首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Large whole-genome sequencing projects have provided access to much rare variation in human populations, which is highly informative about population structure and recent demography. Here, we show how the age of rare variants can be estimated from patterns of haplotype sharing and how these ages can be related to historical relationships between populations. We investigate the distribution of the age of variants occurring exactly twice ( variants) in a worldwide sample sequenced by the 1000 Genomes Project, revealing enormous variation across populations. The median age of haplotypes carrying variants is 50 to 160 generations across populations within Europe or Asia, and 170 to 320 generations within Africa. Haplotypes shared between continents are much older with median ages for haplotypes shared between Europe and Asia ranging from 320 to 670 generations. The distribution of the ages of haplotypes is informative about their demography, revealing recent bottlenecks, ancient splits, and more modern connections between populations. We see the effect of selection in the observation that functional variants are significantly younger than nonfunctional variants of the same frequency. This approach is relatively insensitive to mutation rate and complements other nonparametric methods for demographic inference.  相似文献   

2.
Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies.  相似文献   

3.
Huntington disease (HD) reflects the dominant consequences of a CAG-repeat expansion in HTT. Analysis of common SNP-based haplotypes has revealed that most European HD subjects have distinguishable HTT haplotypes on their normal and disease chromosomes and that ∼50% of the latter share the same major HD haplotype. We reasoned that sequence-level investigation of this founder haplotype could provide significant insights into the history of HD and valuable information for gene-targeting approaches. Consequently, we performed whole-genome sequencing of HD and control subjects from four independent families in whom the major European HD haplotype segregates with the disease. Analysis of the full-sequence-based HTT haplotype indicated that these four families share a common ancestor sufficiently distant to have permitted the accumulation of family-specific variants. Confirmation of new CAG-expansion mutations on this haplotype suggests that unlike most founders of human disease, the common ancestor of HD-affected families with the major haplotype most likely did not have HD. Further, availability of the full sequence data validated the use of SNP imputation to predict the optimal variants for capturing heterozygosity in personalized allele-specific gene-silencing approaches. As few as ten SNPs are capable of revealing heterozygosity in more than 97% of European HD subjects. Extension of allele-specific silencing strategies to the few remaining homozygous individuals is likely to be achievable through additional known SNPs and discovery of private variants by complete sequencing of HTT. These data suggest that the current development of gene-based targeting for HD could be extended to personalized allele-specific approaches in essentially all HD individuals of European ancestry.  相似文献   

4.
Genome-wide association studies (GWAS) have had a tremendous success in the identification of common DNA sequence variants associated with complex human diseases and traits. However, because of their design, GWAS are largely inappropriate to characterize the role of rare and low-frequency DNA variants on human phenotypic variation. Rarer genetic variation is geographically more restricted, supporting the need for local whole-genome sequencing (WGS) efforts to study these variants in specific populations. Here, we present the first large-scale low-pass WGS of the French-Canadian population. Specifically, we sequenced at ~5.6× coverage the whole genome of 1970 French Canadians recruited by the Montreal Heart Institute Biobank and identified 29 million bi-allelic variants (31 % novel), including 19 million variants with a minor allele frequency (MAF) <0.5 %. Genotypes from the WGS data are highly concordant with genotypes obtained by exome array on the same individuals (99.8 %), even when restricting this analysis to rare variants (MAF <0.5, 99.9 %) or heterozygous sites (98.9 %). To further validate our data set, we showed that we can effectively use it to replicate several genetic associations with myocardial infarction risk and blood lipid levels. Furthermore, we analyze the utility of our WGS data set to generate a French-Canadian-specific imputation reference panel and to infer population structure in the Province of Quebec. Our results illustrate the value of low-pass WGS to study the genetics of human diseases in the founder French-Canadian population.  相似文献   

