首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anticancer activity of cisplatin derives from its ability to bind and cross-link DNA, with the major adduct being the 1,2-d(GpG) intrastrand cross-link. Here, the consequences of this adduct on the conformation, thermal stability, and energetics of duplex DNA are assessed, and the modulation of these parameters by the sequence context of the adduct is evaluated. The properties of a family of 15-mer DNA duplexes containing a single 1,2-d(GpG) cis-?Pt(NH(3))(2)?(2+) intrastrand cross-link are probed in different sequence contexts where the flanking base-pairs are systematically varied from T.A to C.G to A.T. By using a combination of spectroscopic and calorimetric techniques, the structural, thermal, and thermodynamic properties of each duplex, both with and without the cross-link, are characterized. Circular dichroism spectroscopic data reveal that the cross-link alters the structure of the host duplex in a manner consistent with a shift from a B-like to an A-like conformation. Thermal denaturation data reveal that the cross-link induces substantial thermal and thermodynamic destabilization of the host duplex. Significantly, the magnitudes of these cross-link-induced effects on duplex structure, thermal stability, and energetics are influenced by the bases that flank the adduct. The presence of flanking A.T base-pairs, relative to T.A or C.G base-pairs, enhances the extent of cross-link-induced alteration to an A-like conformation and dampens the extent of cross-link-induced duplex destabilization. These results are discussed in terms of available structural data, and in terms of the selective recognition of cisplatin-DNA adducts by HMG-domain proteins.  相似文献   

2.
The effects of major DNA intrastrand cross-links of antitumor dinuclear PtII complexes [{trans-PtCl(NH3)2}2-μ-{trans-(H2N(CH2)6NH2(CH2)2NH2(CH2)6NH2)}]4+ (1) and [{PtCl(DACH)}2-μ-{H2N(CH2)6NH2(CH2)2NH2(CH2)6NH2)}]4+ (2) (DACH is 1,2-diaminocyclohexane) on DNA stability were studied with emphasis on thermodynamic origins of that stability. Oligodeoxyribonucleotide duplexes containing the single 1,2, 1,3, or 1,5 intrastrand cross-links at guanine residues in the central TGGT, TGTGT, or TGTTTGT sequences, respectively, were prepared and analyzed by differential scanning calorimetry. The unfolding of the platinated duplexes was accompanied by unfavorable free energy terms. The efficiency of the cross-links to thermodynamically destabilize the duplex depended on the number of base pairs separating the platinated bases. The trend was 1,5→1,2→1,3 cross-link of 1 and 1,5→1,3→1,2 cross-link of 2. Interestingly, the results showed that the capability of the cross-links to reduce the thermodynamic stability of DNA (ΔG 2980) correlated with the extent of conformational distortions induced in DNA by various types of intrastrand cross-links of 1 or 2 determined by chemical probes of DNA conformation. We also examined the efficiency of the mammalian nucleotide excision repair systems to remove from DNA the intrastrand cross-links of 1 or 2. The efficiency of the excinucleases to remove the cross-links from DNA depended on the length of the cross-link; the trend was identical to that observed for the efficiency of the intrastrand cross-links to thermodynamically destabilize the duplex. Thus, the results are consistent with the thesis that an important factor that determines the susceptibility of the intrastrand cross-links of dinuclear platinum complexes 1 and 2 to be removed from DNA by nucleotide excision repair is the efficiency of these lesions to thermodynamically destabilize DNA.  相似文献   

3.
The anticancer activity of cisplatin arises from its ability to bind covalently to DNA, forming primarily intrastrand cross-links to adjacent purine residues; the most common adducts involve d(GpG) (65%) and d(ApG) (25%) intrastrand cross-links. The incorporation of these platinum adducts in a B-DNA helix induces local distortions, causing bending and unwinding of the DNA. In this work, we used temperature-dependent UV spectroscopy to investigate the unfolding thermodynamics, and associated ionic effects, of two sets of DNA decamer duplexes containing either cis-[Pt(NH(3))(2)[d(GpG]] or cis-[Pt(NH(3))(2) [d(ApG]] cross-links, and their corresponding unmodified duplexes. The platinated duplexes are less stable and unfold with lower T(M)s (and Delta G degrees s) in enthalpy-driven reactions, which indicates a loss of favorable base-pair stacking interactions. The folding thermodynamics and hydration effects for the first set of decamers containing the d(GpG) cross-link was investigated by a combination of titration calorimetry, density, and ultrasound techniques. The hydration parameters showed an uptake of structural water by the platinated duplex and a release of electrostricted water by the control duplex. Relative to the unmodified duplex, the folding of the platinated duplex at 20 degrees C yielded a positive Delta Delta G degrees term [and positive Delta Delta H-Delta(T Delta S) compensation] and a negative differential volume change. The opposite signs of the Delta Delta G degrees and Delta Delta V terms confirmed its uptake of structural water. Further, solvent-accessible surface areas calculations for a similar pair of dodecamer duplexes indicated that the modified duplex has a 503 oeA(2) higher polar and nonpolar surface area that is exposed to the solvent. Therefore, the incorporation of a platinum adduct in duplex DNA disrupts favorable base-pair stacking interactions, yielding a greater exposure of aromatic bases to the solvent, which in turn immobilizes structural water. The overall results correlate nicely with the results reported in the available structural data of nuclear magnetic resonance solution studies.  相似文献   

