首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
He Q  Ren P  Kong X  Xu W  Tang H  Yin Y  Wang Y 《Molecular bioSystems》2011,7(7):2147-2155
Intrauterine growth restriction (IUGR) is not only an underlying factor for stunted postnatal growth and newborn deaths, but also associated with disease prevalence, such as hypertension and diabetes, in both adult humans and animals. To investigate the metabolic status of IUGR, the differences in serum and jejunal tissue metabonome were examined in IUGR and normal weight 21 day old piglets. IUGR piglets had a significantly lower birth weight (785 ± 42 g vs. 1451 ± 124 g), weaned weight (3053 ± 375 g vs. 6489 ± 545 g) and average daily gain (108 ± 16 g vs. 240 ± 21 g) than normal weight piglets (p < 0.05). IUGR piglets also had a shorter villus height and smaller villus height to crypt depth ratio (p < 0.05) in jejunum. An NMR-based metabonomic study found that serum levels of glycoprotein, albumin and threonine were higher in IUGR than in normal weight piglets, while serum levels of HDL, lipids, unsaturated lipids, glycerophosphorylcholine, myo-inositol, citrate, glutamine and tyrosine were lower in IUGR piglets (p < 0.05). In addition, marked changes in jejunal metabolites, including elevated levels of lipids and unsaturated lipids, and decreased levels of valine, alanine, glutamine, glutamate, choline, glycerophosphorylcholine, trimethylamine-N-oxide, scyllo-inositol, lactate, creatine, glucose, galactose, phenylalanine, tyrosine, glutathione, inosine and taurine were observed in IUGR piglets (p < 0.05). These novel findings indicate that IUGR piglets have a distinctive metabolic status compared to normal weight piglets, including changes in lipogenesis, lipid oxidation, energy supply and utilization, amino acid and protein metabolism, and antioxidant ability; these changes could contribute to impaired growth and jejunal function.  相似文献   

2.
Methionine can be used as the sole sulfur source by the Mycobacterium tuberculosis complex although it is not obvious from examination of the genome annotation how these bacteria utilize methionine. Given that genome annotation is a largely predictive process, key challenges are to validate these predictions and to fill in gaps for known functions for which genes have not been annotated. We have addressed these issues by functional analysis of methionine metabolism. Transport, followed by metabolism of (35)S methionine into the cysteine adduct mycothiol, demonstrated the conversion of exogenous methionine to cysteine. Mutational analysis and cloning of the Rv1079 gene showed it to encode the key enzyme required for this conversion, cystathionine gamma-lyase (CGL). Rv1079, annotated metB, was predicted to encode cystathionine gamma-synthase (CGS), but demonstration of a gamma-elimination reaction with cystathionine as well as the gamma-replacement reaction yielding cystathionine showed it encodes a bifunctional CGL/CGS enzyme. Consistent with this, a Rv1079 mutant could not incorporate sulfur from methionine into cysteine, while a cysA mutant lacking sulfate transport and a methionine auxotroph was hypersensitive to the CGL inhibitor propargylglycine. Thus, reverse transsulfuration alone, without any sulfur recycling reactions, allows M. tuberculosis to use methionine as the sole sulfur source. Intracellular cysteine was undetectable so only the CGL reaction occurs in intact mycobacteria. Cysteine desulfhydrase, an activity we showed to be separable from CGL/CGS, may have a role in removing excess cysteine and could explain the ability of M. tuberculosis to recycle sulfur from cysteine, but not methionine.  相似文献   