5.
The genetic variance at seven Y-chromosomal microsatellite loci (or short tandem repeats [STRs]) was studied among 986 male individuals from 20 globally dispersed human populations. A total of 598 different haplotypes were observed, of which 437 (73.1%) were each found in a single male only. Population-specific haplotype-diversity values were.86-.99. Analyses of haplotype diversity and population-specific haplotypes revealed marked population-structure differences between more-isolated indigenous populations (e.g., Central African Pygmies or Greenland Inuit) and more-admixed populations (e.g., Europeans or Surinamese). Furthermore, male individuals from isolated indigenous populations shared haplotypes mainly with male individuals from their own population. By analysis of molecular variance, we found that 76.8% of the total genetic variance present among these male individuals could be attributed to genetic differences between male individuals who were members of the same population. Haplotype sharing between populations, phi(ST) statistics, and phylogenetic analysis identified close genetic affinities among European populations and among New Guinean populations. Our data illustrate that Y-chromosomal STR haplotypes are an ideal tool for the study of the genetic affinities between groups of male subjects and for detection of population structure.  相似文献   

6.
Using whole-genome sequence (WGS) data are supposed to be optimal for genome-wide association studies and genomic predictions. However, sequencing thousands of individuals of interest is expensive. Imputation from single nucleotide polymorphisms panels to WGS data is an attractive approach to obtain highly reliable WGS data at low cost. Here, we conducted a genotype imputation study with a combined reference panel in yellow-feather dwarf broiler population. The combined reference panel was assembled by sequencing 24 key individuals of a yellow-feather dwarf broiler population (internal reference panel) and WGS data from 311 chickens in public databases (external reference panel). Three scenarios were investigated to determine how different factors affect the accuracy of imputation from 600 K array data to WGS data, including: genotype imputation with internal, external and combined reference panels; the number of internal reference individuals in the combined reference panel; and different reference sizes and selection strategies of an external reference panel. Results showed that imputation accuracy from 600 K to WGS data were 0.834±0.012, 0.920±0.007 and 0.982±0.003 for the internal, external and combined reference panels, respectively. Increasing the reference size from 50 to 250 improved the accuracy of genotype imputation from 0.848 to 0.974 for the combined reference panel and from 0.647 to 0.917 for the external reference panel. The selection strategies for the external reference panel had no impact on the accuracy of imputation using the combined reference panel. However, if only an external reference panel with reference size >50 was used, the selection strategy of minimizing the average distance to the closest leaf had the greatest imputation accuracy compared with other methods. Generally, using a combined reference panel provided greater imputation accuracy, especially for low-frequency variants. In conclusion, the optimal imputation strategy with a combined reference panel should comprehensively consider genetic diversity of the study population, availability and properties of external reference panels, sequencing and computing costs, and frequency of imputed variants. This work sheds light on how to design and execute genotype imputation with a combined external reference panel in a livestock population.  相似文献   

7.
Next Generation Sequencing Technology has revolutionized our ability to study the contribution of rare genetic variation to heritable traits. However, existing single-marker association tests are underpowered for detecting rare risk variants. A more powerful approach involves pooling methods that combine multiple rare variants from the same gene into a single test statistic. Proposed pooling methods can be limited because they generally assume high-quality genotypes derived from deep-coverage sequencing, which may not be available. In this paper, we consider an intuitive and computationally efficient pooling statistic, the cumulative minor-allele test (CMAT). We assess the performance of the CMAT and other pooling methods on datasets simulated with population genetic models to contain realistic levels of neutral variation. We consider study designs ranging from exon-only to whole-gene analyses that contain noncoding variants. For all study designs, the CMAT achieves power comparable to that of previously proposed methods. We then extend the CMAT to probabilistic genotypes and describe application to low-coverage sequencing and imputation data. We show that augmenting sequence data with imputed samples is a practical method for increasing the power of rare-variant studies. We also provide a method of controlling for confounding variables such as population stratification. Finally, we demonstrate that our method makes it possible to use external imputation templates to analyze rare variants imputed into existing GWAS datasets. As proof of principle, we performed a CMAT analysis of more than 8 million SNPs that we imputed into the GAIN psoriasis dataset by using haplotypes from the 1000 Genomes Project.  相似文献   