4.
The carbonate radical anion is a biologically important one-electron oxidant that can directly abstract an electron from guanine, the most easily oxidizable DNA base. Oxidation of the 5′-d(CCTACGCTACC) sequence by photochemically generated CO3·− radicals in low steady-state concentrations relevant to biological processes results in the formation of spiroiminodihydantoin diastereomers and a previously unknown lesion. The latter was excised from the oxidized oligonucleotides by enzymatic digestion with nuclease P1 and alkaline phosphatase and identified by LC-MS/MS as an unusual intrastrand cross-link between guanine and thymine. In order to further characterize the structure of this lesion, 5′-d(GpCpT) was exposed to CO3·− radicals, and the cyclic nature of the 5′-d(G*pCpT*) cross-link in which the guanine C8-atom is bound to the thymine N3-atom was confirmed by LC-MS/MS, 1D and 2D NMR studies. The effect of bridging C bases on the cross-link formation was studied in the series of 5′-d(GpCnpT) and 5′-d(TpCnpG) sequences with n = 0, 1, 2 and 3. Formation of the G*-T* cross-links is most efficient in the case of 5′-d(GpCpT). Cross-link formation (n = 0) was also observed in double-stranded DNA molecules derived from the self-complementary 5′-d(TTACGTACGTAA) sequence following exposure to CO3·− radicals and enzymatic excision of the 5′-d(G*pT*) product.  相似文献   

5.
cis-trans-cis-Ammine(cyclohexylamine)diacetatodichloroplatinum(IV) is an oral analog of the platinum anti-cancer drug cisplatin that is currently in phase III clinical trials. Its active form, [Pt(ammine)(cyclohexylamine)]2+, binds to DNA similarly to cisplatin, forming intra- and interstrand cross-links between adjacent purine bases. Since [Pt(ammine)(cyclohexylamine)]2+ contains two different ligands, it can form two isomeric 1,2-d(GpG) intrastrand cross-links. Here we report the 2.4-A resolution x-ray crystal structure of the major adduct between [Pt(ammine)(cyclohexylamine)]2+ and a DNA dodecamer, using the same sequence as previously reported for crystal structures of cisplatin-DNA (Takahara, P. M., Rosenzweig, A. C., Frederick, C. A., and Lippard, S. J. (1995) Nature 377, 649-652) and oxaliplatin-DNA (Spingler, B., Whittington, D. A., and Lippard, S. J. (2001) Inorg. Chem. 40, 5596-5602). Both duplexes in the asymmetric unit contain 1,2-intrastrand cross-links in which the cyclohexylamine ligand is directed toward the 3'-end of the platinated strand. The chair conformation of the cyclohexyl group is clearly resolved. Platination distorts the duplex, resulting in a global bend angle of about 38(o) and a dihedral angle between platinated guanine bases of approximately 31(o). Both end-to-end and end-to-groove packing interactions occur in the crystal lattice, the latter positioned in the minor groove across from the site of the platinum cross-link. A high degree of homology observed between this structure and the previously reported platinum-DNA structures suggests that these platinum complexes distort the DNA duplex in a very similar manner. These results suggest that differences in activity between these drugs are unlikely to result from gross conformational distortions in DNA structure following platinum intrastrand cross-link formation.  相似文献   

