首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we demonstrated the safety use of calendula oil/chitosan microcapsules as a carrier for both oral and topical deliveries. We also reported the improved biological activity towards skin cells and Staphylococcus aureus of phyllanthin containing chitosan microcapsules. However, the possibility of both oral and topical applications was still necessary to be further studied. Here we investigated that both oral and topical applications of chitosan-based microcapsules were tested using hydrocortisone succinic acid (HSA) and 5-fluorouracil (5-FU), respectively. The drug loading efficiency, particle size, surface morphology and chemical compositions of both drug loaded microcapsules were confirmed by UV-vis spectrophotometer, particle size analyzer, scanning electron microscope and Fourier transform infrared spectroscopy. The in vitro release studies revealed that both HSA and 5-FU could be released form chitosan microcapsules. The mean adrenocorticotropic hormone concentration in HSA loaded microcapsule mice plasma was detected to be lower than that of water control. One hundred micrograms per milliliter of 5-FU containing microcapsules exhibited a stronger growth inhibition towards skin keratinocytes than that of free 5-FU. In vitro drug delivery model demonstrated the delivery of 5-FU from microcapsule treated textiles into nude mice skin. Further uses of the drug loaded microcapsules may provide an efficiency deliverable tool for both oral and topical applications.  相似文献   

2.
The present study was an attempt to investigate the hepatoprotective and antioxidative property of Phyllanthus amarus (P. amarus) extract and phyllanthin. Phyllanthin, one of the active lignin present in this plant species was isolated from the aerial parts, by silica gel column chromatography employing gradient elution with hexane-ethyl acetate solvent mixture. It was obtained in high yields (1.23%), compared to reported procedures and the purity was ascertained by HPTLC and reversed-phase HPLC analysis. Characterization of phyllanthin was done by mp, UV-Visible spectrophotometry, elemental analysis, FT-IR, 1H NMR, 13C NMR and mass spectral analysis. Free radical scavenging activity of P. amarus extract and phyllanthin was also examined using DPPH assay. The protective effect of P. amarus extract and phyllanthin was studied on CCl4-induced toxicity in human hepatoma HepG2 cell line. The results indicated that CCl4 treatment caused a significant decrease in cell viability. In addition, the toxin treatment initiated lipid peroxidation (LPO), caused leakage of enzymes like alanine transaminase (ALT) and lactate dehydrogenase (LDH) with a significant decrease in glutathione (GSH) levels. It was observed that phyllanthin effectively alleviated the changes induced by CCl4 in a concentration-dependent manner, with much smaller strengths as compared to P. amarus extract.  相似文献   

3.
Ethylcellulose microcapsules containing squalene were fabricated by a solvent evaporation method. The parameters of core/shell ratio, content of surfactant, encapsulation efficiency, and drug-loading rate of squalene were investigated; the Polysorbate-80 was used as surfactant in the external phase. The results showed that the optimal ethylcellulose microcapsules containing squalene were obtained with a surfactant concentration of 0.5 % and a core/shell ratio of 1:1. Under the optimal conditions, the entrapment efficiency and the drug-loading rate reached to 60.31?±?0.55 % and 32.76?±?0.30 %, respectively. The appearance and size of microcapsules were measured by scanning electron microscope and metallographic microscope. The microcapsules were spherical in shape and have a mean diameter of 103 μm.  相似文献   

4.
Preparation and characteristics of microcapsules containing asparaginase   总被引:1,自引:0,他引:1  
Conditions for the preparation of microcapsules containing asparaginase by interfacial polymerization were investigated. The activity of microcapsules prepared under the optimal conditions was about 37% compared with that of native asparaginase. Particle size of microcapsules could be controlled by determining the stirring rate and concentration of Span 85. The membranes of microcapsules were resistant to mechanical shock or attack of chymotrypsin, and no leakage of asparaginase from microcapsules was observed.  相似文献   

5.
Shoot tip explants of Phyllanthus amarus were cocultivated with Agrobacterium tumefaciens strain LBA 4404 carrying plasmid pCAMBIA 2301 harbouring genes coding for betaglucuronidase (gus), kanamycin (kan), and neomycin phosphotransferase II (nptII) along with a gene coding for Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (Lu-PLR). Transformed shoot tip explants were maintained in a Murashige and Skoog (MS) medium containing TDZ 1.54 mg l?1, kan 50 mg l?1 and cephotaxime 62.5 mg l?1. The optimum medium for regeneration of multiple shoots was MS supplemented with TDZ 1.54 mg l?1, kan 50 mg l?1. Efficient and effective rooting of plantlets was achieved by culturing the in vitro regenerated shoots on liquid ½ MS medium containing 0.7 mg l?1 indole 3-butyric acid (IBA) and 5 mg l?1 kan. Rooted plants were acclimatized in the mixtures of vermiculite and soil. The transformation of kan-resistant plantlets regenerated from shoot-tip explants was confirmed by GUS and polymerase chain reaction (PCR) analysis. Southern blot and reverse transcribed PCR (RT-PCR) analysis confirmed successful integration and expression of Lu-PLR gene. Quantitative analysis of phyllanthin performed on transgenic and wild plants using high-performance liquid chromatography (HPLC) revealed that transgenic lines contained higher phyllanthin content (0.3–0.81% w/w) than wild plants (0.09% w/w). The highest yield of phyllanthin was detected in transgenic lines was up to 1.16, 1.22 and 1.23 folds higher than that of wild plant. This report highlights the transgenic approach to enhance the contents of phyllanthin and hypophyllanthin.  相似文献   