8.
Rare variants affecting phenotype pose a unique challenge for human genetics. Although genome-wide association studies have successfully detected many common causal variants, they are underpowered in identifying disease variants that are too rare or population-specific to be imputed from a general reference panel and thus are poorly represented on commercial SNP arrays. We set out to overcome these challenges and detect association between disease and rare alleles using SNP arrays by relying on long stretches of genomic sharing that are identical by descent. We have developed an algorithm, DASH, which builds upon pairwise identical-by-descent shared segments to infer clusters of individuals likely to be sharing a single haplotype. DASH constructs a graph with nodes representing individuals and links on the basis of such segments spanning a locus and uses an iterative minimum cut algorithm to identify densely connected components. We have applied DASH to simulated data and diverse GWAS data sets by constructing haplotype clusters and testing them for association. In simulations we show this approach to be significantly more powerful than single-marker testing in an isolated population that is from Kosrae, Federated States of Micronesia and has abundant IBD, and we provide orthogonal information for rare, recent variants in the outbred Wellcome Trust Case-Control Consortium (WTCCC) data. In both cohorts, we identified a number of haplotype associations, five such loci in the WTCCC data and ten in the isolated, that were conditionally significant beyond any individual nearby markers. We have replicated one of these loci in an independent European cohort and identified putative structural changes in low-pass whole-genome sequence of the cluster carriers.  相似文献   

9.
Gattepaille LM  Jakobsson M 《Genetics》2012,190(1):159-174
High-throughput genotyping and sequencing technologies can generate dense sets of genetic markers for large numbers of individuals. For most species, these data will contain many markers in linkage disequilibrium (LD). To utilize such data for population structure inference, we investigate the use of haplotypes constructed by combining the alleles at single-nucleotide polymorphisms (SNPs). We introduce a statistic derived from information theory, the gain of informativeness for assignment (GIA), which quantifies the additional information for assigning individuals to populations using haplotype data compared to using individual loci separately. Using a two-loci-two-allele model, we demonstrate that combining markers in linkage equilibrium into haplotypes always leads to nonpositive GIA, suggesting that combining the two markers is not advantageous for ancestry inference. However, for loci in LD, GIA is often positive, suggesting that assignment can be improved by combining markers into haplotypes. Using GIA as a criterion for combining markers into haplotypes, we demonstrate for simulated data a significant improvement of assigning individuals to candidate populations. For the many cases that we investigate, incorrect assignment was reduced between 26% and 97% using haplotype data. For empirical data from French and German individuals, the incorrectly assigned individuals can, for example, be decreased by 73% using haplotypes. Our results can be useful for challenging population structure and assignment problems, in particular for studies where large-scale population-genomic data are available.  相似文献   

10.
11.
Common variants explain little of the variance of most common disease,prompting large-scale sequencing studies to understand the contribution of rare variants to these diseases.Imputation of rare variants from genome-wide genotypic arrays offers a cost-efficient strategy to achieve necessary sample sizes required for adequate statistical power.To estimate the performance of imputation of rare variants,we imputed 153 individuals,each of whom was genotyped on 3 different genotype arrays including 317k,610k and 1 million single nucleotide polymorphisms(SNPs),to two different reference panels:HapMap2 and 1000 Genomes pilot March 2010 release (lKGpilot) by using IMPUTE version 2.We found that more than 94%and 84%of all SNPs yield acceptable accuracy(info > 0.4) in HapMap2 and lKGpilot-based imputation,respectively.For rare variants(minor allele frequency(MAF) <5%),the proportion of wellimputed SNPs increased as the MAF increased from 0.3%to 5%across all 3 genome-wide association study(GWAS) datasets.The proportion of well-imputed SNPs was 69%,60%and 49%for SNPs with a MAF from 0.3%to 5%for 1M,610k and 317k,respectively. None of the very rare variants(MAF < 0.3%) were well imputed.We conclude that the imputation accuracy of rare variants increases with higher density of genome-wide genotyping arrays when the size of the reference panel is small.Variants with lower MAF are more difficult to impute.These findings have important implications in the design and replication of large-scale sequencing studies.  相似文献   