3.
Transplacental transfer is the fetus' primary source of taurine, an essential amino acid during fetal life. In intrauterine growth restriction (IUGR), placental transport capacity of taurine is reduced and fetal taurine levels are decreased. We characterized the protein expression of the taurine transporter (TAUT) in human placenta using immunocytochemistry and Western blotting, tested the hypothesis that placental protein expression of TAUT is reduced in IUGR, and investigated TAUT regulation by measuring the Na(+)-dependent taurine uptake in primary villous fragments after 1 h of incubation with different effectors. TAUT was primarily localized in the syncytiotrophoblast microvillous plasma membrane (MVM). TAUT was detected as a single 70-kDa band, and MVM TAUT expression was unaltered in IUGR. The PKC activator PMA and the nitric oxide (NO) donor 3-morpholinosydnonimine decreased TAUT activity (P < 0.05, n = 7-15). However, none of the tested hormones, e.g., leptin and growth hormone, altered TAUT activity significantly. PKC activity measured in MVM from control and IUGR placentas was not different. In conclusion, syncytiotrophoblast TAUT is strongly polarized to the maternal-facing plasma membrane. MVM TAUT expression is unaltered in IUGR, suggesting that the reduced MVM taurine transport in IUGR is due to changes in transporter activity. NO release downregulates placental TAUT activity, and it has previously been shown that IUGR is associated with increased fetoplacental NO levels. NO may therefore play an important role in downregulating MVM TAUT activity in IUGR.  相似文献   

4.
Alterations in hepatic transsulfuration reactions were determined in rats treated with a glutathione-depleting agent. A dose of l-buthionine-(SR)-sulfoximine decreased hepatic methionine, cysteine, S-adenosylmethionine, and glutathione levels rapidly. Methionine adenosyltransferase and γ-glutamylcysteine lygase activities were decreased transiently, but significantly. The activity of cysteine dioxygenase was increased, resulting in an elevation of hypotaurine and taurine concentrations. Administration of phorone reduced hepatic glutathione and cysteine similarly, but S-adenosylmethionine concentrations were elevated for as long as 72 h. Hepatic methionine adenosyltransferase, cystathionine β-synthase, cystathionine γ-lyase, and γ-glutamylcysteine lygase activities were all increased but cysteine dioxygenase activity and taurine generation were markedly depressed. The results show that a decrease in hepatic GSH induces profound changes in sulfur amino acid metabolomics, which would subsequently influence various cellular processes. It is suggested that the change in hepatic levels of sulfur-containing substances and its physiological significance should be considered when a glutathione-depleting agent is utilized in biological experiments.  相似文献   

5.
The crystal structure of cystathionine gamma-lyase (CGL) from yeast has been solved by molecular replacement at a resolution of 2.6 A. The molecule consists of 393 amino acid residues and one PLP moiety and is arranged in the crystal as a tetramer with D2 symmetry as in other related enzymes of the Cys-Met-metabolism PLP-dependent family like cystathionine beta-lyase (CBL). A structure comparison with other family members revealed surprising insights into the tuning of enzymatic specificity between the different family members. CGLs from yeast or human are virtually identical at their active sites to cystathionine gamma-synthase (CGS) from E. coli. Both CGLs and bacterial CGSs exhibit gamma-synthase and gamma-lyase activities depending on their position in the metabolic pathway and the available substrates. This group of enzymes has a glutamate (E333 in yeast CGL) which binds to the distal group of cystathionine (CTT) or the amino group of cysteine. Plant CGSs use homoserine phosphate instead of O-succinyl-homoserine as one substrate. This is reflected by a partially different active site structure in plant CGSs. In CGL and CBL the pseudosymmetric substrate must dock at the active site in different orientations, with S in gamma-position (CBL) or in delta-position (CGL). The conserved glutamate steers the substrate as seen in other CGLs. In CBLs this position is occupied by either tyrosine or hydrophobic residues directing binding of CTT such that S is in the in gamma-position. In methionine gamma-lyase a hydrophic patch operates as recognition site for the methyl group of the methionine substrate.  相似文献   