6.
The aim of this study was to microencapsulate caffeine by the emulsion technique, trying to control its release from a medicated chewing gum. Three formulations were prepared using alginate, alginate-starch, and alginate-starch with chitosan coating as the wall materials. These microcapsules were characterized with regard to the morphology studied by using an optical microscope and scanning electron microscopy (SEM), particle size, and encapsulation efficiency. The microcapsules were then incorporated into the chewing gums. The chewing gums were characterized by thermal behavior (by differential scanning calorimetry [DSC]), texture profile analysis [TPA], and sensory evaluation. Furthermore, the release of caffeine from the chewing gum was studied in vitro using the masticatory simulator and in vivo by a chew-out study. The microcapsules revealed a spherical form and high encapsulation efficiency, representing the success of the technique. The outcomes indicated that it is possible to encapsulate caffeine with the techniques employed and the microcapsules prolonged the release of caffeine throughout mastication. The chewing gum containing alginate-starch with chitosan-coated microcapsules showed the great potential of the microcapsule in controlling the release of the caffeine from the chewing gum, thereby delaying its bitterness.  相似文献   

7.
Two different techniques of glucosyltransferase immobilization were studied for the conversion of sucrose into isomaltulose. The optimum conditions for immobilization of Erwinia sp. glucosyltransferase onto Celite 545, determined using response surface methodology, was pH 4.0 and 170 U of glucosyltransferase/g of Celite 545. Using this conditions more than 60% conversion of sucrose into isomaltulose can be obtained. The immobilization of glucosyltransferase was also studied by its entrapment in microcapsules of low-methoxyl pectin and fat (butter and oleic acid). The non-lyophilized microcapsules of pectin, containing the enzyme and fat, showed higher glucosyltransferase activity, compared with lyophilized microcapsules containing enzyme plus fat, and also lyophilized microcapsules containing enzyme without fat addition. The non-lyophilized microcapsules of pectin containing the glucosyltransferase and fat, converted 30% of sucrose into isomaltulose in the first batch. However the conversion decreased to 5% at the 10th batch, indicating inactivation of the enzyme.  相似文献   

8.
Abstract:  The potential use of polyurea microcapsules, as 'release carriers' for insect pheromones, has been demonstrated. ( Z )-11-hexadecenyl acetate (Z11-16:Ac), the major sex pheromone component of several Noctuidae species, was used as the model molecule. The coating material's ability to release the pheromone was initially studied by the solid-phase micro-extraction technique. Polyurea microcapsules released Z11-16:Ac relatively slowly, with a duration of approximately 1 month, as it was determined under both laboratory and semi-field conditions. Preliminary laboratory bioassays revealed a satisfactory attraction of Sesamia males, at doses of 50 and 500 mg of dried microcapsules containing the aforementioned pheromone. Almost all male insects tested initiated flight and among them 40.2–49.4% successfully contacted the pheromone source. The preparation of polyurea microcapsules needs further refinement as to increase release duration; nevertheless, these results demonstrate strong potential for the future use of polyurea microcapsules as part of integrated insect control programmes.  相似文献   

9.
Microencapsulation offers a unique potential for high cell density, high productivity mammalian cell cultures. However, for successful exploitation there is the need for microcapsules of defined size, properties and mechanical stability. Four types of alginate/poly-l-Lysine microcapsules, containing recombinant CHO cells, have been investigated: (a) 800 μm liquid core microcapsules, (b) 500 μm liquid core microcapsules, (c) 880 μm liquid core microcapsules with a double PLL membrane and (d) 740 μm semi-liquid core microcapsules. With encapsulated cells a reduced growth rate was observed, however this was accompanied by a 2–3 fold higher specific production rate of the recombinant protein. Interestingly, the maximal intracapsular cell concentration was only 8.7 × 107 cell mL-1, corresponding to a colonization of 20% of the microcapsule volume. The low level of colonization is unlikely to be due to diffusional limitations since reduction of microcapsule size had no effect. Measurement of cell leaching and mechanical properties showed that liquid core microcapsules are not suitable for continuous long-term cultures (>1 month). By contrast semi-liquid core microcapsules were stable over long periods with a constant level of cell colonization (ϕ = 3%). This indicates that the alginate in the core plays a predominant role in determining the level of microcapsule colonization. This was confirmed by experiments showing reduced growth rates of batch suspension cultures of CHO cells in medium containing dissolved alginate. Removal of this alginate would therefore be expected to increase microcapsule colonization.  相似文献   