12.
Next-generation genotyping microarrays have been designed with insights from large-scale sequencing of exomes and whole genomes. The exome genotyping arrays promise to query the functional regions of the human genome at a fraction of the sequencing cost, thus allowing large number of samples to be genotyped. However, two pertinent questions exist: firstly, how representative is the content of the exome chip for populations not involved in the design of the chip; secondly, can the content of the exome chip be imputed with the reference data from the 1000 Genomes Project (1KGP). By deep whole-genome sequencing two Asian populations that are not part of the 1KGP, comprising 96 Southeast Asian Malays and 36 South Asian Indians for which the same samples have also been genotyped on both the Illumina 2.5 M and exome microarrays, we discovered the exome chip is a poor representation of exonic content in our two populations. However, up to 94.1% of the variants on the exome chip that are polymorphic in our populations can be confidently imputed with existing non-exome-centric microarrays using the 1KGP panel. The coverage further increases if there exists population-specific reference data from whole-genome sequencing. There is thus limited gain in using the exome chip for populations not involved in the microarray design. Instead, for the same cost of genotyping 2,000 samples on the exome chip, performing whole-genome sequencing of at least 35 samples in that population to complement the 1KGP may yield a higher coverage of the exonic content from imputation instead.  相似文献   

13.
Identity by descent (IBD) can be reliably detected for long shared DNA segments, which are found in related individuals. However, many studies contain cohorts of unrelated individuals that share only short IBD segments. New sequencing technologies facilitate identification of short IBD segments through rare variants, which convey more information on IBD than common variants. Current IBD detection methods, however, are not designed to use rare variants for the detection of short IBD segments. Short IBD segments reveal genetic structures at high resolution. Therefore, they can help to improve imputation and phasing, to increase genotyping accuracy for low-coverage sequencing and to increase the power of association studies. Since short IBD segments are further assumed to be old, they can shed light on the evolutionary history of humans. We propose HapFABIA, a computational method that applies biclustering to identify very short IBD segments characterized by rare variants. HapFABIA is designed to detect short IBD segments in genotype data that were obtained from next-generation sequencing, but can also be applied to DNA microarray data. Especially in next-generation sequencing data, HapFABIA exploits rare variants for IBD detection. HapFABIA significantly outperformed competing algorithms at detecting short IBD segments on artificial and simulated data with rare variants. HapFABIA identified 160 588 different short IBD segments characterized by rare variants with a median length of 23 kb (mean 24 kb) in data for chromosome 1 of the 1000 Genomes Project. These short IBD segments contain 752 000 single nucleotide variants (SNVs), which account for 39% of the rare variants and 23.5% of all variants. The vast majority—152 000 IBD segments—are shared by Africans, while only 19 000 and 11 000 are shared by Europeans and Asians, respectively. IBD segments that match the Denisova or the Neandertal genome are found significantly more often in Asians and Europeans but also, in some cases exclusively, in Africans. The lengths of IBD segments and their sharing between continental populations indicate that many short IBD segments from chromosome 1 existed before humans migrated out of Africa. Thus, rare variants that tag these short IBD segments predate human migration from Africa. The software package HapFABIA is available from Bioconductor. All data sets, result files and programs for data simulation, preprocessing and evaluation are supplied at http://www.bioinf.jku.at/research/short-IBD.  相似文献   

14.
T Druet  I M Macleod  B J Hayes 《Heredity》2014,112(1):39-47
Genomic prediction from whole-genome sequence data is attractive, as the accuracy of genomic prediction is no longer bounded by extent of linkage disequilibrium between DNA markers and causal mutations affecting the trait, given the causal mutations are in the data set. A cost-effective strategy could be to sequence a small proportion of the population, and impute sequence data to the rest of the reference population. Here, we describe strategies for selecting individuals for sequencing, based on either pedigree relationships or haplotype diversity. Performance of these strategies (number of variants detected and accuracy of imputation) were evaluated in sequence data simulated through a real Belgian Blue cattle pedigree. A strategy (AHAP), which selected a subset of individuals for sequencing that maximized the number of unique haplotypes (from single-nucleotide polymorphism panel data) sequenced gave good performance across a range of variant minor allele frequencies. We then investigated the optimum number of individuals to sequence by fold coverage given a maximum total sequencing effort. At 600 total fold coverage (x 600), the optimum strategy was to sequence 75 individuals at eightfold coverage. Finally, we investigated the accuracy of genomic predictions that could be achieved. The advantage of using imputed sequence data compared with dense SNP array genotypes was highly dependent on the allele frequency spectrum of the causative mutations affecting the trait. When this followed a neutral distribution, the advantage of the imputed sequence data was small; however, when the causal mutations all had low minor allele frequencies, using the sequence data improved the accuracy of genomic prediction by up to 30%.  相似文献   