6.
Cystathionine β‐synthase (CBS) catalyzes the formation of l ‐cystathionine from l ‐serine and l ‐homocysteine. The resulting l ‐cystathionine is decomposed into l ‐cysteine, ammonia, and α‐ketobutylic acid by cystathionine γ‐lyase (CGL). This reverse transsulfuration pathway, which is catalyzed by both enzymes, mainly occurs in eukaryotic cells. The eukaryotic CBS and CGL have recently been recognized as major physiological enzymes for the generation of hydrogen sulfide (H2S). In some bacteria, including the plant‐derived lactic acid bacterium Lactobacillus plantarum, the CBS‐ and CGL‐encoding genes form a cluster in their genomes. Inactivation of these enzymes has been reported to suppress H2S production in bacteria; interestingly, it has been shown that H2S suppression increases their susceptibility to various antibiotics. In the present study, we characterized the enzymatic properties of the L. plantarum CBS, whose amino acid sequence displays a similarity with those of O‐acetyl‐l ‐serine sulfhydrylase (OASS) that catalyzes the generation of l ‐cysteine from O‐acetyl‐l ‐serine (l ‐OAS) and H2S. The L. plantarum CBS shows l ‐OAS‐ and l ‐cysteine‐dependent CBS activities together with OASS activity. Especially, it catalyzes the formation of H2S in the presence of l ‐cysteine and l ‐homocysteine, together with the formation of l ‐cystathionine. The high affinity toward l ‐cysteine as a first substrate and tendency to use l ‐homocysteine as a second substrate might be associated with its enzymatic ability to generate H2S. Crystallographic and mutational analyses of CBS indicate that the Ala70 and Glu223 residues at the substrate binding pocket are important for the H2S‐generating activity.  相似文献   

7.
含硫氨基酸在不同的生物体中具有重要调节功能,转硫途径相关酶促进半胱氨酸的生成和硫化氢产生。本研究从嗜热四膜虫中鉴定一种胱硫醚γ-裂解酶(cystathionine γ-lyase 1,CGL1,TTHERM_00052400)基因。CGL1在营养生长期高水平表达,而在饥饿阶段和有性生殖期,维持在较低的表达水平。通过密码子优化,人工合成CGL1基因,构建重组表达质粒pGEX-CGL1,转化大肠杆菌BL21(DE3)。E.coli/pGEX-CGL1表达重组蛋白质GST-Cgl1,并通过亲和层析获得纯化。GST-Cgl1裂解胱硫醚产生半胱氨酸,也具有裂解半胱氨酸和同型半胱氨酸产生H2S的活性。进一步构建重组质粒pNEO4-3HA-CGL1和pSMC1hpNEO-CGL1,转化四膜虫细胞,获得带有HA标签和干扰CGL1的突变体细胞株。免疫荧光定位表明,HA-Cgl1生长期定位在亲本大核,饥饿期定位在细胞质,有性生殖前期定位在亲本大核,而在后期定位在胞质中。CGL1干扰的突变体细胞株在有性生殖过程中不能形成合子核,发育中的小核异常降解,产生仅有大核的异常单细胞。结果表明,嗜热四膜虫含有进化中保守的胱硫醚γ-裂解酶Cgl1。Cgl1具有产生和裂解半胱氨酸的活性。Cgl1定位在细胞质和细胞核中,参与了有性生殖过程细胞核的发育。  相似文献   

8.
The first-pass metabolism of dietary sulfur amino acids by the liver and the robust upregulation of hepatic cysteine dioxygenase activity in response to an increase in dietary protein or sulfur amino acid level gives the liver a primary role in the removal of excess cysteine and in the synthesis of taurine. Hepatic taurine synthesis is largely restricted by the low availability of cysteinesulfinate as substrate for cysteinesulfinate decarboxylase, and taurine production is increased when cysteinesulfinate increases in response to an increase in the hepatic cysteine concentration and the associated increase in cysteine dioxygenase activity. The upregulation of cysteine dioxygenase in the presence of cysteine is a consequence of diminished ubiquitination of cysteine dioxygenase and a slower rate of degradation by the 26S proteasome.  相似文献   

