P<0 .0 1 ,P<0 .0 5。 NO- 2 的生成与 NO- 3的减少相互有关联 ,第 3天测定时 ,各处理中NO- 3急剧减少 ,而 NO- 2 急剧增加。在阿魏酸、苯甲酸处理中的 NO- 2 积累高峰在第 3天、第 4天 ,然后下降。而在对羟基苯甲酸的处理中 NO- 2 的积累一直上升 ,在第 6天的观察中仍未出现下降趋势。 3种化感物质均能抑制 N2 O的生成 ,至于在田间的抑制效果尚需进一步试验  相似文献   

9.
Leaf growth in grasses is determined by the cell division and elongation rates, with the duration of cell elongation being one of the processes that is the most sensitive to salinity. Our objective was to investigate the distribution profiles of cell production, cell length and the duration of cell elongation in the growing zone of the wheat leaf during the steady growth phase. Plants were grown in loamy soil with or without 120 mmol/L NaCl in a growth chamber, and harvested at day 3 after leaf 4 emerged. Results show that the elongation rate of leaf 4 was reduced by 120 mmol/L NaCl during the steady growth phase. The distribution profile of the lengths of abaxial epidermal cells of leaf 4 during the steady growth stage shows a sigmoidal pattern along the leaf axis for both treatments. Although salinity did not affect or even increased the length of the epidermal cells in some locations in the growth zone compared to the control treatment, the final length of the epidermal cells was reduced by 14% at 120 mmol/L NaCl. Thus, we concluded that the observed reduction in the leaf elongation rate derived in part from the reduced cell division rate and either the shortened cell elongation zone or shortened duration of cell elongation. This suggests that more attention should be paid to the effects of salinity on those properties of cell production and the period of cell maturation that are related to the properties of cell wall.  相似文献   

10.
To find out the mode of plant tolerance enhancement against salinity by plant growth-promoting rhizobacteria Bacillus subtilis, metabolites of strains FZB24 and FZB41 were studied in a test system with tomatoes under the influence of high salinity. The culture filtrate (CF) from the fermentative transitional phase, containing the whole range of produced metabolites by B. subtilis, showed to a certain extent tolerance-increasing action at dilution of 0.1% in the test plants with the parameters length, fresh mass and dry mass of shoots and roots as well as leaf area after 7-day treatment and subsequent plant cultivation under high salt stress. Afterwards, the CF was fractionated with adsorber resin and high performance liquid chromatography, and these fractions, as well as fractions from a CF after 19-h fermentation, were also tested with axenic-cultivated tomato seedlings. Fractions with different proteins and peptides, produced by B. subtilis, showed partly activities depending on concentration with regard to plant growth stimulation, including tolerance enhancement against salt stress. Subsequently, also an extract from B. subtilis culture with special concentrated peptides was examined in the axenic plant test system and showed similar activity depending on concentration. The observed effect of the bacterial metabolites is discussed as one part of the mechanism for plant growth stimulation and at the same time salt tolerance, increasing action of the rhizobacterium by its root colonization and interaction with the plant metabolism.  相似文献   

11.
植物根际促生菌作用机制研究进展   总被引:24,自引:0,他引:24  
植物在生长过程中可能会遭受许多生物和非生物因素胁迫,从而降低生物产量. 人们已知一些植物在不同因素的刺激诱导下,能系统化建立抵抗或忍受不利因素的机制,植物根际促生菌(PGPR)就是其中一类能定殖于根系并促进植物生长的细菌.本文对PGPR促生机制进行归纳和总结,系统阐述了诱导体系抗性和诱导体系产生忍耐力两大促生机制.PGPR的作用机制的多样性暗示着其可能在更多的农业生态系统中得到应用.  相似文献   

12.
Antibiosis has been thought to impart a competitive advantage to soil microorganisms. A rhizobacterium of the genus Pseudomonas produces a toxin that inhibits the growth of other microorganisms and winter wheat (Triticum aestivum L.). The bacterium was mutagenized with the Tn5 transposon to obtain toxin-negative (Tox-) mutants or was selected for its spontaneous resistance to rifampicin. Tox- mutants were used to determine the role of the toxin in wheat root inhibition, root colonization, and rhizosphere competitiveness. Four Tox- (loss of inhibition of both E. coli and wheat root growth) and four partial Tox+ (partial loss of inhibition of E. coli and wheat root growth) Tn5 mutants were isolated. Seven of the mutants had different Tn5 chromosomal insertions, which suggests that toxin production is the result of several gene loci. Competitive root-colonization abilities of the Tox- isolates were studied in winter wheat rhizospheres using varied population levels in autoclaved and nonautoclaved soil. Toxin production did not affect the competitive abilities of these organisms with native soil microflora. Results here indicate that toxin production by these organisms is not the primary mechanism of their competitive advantage in root colonization. Thus, opportunities exist for biological control of plant-suppressive bacteria using these Tox- strains.  相似文献   