10.
The involvement of algal chemical cues in the pre-ingestive selection of food particles in Crassostrea gigas was studied using a new approach. Live cells of two microalgal species, Nitzschia closterium and Tetraselmis suesica, were separately entrapped in small alginate microcapsules using an emulsification/internal gelation method. Microcapsule size was adjusted to be within the range of particles ingested by oysters. Using this technique, about 80% of microcapsules had a diameter ranging from 21 to 100 μm. The monitoring of entrapped algae showed that phytoplankton cells remained alive and maintained an active growth for at least 24 days. In particle selection bioassays, adult C. gigas were fed a mixture of microcapsules containing the above algae species as well as control empty alginate microcapsules. The comparison of the proportions of each microcapsule type in the diet and in pseudofeces revealed that those containing T. suesica were significantly ingested while those containing N. closterium were preferentially rejected. Since microcapsule material (alginate matrix) prevented physical contacts between algae cells and oyster feeding organs, this study clearly demonstrate that extracellular metabolites produced by microalgae play a crucial role in the pre-ingestive selection of particles in suspension-feeding bivalves.  相似文献   

11.
Semipermeable aqueous collodion microcapsules were prepared containing both yeast alcohol dehydrogenase (EC 1.1.1.1) and malic dehydrogenase (EC 1.1.1.37). These microcapsules exhibited both enzymic activities in good amount in the ratio 3:1 with respect to malic dehydrogenase:alcohol dehydrogenase.Both NAD+ and NADH were successfully cycled within the microcapsules by employing the included enzyme activities acting sequentially. A soluble, immobilized NAD+ derivative was also recycled within the semipermeable microcapsules.  相似文献   

12.
The in vitro and in vivo characterization of cell-loaded immobilization devices is an important challenge in cell encapsulation technology for the long-term efficacy of this approach. In the present paper, alginate-poly-l-lysine-alginate (APA) microcapsules containing erythropoietin (Epo)-secreting C2C12 myoblasts have been elaborated, characterized, and tested both in vitro and in vivo. High mechanical and chemical resistance of the elaborated microcapsules was observed. Moreover, the in vitro cultured encapsulated cells released 81.9 +/- 8.2 mIU/mL/24 h (by 100 cell-loaded microcapsules) by day 7, reaching the highest peak at day 21 (161.7 +/- 0.9 mIU/mL/24 h). High and constant hematocrit levels were maintained over 120 days after a single subcutaneous administration of microcapsules and lacking immunosuppressive protocols. No major host reaction was observed. On the basis of the results obtained in our study, cell encapsulation technology might be considered a suitable therapeutic strategy for the long-term delivery of biologically active products, such as Epo.  相似文献   

13.
By virtue of the biocompatibility and physical properties of hydrogel, picoliter‐sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one‐step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil‐suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF–7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long‐term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single‐cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single‐cell experiments.  相似文献   

14.
The purpose of this reseach was to characterize and optimize the properties of microcapsules produced by the solvent exchange method, a new microencapsulation technique. Reservoir-type microcapsules containing lysozyme as a model protein were produced using a coaxial ultrasonic atomizer under various formulation and instrument settings, and characterized with respect to in vitro release kinetics and stability of the encapsulated protein. The solvent exchange method could encapsulate protein drugs with high efficiency under an optimized condition and was mild enough to preserve the integrity of the encapsulated lysozymes during the process. In vitro release studies showed that the microcapsules could release proteins in a controllable manner. The solvent exchange method is a mild and simple microencapsulation method that could encapsulate lysozyme, maintaining its functional integrity.  相似文献   

15.
Glutaraldehyde (GA) crosslinked gelatin (G) microcapsules containing Zanthoxylum limonella oil (ZLO) were prepared by coacervation technique. The effect of various parameters such as variation of oil-loading, gelatin concentration and degree of crosslinking on release rate of oil were studied. Scanning electron microscopy (SEM) was used to understand the surface characteristics of microcapsules. FTIR-results indicated the absence of any significant interaction between polymer and oil.  相似文献   