9.
The transsulfuration pathways allow the interconversion of homocysteine and cysteine with the intermediary formation of cystathionine. The various organisms studied up to now incorporate reduced sulfur into a three- or a four-carbon chain and use differently the transsulfuration pathways to synthesize sulfur amino acids. In enteric bacteria, the synthesis of cysteine is the first step of organic sulfur metabolism and homocysteine is derived from cysteine. Fungi are capable of incorporating reduced sulfur into a four-carbon chain, and they possess two operating transsulfuration pathways. By contrast, synthesis of cysteine from homocysteine is the only existing transsulfuration pathway in mammals. In Saccharomyces cerevisiae, genetic, phenotypic, and enzymatic study of mutants has allowed us to demonstrate that homocysteine is the first sulfur amino acid to be synthesized and cysteine is derived only from homocysteine (H. Cherest and Y. Surdin-Kerjan, Genetics 130:51-58, 1992). We report here the cloning of genes STR4 and STR1, encoding cystathionine beta-synthase and cystathionine gamma-lyase, respectively. The only phenotypic consequence of the inactivation of STR1 or STR4 is cysteine auxotrophy. The sequencing of gene STR4 has allowed us to compare all of the known sequences of transsulfuration enzymes and enzymes catalyzing the incorporation of reduced sulfur in carbon chains. These comparisons reveal a partition into two families based on sequence motifs. This partition mainly correlates with similarities in the catalytic mechanisms of these enzymes.  相似文献   

10.
The concentrations of sulfur-containing amino acids, taurine, cystathionine, methionine and cystine, as well as cystathionine beta-synthase and gamma-lyase activities in various tissues of Agkistrodon blomhoffi (mamushi) were measured. The concentration of taurine in examined tissues was greater than the concentration of other sulfur-containing amino acids. The concentration of cystathionine in various tissues was also much higher than those of methionine and cystine, but the concentration of cystathionine in the brain was lower than that of methionine. In all tissues examined in this study, cystathionine beta-synthase activity was much higher than that of cystathionine gamma-lyase. The ratios of cystathionine beta-synthase to gamma-lyase activities in various tissues were 5.6 to approximately 85.6. The concentration of sulfur-containing amino acids in muscle and skin divided into eight portions of the body were also determined. The concentrations of methionine and cystine in each portion of muscle and skin were almost the same, but the concentrations of taurine and cystathionine in each portion of the body were varied.  相似文献   

11.
Cystathionine (R-S-(2-amino-2-carboxyethyl)-l-homocysteine) is a non-proteinogenic thioether containing amino acid. In mammals, cystathionine is formed as an intermediate of the transsulfuration pathway by the condensation of serine and homocysteine (Hcy) in a reaction catalyzed by cystathionine β-synthase (CBS). Cystathionine is subsequently converted to cysteine plus ammonia and α-ketobutyrate by the action of cystathionine γ-lyase (CGL). Pathogenic mutations in CBS result in CBS-deficient homocystinuria (HCU) which, if untreated, results in mental retardation, thromboembolic complications and connective tissue disorders. Currently there is no known function for cystathionine other than serving as an intermediate in transsulfuration and to date, the possible contribution of the abolition of cystathionine synthesis to pathogenesis in HCU has not been investigated. Using both mouse and cell-culture models, we have found that cystathionine is capable of blocking the induction of hepatic steatosis and kidney injury, acute tubular necrosis, and apoptotic cell death by the endoplasmic reticulum stress inducing agent tunicamycin. Northern and Western blotting analysis indicate that the protective effects of cystathionine occur without any obvious alteration of the induction of the unfolded protein response. Our data constitute the first experimental evidence that the abolition of cystathionine synthesis may contribute to the pathology of HCU and that this compound has therapeutic potential for disease states where ER stress is implicated as a primary initiating pathogenic factor.  相似文献   