15.
Analysis of SARS-CoV-2 genetic diversity within infected hosts can provide insight into the generation and spread of new viral variants and may enable high resolution inference of transmission chains. However, little is known about temporal aspects of SARS-CoV-2 intrahost diversity and the extent to which shared diversity reflects convergent evolution as opposed to transmission linkage. Here we use high depth of coverage sequencing to identify within-host genetic variants in 325 specimens from hospitalized COVID-19 patients and infected employees at a single medical center. We validated our variant calling by sequencing defined RNA mixtures and identified viral load as a critical factor in variant identification. By leveraging clinical metadata, we found that intrahost diversity is low and does not vary by time from symptom onset. This suggests that variants will only rarely rise to appreciable frequency prior to transmission. Although there was generally little shared variation across the sequenced cohort, we identified intrahost variants shared across individuals who were unlikely to be related by transmission. These variants did not precede a rise in frequency in global consensus genomes, suggesting that intrahost variants may have limited utility for predicting future lineages. These results provide important context for sequence-based inference in SARS-CoV-2 evolution and epidemiology.  相似文献   

16.
Genotype imputation is an indispensable step in human genetic studies. Large reference panels with deeply sequenced genomes now allow interrogating variants with minor allele frequency < 1% without sequencing. Although it is critical to consider limits of this approach, imputation methods for rare variants have only done so empirically; the theoretical basis of their imputation accuracy has not been explored. To provide theoretical consideration of imputation accuracy under the current imputation framework, we develop a coalescent model of imputing rare variants, leveraging the joint genealogy of the sample to be imputed and reference individuals. We show that broadly used imputation algorithms include model misspecifications about this joint genealogy that limit the ability to correctly impute rare variants. We develop closed-form solutions for the probability distribution of this joint genealogy and quantify the inevitable error rate resulting from the model misspecification across a range of allele frequencies and reference sample sizes. We show that the probability of a falsely imputed minor allele decreases with reference sample size, but the proportion of falsely imputed minor alleles mostly depends on the allele count in the reference sample. We summarize the impact of this error on genotype imputation on association tests by calculating the r2 between imputed and true genotype and show that even when modeling other sources of error, the impact of the model misspecification has a significant impact on the r2 of rare variants. To evaluate these predictions in practice, we compare the imputation of the same dataset across imputation panels of different sizes. Although this empirical imputation accuracy is substantially lower than our theoretical prediction, modeling misspecification seems to further decrease imputation accuracy for variants with low allele counts in the reference. These results provide a framework for developing new imputation algorithms and for interpreting rare variant association analyses.  相似文献   

17.
Supercentenarians (110 years or older) are the world’s oldest people. Seventy four are alive worldwide, with twenty two in the United States. We performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity. We found no significant evidence of enrichment for a single rare protein-altering variant or for a gene harboring different rare protein altering variants in supercentenarian compared to control genomes. We followed up on the gene most enriched for rare protein-altering variants in our cohort of supercentenarians, TSHZ3, by sequencing it in a second cohort of 99 long-lived individuals but did not find a significant enrichment. The genome of one supercentenarian had a pathogenic mutation in DSC2, known to predispose to arrhythmogenic right ventricular cardiomyopathy, which is recommended to be reported to this individual as an incidental finding according to a recent position statement by the American College of Medical Genetics and Genomics. Even with this pathogenic mutation, the proband lived to over 110 years. The entire list of rare protein-altering variants and DNA sequence of all 17 supercentenarian genomes is available as a resource to assist the discovery of the genetic basis of extreme longevity in future studies.  相似文献   