16.
Urease was microencapsulated by forming a semipermeable polyamide membrane around aqueous microdroplets (266 microns mean diameter) containing the soluble enzyme. The yield of the interfacial polymerization technique, determined spectrophotometrically, was 83% of the original enzyme on a mass basis, resulting in a final intracapsular urease concentration of 62.3 mg ml-1 or 0.1 mM. Similar absorption spectra of broken and intact microcapsules suggested that spectrophotometry may be applied in performing direct studies on the intact microcapsules. The high activity yield of urease microcapsules relative to the mass of entrapped enzyme (92.5%) indicated minimal effects of mass transfer limitation. The mass of active urease incorporated into the nylon membrane represented 6% of the encapsulated enzyme activity. The soluble intracapsular enzyme fraction (94%) was released into solution upon rupture of the membrane. A complete mass and activity balance of the encapsulated enzyme was achieved.  相似文献   

17.
A study of alginate lyase was carried out to determine if this enzyme could be used to remove alginate present in the core of alginate/poly-L-lysine (AG/PLL) microcapsules in order to maximize cell growth and colonization. A complete kinetic study was undertaken, which indicated an optimal activity of the enzyme at pH 7-8, 50 degrees C, in the presence of Ca2+. The buffer, not the ionic strength, influenced the alginate degradation rate. Alginate lyase was also shown to be active on gelled forms of alginate, as well as on the AG/PLL complex constituting the membrane of microcapsules. Batch cultures of CHO cells in the presence of alginate showed a decrease of the growth rate by a factor of 2, although the main metabolic flux rates were not modified. The addition of alginate lyase to cell culture medium increased the doubling time 5-7-fold and decreased the protein production rate, although cell viability was not affected. The addition of enzyme to medium containing alginate did not improve growth conditions. This suggests that alginate lyase is probably not suitable for hydrolysis of microcapsules in the presence of cells, in order to achieve high cell density and high productivity. However, the high activity may be useful for releasing cells from alginate beads or AG/PLL microcapsules.  相似文献   

18.
Pheromone eluting oligolactide (OLA) microcapsules immobilized in electrospun biodegradable polyester nanofibers were obtained by electrospinning of aqueous dispersions of the microcapsules. OLA was prepared by conventional melt polycondensation of lactic acid. Following the protocol of the solvent displacement method, OLA was dissolved in acetone and mixed with Brij S20 and the pheromone of the European grape vine moth, Lobesia Botrana, (E,Z)-7,9-dodecadien-l-yl acetate (DA). Up to 32 wt % of this mixture could be dispersed in water with colloidal stability of several weeks without any sedimentation. Without DA as well as OLA, no stable dispersions of OLA in water were obtained. Replacement of DA by classical hydrophobes typically used for miniemulsions did not yield stable dispersions, but the addition of octyl acetate, which shows structural similarity to DA, yielded stable dispersions in water up to 10 wt %. Dispersions of OLA/DA were successfully electrospun in combination with an aqueous dispersion of a biodegradable block copolyester resulting in water-stable nanofibers containing OLA/DA microcapsules. Release of DA from microcapsules and fibers was retarded in comparison with non-encapsulated DA, as shown by model studies.  相似文献   

19.
Encapsulating fish oil by spray drying with an adequate wall material was investigated to determine if stable powders containing emulsified fish-oil-droplets can be formed. In particular, the dextrose equivalent (DE) of maltodextrin (MD) affects the powder structure, surface-oil ratio, and oxidative stability of fish oil. The carrier solution was prepared using MD with different DEs (DE = 11, 19, and 25) and sodium caseinate as the wall material and the emulsifier, respectively. The percentage of microcapsules having a vacuole was 73, 39, and 38% for MD with DE = 11, 19, and 25, respectively. Peroxide values (PVs) were measured for the microcapsules incubated at 60 °C. The microcapsules prepared with MD of DE = 25 and 19 had lower PVs than those prepared with MD of DE = 11. The difference in PV can be ascribed to the difference in the surface-oil ratio of the spray-dried microcapsules.  相似文献   

20.
The microcapsules with oil core and multi-layers shell were developed from poly-cationic chitosan (CS) and anionic SDS in multistep electrostatic layer by layer deposition technique combined with oil in water emulsification process. The net charge of microcapsules determined by zeta potential indicated that microcapsules are highly positive charged because of poly-cationic nature of CS, and charge neutralization of microcapsules occurred after alkali treatment. The granulometry measurement showed increase in average diameter of microcapsules by alkali treatment suggesting swelling or formation of small aggregates. The morphology analysis of microcapsules by optical microscopy corroborated the results of granulometry, and diameter of microcapsules was found to be decreased in multistep process due to tight packing of layers in outer shell of microcapsules. The alkali treatment of microcapsules to solidify outer shell was optimized with 0.02N NaOH to reduce microcapsules aggregation and gel formation by CS chains as found in optical micrographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号