12.
Leishmania parasites seem capable of producing cysteine by de novo biosynthesis, similarly to bacteria, some pathogenic protists, and plants. In Leishmania spp., cysteine synthase (CS) and cystathionine β‐synthase (CBS) are expected to participate in this metabolic process. Moreover, the reverse transsulfuration pathway (RTP) is also predicted to be operative in this trypanosomatid because CBS also catalyzes the condensation of serine with homocysteine, and a gene encoding a putative cystathionine γ‐lyase (CGL) is present in all the sequenced genomes. Our results show that indeed, Leishmania major CGL is able to rescue the wild‐type phenotype of a Saccharomyces cerevisiae CGL‐null mutant and is susceptible to inhibition by an irreversible CGL inhibitor, DL‐propargylglycine (PAG). In Leishmania promastigotes, CGL and CS are cytosolic enzymes. The coexistence of de novo synthesis with the RTP is extremely rare in most living organisms; however, despite this potentially high redundancy in cysteine production, PAG arrests the proliferation of L. major promastigotes with an IC50 of approximately 65 μM. These findings raise new questions regarding the biological role of CGL in these pathogens and indicate the need for understanding the molecular mechanism of PAG action in vivo to identify the potential targets affected by this drug.  相似文献   

13.
Abstract The fission yeast Schizosaccharomyces pombe has a unique organization of sulfur amino acid metabolism: it has two distinct O -acetylhomoserine sulfhydrylases (homocysteine synthases). Similar to Enterobacteriaceae, S. pombe lacks cystathionine β-synthase and cystathionine γ-lyase - the enzymes of the reverse transsulfuration pathway, by which methionine is readily metabolized to cysteine - a likely effector in the sulfur metabolite repression system. Consequently no repression of sulfate assimilation is observed when methionine is added to the growth medium.  相似文献   

14.
The interdependence of the sulfane sulfur metabolism and sulfur amino acid metabolism was studied in the fungus Aspergillus nidulans wild type strain and in mutants impaired in genes encoding enzymes involved in the synthesis of cysteine (a precursor of sulfane sulfur) or in regulatory genes of the sulfur metabolite repression system. It was found that a low concentration of cellular cysteine leads to elevation of two sulfane sulfurtransferases, rhodanase and cystathionine γ-lyase, while the level of 3-mercaptopyruvate sulfurtransferase remains largely unaffected. In spite of drastic differences in the levels of biosynthetic enzymes and of sulfur amino acids due to mutations or sulfur supplementation of cultures, the level of total sulfane sulfur is fairly stable. This stability confirms the crucial role of sulfane sulfur as a fine-tuning regulator of cellular metabolism.  相似文献   

15.
The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD.  相似文献   

16.
Volatile sulfur compounds are key flavor compounds in several cheese types. To better understand the metabolism of sulfur-containing amino acids, which certainly plays a key role in the release of volatile sulfur compounds, we searched the genome database of Lactobacillus casei ATCC 334 for genes encoding putative homologs of enzymes known to degrade cysteine, cystathionine, and methionine. The search revealed that L. casei possesses two genes that putatively encode a cystathionine beta-lyase (CBL; EC 4.4.1.8). The enzyme has been implicated in the degradation of not only cystathionine but also cysteine and methionine. Recombinant CBL proteins catalyzed the degradation of L-cystathionine, O-succinyl-L-homoserine, L-cysteine, L-serine, and L-methionine to form alpha-keto acid, hydrogen sulfide, or methanethiol. The two enzymes showed notable differences in substrate specificity and pH optimum.  相似文献   

17.
Zhu W  Lin A  Banerjee R 《Biochemistry》2008,47(23):6226-6232
Human cystathionine-gamma-lyase (CGL) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme, which functions in the transsulfuration pathway that converts homocysteine to cysteine. In addition, CGL is one of two major enzymes that can catalyze the formation of hydrogen sulfide, an important gaseous signaling molecule. Recently, several mutations in CGL have been described in patients with cystathioninuria, a rare but poorly understood genetic disease. Moreover, a common single nucleotide polymorphism in CGL, c.1364G>T that converts serine at position 403 to isoleucine, has been linked to elevated plasma homocysteine levels. In this study, we have characterized the pathogenic T67I and Q240E missense mutations and the polymorphic variants at amino acid residues 403 using kinetic and spectrophotometric methods. We report that the polymorphism does not influence the cofactor content of the enzyme or its steady-state kinetic properties. In contrast, the T67I mutant exhibits a 3.5-fold decrease in V max compared to that of wild-type CGL, while the Q240E mutant exhibits a 70-fold decrease in V max. The K Ms for cystathionine for both pathogenic mutants are comparable to that of wild type CGL. The PLP content of the T67I and Q240E mutants were about 4-fold and 80-fold lower than that of wild-type enzyme, respectively. Preincubation of the T67I mutant with PLP restored activity to wild-type levels while the same treatment resulted in only partial restoration of activity of the Q240E mutant. These results reveal that both mutations weaken the affinity for PLP and suggest that cystathionuric patients with these mutations should be responsive to pyridoxine therapy.  相似文献   