18.
The mitochondrial control region (mtCR) is a widely used genetic marker for phylogenetic, phylogeographic and population genetic inference. The analysis of mtCR in 115 Indonesian specimens of the giant tiger shrimp, Penaeus monodon, revealed 26 individuals yielding a second - apparently paralogous - sequence in addition to the putatively authentic mitochondrial haplotype. The paralogous haplotypes fell into two major haplogroups that are highly diverged with respect to the authentic mitochondrial haplotypes (average pairwise sequence divergence of 12.5% and 5.0%, respectively). A comparison with published mtCR sequences of P. monodon showed that the paralogous contaminant sequences were inadvertently included in a series of recent population genetic studies, leading to seriously compromised conclusions about genetic diversity and differentiation. The prevalence of the paralogous haplotypes throughout the sampled Indo-Pacific populations is highly skewed: From African and Indian individuals only paralogs have been sequenced, while they are completely absent from Australian individuals. This suggests that geographically unequally distributed allelic variants at binding sites of the primer pair ordinarily used to amplify mtCR in P. monodon suppressed the amplification of authentic mtCR in a wide range of samples.  相似文献   

19.
The recent dramatic cost reduction of next-generation sequencing technology enables investigators to assess most variants in the human genome to identify risk variants for complex diseases. However, sequencing large samples remains very expensive. For a study sample with existing genotype data, such as array data from genome-wide association studies, a cost-effective approach is to sequence a subset of the study sample and then to impute the rest of the study sample, using the sequenced subset as a reference panel. The use of such an internal reference panel identifies population-specific variants and avoids the problem of a substantial mismatch in ancestry background between the study population and the reference population. To efficiently select an internal panel, we introduce an idea of phylogenetic diversity from mathematical phylogenetics and comparative genomics. We propose the “most diverse reference panel”, defined as the subset with the maximal “phylogenetic diversity”, thereby incorporating individuals that span a diverse range of genotypes within the sample. Using data both from simulations and from the 1000 Genomes Project, we show that the most diverse reference panel can substantially improve the imputation accuracy compared to randomly selected reference panels, especially for the imputation of rare variants. The improvement in imputation accuracy holds across different marker densities, reference panel sizes, and lengths for the imputed segments. We thus propose a novel strategy for planning sequencing studies on samples with existing genotype data.  相似文献   

20.
Genotype imputation is now routinely applied in genome-wide association studies (GWAS) and meta-analyses. However, most of the imputations have been run using HapMap samples as reference, imputation of low frequency and rare variants (minor allele frequency (MAF) < 5%) are not systemically assessed. With the emergence of next-generation sequencing, large reference panels (such as the 1000 Genomes panel) are available to facilitate imputation of these variants. Therefore, in order to estimate the performance of low frequency and rare variants imputation, we imputed 153 individuals, each of whom had 3 different genotype array data including 317k, 610k and 1 million SNPs, to three different reference panels: the 1000 Genomes pilot March 2010 release (1KGpilot), the 1000 Genomes interim August 2010 release (1KGinterim), and the 1000 Genomes phase1 November 2010 and May 2011 release (1KGphase1) by using IMPUTE version 2. The differences between these three releases of the 1000 Genomes data are the sample size, ancestry diversity, number of variants and their frequency spectrum. We found that both reference panel and GWAS chip density affect the imputation of low frequency and rare variants. 1KGphase1 outperformed the other 2 panels, at higher concordance rate, higher proportion of well-imputed variants (info>0.4) and higher mean info score in each MAF bin. Similarly, 1M chip array outperformed 610K and 317K. However for very rare variants (MAF≤0.3%), only 0–1% of the variants were well imputed. We conclude that the imputation of low frequency and rare variants improves with larger reference panels and higher density of genome-wide genotyping arrays. Yet, despite a large reference panel size and dense genotyping density, very rare variants remain difficult to impute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号