13.
【目的】筛选鉴定产右旋糖苷酶的海洋细菌,并对其所产右旋糖苷酶的酶学性质及在变异链球菌牙菌斑生物膜中的应用进行初步研究。【方法】利用平板透明圈法从海洋环境中筛选产右旋糖苷酶的细菌,根据菌株形态特征、生理特征及16S rDNA序列确定其分类学地位,采用体外生物膜模型研究该酶对变异链球菌牙菌斑生物膜形成的抑制作用。【结果】从海泥中筛选出一株产右旋糖苷酶的细菌KQ11,初步鉴定为节杆菌(Arthrobacter sp.)。该菌株的最适生长温度为30°C,最适生长pH 7.5,最适生长NaCl浓度为0.4%。右旋糖苷酶的最适作用温度为45°C,最适作用pH为5.5。该酶能有效地抑制变异链球菌牙菌斑生物膜的形成。【结论】菌株KQ11右旋糖苷酶能够抑制变异链球菌牙菌斑生物膜的形成,可望用于漱口液等口腔护理产品中。  相似文献   

14.
Crop production and management under saline conditions   总被引:1,自引:0,他引:1  
A. Meiri  Z. Plaut 《Plant and Soil》1985,89(1-3):253-271
Summary This review evaluates management practices that may minimize yield reduction under saline conditions according to three strategies: (I) control of root-zone salinity; (II) reduced damage to the crop; (III) reduced damage to individual plants. Plant response to salinity is described by an unchanged yield up to a threshold soil salinity (a), then a linear reduction in relative yield (b), to a maximum soil salinity that corresponds to zero yield (Yo). Strategies I and II do not take into consideration any change in the parameters of the response curve, while strategy III is aimed at modifying them.Control of root zone salinity is obtained by irrigation and leaching. From the review of existing data it is concluded that the effective soil salinity parameter should be taken as the mean electrical conductivity of the saturated paste extract or of the soil solution over time and space. Several irrigation and leaching practices are discussed. It is shown that intermittent leaching is more advantageous than leaching at each irrigation. Specific cultivation and irrigation practices that result in soil salinity reduction adjacent to young seedlings and the use of water of low salinity at specifically sensitive growth stages may be highly beneficial. Recent data do not show that reduced irrigation intervals improve crop response more under saline than under nonsaline irrigation. Alternate use of water of different salt concentrations results in mixing in the soil and the crop responds to the mean water salinity.Reduced damage at the fiel level when soil or irrigation water salinity is too high to maintain full yield of single plants requires a larger crop stand. For row crops reduced inter-row spacing is more effective than reduced intra-row spacing.Reduced damage at the plant level while the salinity tolerance of the plants remains constant shows up in the response curve parameters as larger threshold and slope and constant salinity at zero yield. This is the effect of a reduced atmospheric water demand that results in reduced stress in the plant under given salinity. Management can also change the salt tolerance of the crop. This will show up as higher salinity at zero yield, as well as changes in threshold and slope. Such changes in the response curve were found at different growth stages, under different atmospheric CO2, under different fertilization, and when sprinkler irrigation was compared with drip irrigation.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 1111-E 1984 series.  相似文献   

15.
肠杆菌FYP1101对盐胁迫下小麦幼苗的促生效应   总被引:2,自引:0,他引:2  
【背景】中国盐碱地面积大、分布广、类型丰富,主要分布在东北、西北、华北及滨海地区,近年来的研究表明通过生物治理方式接种植物根际促生菌可提高植物对盐胁迫的抗性,从而加速盐碱地治理。【目的】初步揭示肠杆菌(Enterobacter sp.)FYP1101对盐胁迫下小麦幼苗的促生效应和机理,以期为该菌株的田间应用提供理论依据。【方法】基于涂布划线技术,以植酸磷培养基进行分离纯化,分别以Ashby培养基、无机磷培养基进行具有固氮、解无机磷能力细菌的初筛,之后对纯化所得细菌进行固氮、解植酸磷、解无机磷、产铁载体、产1-氨基环丙烷-1-羧酸(ACC)脱氨酶、产吲哚乙酸(IAA)能力的分析;基于16S r RNA基因序列对FYP1101做初步分类鉴定;设置3种处理(施加含FYP1101的颗粒菌肥,FP;施加不含菌的空载体颗粒,NK;颗粒菌肥和空载体颗粒都不施加的空白处理,CK),采用盆栽试验分析不同处理下的盐胁迫小麦生长性状及其根际土理化性质变化。【结果】共分离得到96株菌,其中一株编号为FYP1101的菌株耐盐性达8%,且具有较强的固氮能力[固氮酶活性为2.59 nmol C2H4/(h?mg蛋白)]、解植酸磷能力(2.70μg/m L)、解无机磷能力(4.29μg/m L)、产铁载体能力(D/d为2.88)、ACC脱氨酶活性[7.32μmolα-丁酮酸/(h·mg蛋白)]、产IAA能力(24.93 mg/L);基于16S r RNA基因序列,将FYP1101鉴定为Enterobacter属的菌株;FP相比NK和CK处理,显著提高了盐胁迫下小麦的叶绿素含量及地上和地下的生物量(提高约19%-54%),显著增加了根长(增幅约46%);根际土有机质和速效氮含量也显著提高,提高约52%-98%,根际土p H略降低(0.12和0.17),盐度升高约40%。【结论】Enterobacter sp.FYP1101具有多种植物促生特性,可显著影响盐胁迫下小麦幼苗根形态的建成,提高根际土营养、降低小麦对盐的吸收,促进小麦幼苗生长,在促进植物适应逆境胁迫方面具有良好的应用潜力。  相似文献   