18.
Obesity is an underlying risk factor in the development of cardiovascular disease, dyslipidemia and non-alcoholic fatty liver disease (NAFLD). Increased hepatic lipid accumulation is a hallmark in the progression of NAFLD and impairments in liver phosphatidylcholine (PC) metabolism may be central to the pathogenesis. Hepatic PC biosynthesis, which is linked to the one-carbon (C1) metabolism by phosphatidylethanolamine N-methyltransferase, is known to be important for hepatic lipid export by VLDL particles. Here, we assessed the influence of a high-fat (HF) diet and NAFLD status in mice on hepatic methyl-group expenditure and C1-metabolism by analyzing changes in gene expression, protein levels, metabolite concentrations, and nuclear epigenetic processes. In livers from HF diet induced obese mice a significant downregulation of cystathionine β-synthase (CBS) and an increased betaine-homocysteine methyltransferase (BHMT) expression were observed. Experiments in vitro, using hepatoma cells stimulated with peroxisome proliferator activated receptor alpha (PPARα) agonist WY14,643, revealed a significantly reduced Cbs mRNA expression. Moreover, metabolite measurements identified decreased hepatic cystathionine and L-α-amino-n-butyrate concentrations as part of the transsulfuration pathway and reduced hepatic betaine concentrations, but no metabolite changes in the methionine cycle in HF diet fed mice compared to controls. Furthermore, we detected diminished hepatic gene expression of de novo DNA methyltransferase 3b but no effects on hepatic global genomic DNA methylation or hepatic DNA methylation in the Cbs promoter region upon HF diet. Our data suggest that HF diet induces a PPARα-mediated downregulation of key enzymes in the hepatic transsulfuration pathway and upregulates BHMT expression in mice to accommodate to enhanced dietary fat processing while preserving the essential amino acid methionine.  相似文献   

19.
20.
Summary.  The effect of dietary sulfur amino acids on the taurine content of rat blood and tissues was investigated. Three types of diet were prepared for this study: a low-taurine diet (LTD), normal taurine diet (NTD; LTD + 0.5% Met), and high-taurine diet (HTD; LTD + 0.5% Met + 3% taurine). These diets had no differing effect on the growth of the rats. The concentration of taurine in the blood from the HTD- and NTD-fed rats was respectively 1,200% and 200% more than that from LTD-. In such rat tissues as the liver, the taurine content was significantly affected by dietary sulfur amino acids, resulting in a higher content with HTD and lower content with LTD. However, little or no effect on taurine content was apparent in the heart or eye. The activity for taurine uptake by the small intestine was not affected by dietary sulfur amino acids. The expression level of taurine transporter mRNA was altered only in the kidney under these dietary conditions: a higher expression level with LTD and lower expression level with HTD. Received January 8, 2002 Accepted January 18, 2002 Published online August 20, 2002 Authors' address: Dr. Hideo Satsu, Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, Fax: +81-3-5841-8026 E-mail: asatsu@mail.ecc.u-tokyo.ac.jp Abbreviations: HTD, high-taurine diet; NTD, normal taurine diet; LTD, low-taurine diet; TAUT, taurine transporter; CSA, cysteine sulfinate; CDO, cysteine dioxygenase; CSAD, cysteine sulfinate decarboxylase; PBS, phosphate-buffered saline; DIDS, 4,4′-diisothiocyanostilbene-2′,2′-disulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号