16.
Biological oxidation of organic dyes is important for textile industry wastewater treatment. The aim of this work was to assess the biodegradation kinetics of a specific azo-dye, p-aminoazobenzene. The degradation of p-aminoazobenzene by Bacillus subtilis was examined through batch experiments in order to investigate the effect of p-aminoazobenzene on the bacterial growth rate and elucidate the mechanism of dye degradation. The results proved that B. subtilis cometabolizes p-aminoazobenzene in the presence of glucose as carbon source, producing aniline and p-phenylenediamine as the nitrogen–nitrogen double bond is broken. The azo-dye was found to act as an inhibitor to microbial growth. A mathematical model was developed that describes cellular growth, glucose utilization, p-aminoazobenzene degradation and product formation. Received 26 July 1996/ Accepted in revised form 14 May 1997  相似文献   

17.

Background and aims

The biological restoration of saline habitats could be achieved by using halophyte plant species together with adapted arbuscular mycorrhizal fungi (AMF). An interesting plant to be used in restoration of saline environments, Asteriscus maritimus, is highly mycotrophic. The aim of this study was to assess the effectiveness of native and allochthonous AMF to enhance the establishment and growth of the halophyte A. maritimus under saline conditions.

Methods

We studied the symbiotic effectiveness of four AMF strains (three native fungal isolates from a saline soil and one allochthonous, from collection) in A. maritimus subjected to increasing salinity stress. We measured plant physiological parameters by which AMF may ameliorate the detrimental effects of salinity stress.

Results

A. maritimus plants showed a high mycorrhizal dependency, even in absence of salt stress. Plants inoculated with native AMF had higher shoot dry weight, efficiency of photosystem II, stomatal conductance and accumulation of glutathione than those inoculated with the collection AMF at the highest level of salinity. Moreover, at this salt level, only 30 % of A. maritimus plants inoculated with the collection AMF survived, while with the three native AMF, the rate of survival was 100 %.

Conclusions

Results points out the importance of native AMF inoculation in the establishment, survival and growth of A. maritimus plants. Inoculation with these native AMF enhanced A. maritimus salt tolerance by increasing efficiency of photosystem II, stomatal conductance and glutathione content and by reducing oxidative damage. Thus, the use of adequate native AMF inocula could be a critical issue for success in recovering saline degraded areas.  相似文献   

18.
Moringa oleifera is a multipurpose plant which is now being promoted as a fodder crop. The present study was conducted to induce the tolerance in moringa plants to emerge and grow under saline conditions. For this, moringa seeds were primed with aerated water (hydropriming) and moringa leaf extract (MLE) for 12 and 24 h and studied for its emergence, potential growth behaviour, mineral composition, chlorophyll contents and antioxidant activities in comparison with unprimed seeds to investigate the physiological changes in moringa plants under saline conditions. The seeds were sown in plastic pots filled with acid washed sand at four salinity levels (3, 6, 10, 14 dS m?1) in a completely randomized design with three replications. It was found that salinity >6 dS m?1 reduced the emergence, growth and vigour of moringa plants but hydropriming (12 h) enhanced moringa emergence at 10 dS m?1 followed by MLE priming (12 h). Maximum aboveground biomass and photosynthetic pigments were recorded when the seeds were hydroprimed (12 h) but maximum root length and number of roots were found in MLE primed (12 h) moringa plants. Significant decrease in K+:Na+ ratio with increasing salinity levels resulted in low K+ and Mg2+ uptake and Na+ toxicity in moringa leaves which resulted in reduced chlorophyll contents at 14 dS m?1 but a significant increase in chlorophyll a and b contents and total phenolics were found in hydroprimed seeds (12 h) while the antioxidant activities of superoxide dismutase, peroxidase and catalas were improved by MLE priming (12 h). This study concludes that moringa emergence and growth performance can be improved by hydropriming under saline conditions.  相似文献   

19.
施磷和接种AM真菌对玉米耐盐性的影响   总被引:14,自引:0,他引:14  
在盆栽条件下研究了不同施磷水平(25,50,100,150mg/kg),不同盐水平(NaCl0,1.2g/kg)和不同接种AM真菌处理(接种和不接种)对玉米生长的影响。结果表明,施磷量为50mg/kg时基本满足玉米生长的需要,1.2g/kg NaCl胁迫显著抑制了玉米的生长;施磷明显促进玉米在盐胁迫条件下的生长,施磷水平和接种菌根真菌的交互作用对玉米耐盐性具有显著影响;盐胁迫条件下,接种AM真菌在  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号