6.
Gu C  Zhang Q  Yang Z  Wang Y  Zou Y  Wang Y 《Biochemistry》2006,45(35):10739-10746
Nucleotide excision repair (NER) is a repair pathway that removes a variety of bulky DNA lesions in both prokaryotic and eukaryotic cells. The perturbation of DNA helix structure caused by the oxidative intrastrand lesions could render them good substrates for the NER pathway. Here we employed Escherichia coli NER enzymes, i.e., UvrA, UvrB, and UvrC, to examine the incision efficiency of duplex DNA carrying three different oxidative intrastrand cross-link lesions, that is, G[8-5]C, G[8-5m]mC, and G[8-5m]T, and two dithymine photoproducts, namely, the cis,syn-cyclobutane pyrimidine dimer (T[c,s]T) and the pyrimidine(6-4)pyrimidone product (T[6-4]T). Our results showed that T[6-4]T was the best substrate for UvrA binding, followed by G[8-5]C, G[8-5m]mC, and G[8-5m]T, and then by T[c,s]T. The efficiencies of the UvrABC incisions of these lesions were consistent with their UvrA binding affinities: the stronger the binding to UvrA, the higher the rate of incision. In addition, flanking DNA sequences appeared to have little effect on the binding affinity of UvrA for G[8-5]C as AG[8-5]CA was only slightly preferred over CG[8-5]CG. Consistently, these two sequences exhibited almost no difference in incision rates. Furthermore, we investigated the thermal stability of dodecameric duplexes containing G[8-5m]mC or G[8-5m]T, and our results revealed that these two lesions destabilized the duplex, due to an increase in the free energy for duplex formation at 37 degrees C, by approximately 5.4 and 3.6 kcal/mol, respectively. The destabilizations to the DNA helix caused by those lesions, for the most part, are correlated with the binding affinities of UvrA and incision rates of UvrABC. Taken together, the results from this study suggest that oxidative intrastrand lesions might be substrates for NER enzymes in vivo.  相似文献   

7.
It has been suggested that carbonate radical anions are biologically important because they may be produced during the inflammatory response. The carbonate radicals can selectively oxidize guanine in DNA and RNA by one-electron transfer mechanisms and the guanine radicals thus formed decay by diverse competing pathways with other free radicals or nucleophiles. Using a photochemical method to generate CO(3)(-) radicals in vitro, we compare the distributions of products initiated by the one-electron oxidation of guanine in the trinucleotides 5'-r(GpCpU) and 5'-d(GpCpU) in aqueous buffer solutions (pH 7.5). Similar distributions of stable end products identified by LC-MS/MS methods were found in both cases. The guanine oxidation products include the diastereomeric pair of spiroiminodihydantoin (Sp) and 2,5-diamino-4H-imidazolone (Iz). In addition, intrastrand cross-linked products involving covalent bonds between the G and the U bases (GCU) were also found, although with different relative yields in the 2'-deoxy- and the ribotrinucleotides. The positive-ion MS/MS spectra of the 5'-r(GpCpU) and 5'-d(GpCpU) products clearly indicate the presence of covalently linked G-U products that have a mass smaller by 2 Da than the sum of the G and U bases in both types of trinucleotides. The 5'-d(GCU) cross-linked product was further characterized by 1D and 2D NMR methods that confirm its cyclic structure in which the guanine C8 atom is covalently linked to the uracil N3 atom.  相似文献   

8.
Mapping of cis-diamminedichloroplatinum(II) (cis-DDP, cisplatin) DNA adducts over >3000 nucleotides was carried out using a replication blockage assay. The sites of inhibition of modified T4 DNA polymerase, also referred to as stop sites, were analyzed to determine the effects of local sequence context on the distribution of intrastrand cisplatin cross-links. In a 3120 base fragment from replicative form M13mp18 DNA containing 24.6% guanine, 25.5% thymine, 26.9% adenine and 23.0% cytosine, 166 individual stop sites were observed at a bound platinum/nucleotide ratio of 1-2 per thousand. The majority of stop sites (90%) occurred at G(n>2) sequences and the remainder were located at sites containing an AG dinucleotide. For all of the GG sites present in the mapped sequences, including those with Gn(>)2, 89% blocked replication, whereas for the AG sites only 17% blocked replication. These blockage sites were independent of flanking nucleotides in a sequence of N(1)G*G*N(2) where N(1), N(2) = A, C, G, T and G*G* indicates a 1,2-intrastrand platinum cross-link. The absence of long-range sequence dependence was confirmed by monitoring the reaction of cisplatin with a plasmid containing an 800 bp insert of the human telomere repeat sequence (TTAGGG)(n). Platination reactions monitored at several formal platinum/nucleotide ratios or as a function of time reveal that the telomere insert was not preferentially damaged by cisplatin. Both replication blockage and telomere-insert plasmid platination experiments indicate that cisplatin 1,2-intrastrand adducts do not form preferentially at G-rich sequences in vitro.  相似文献   

9.
The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross-link, in which the cross-linked base pairs can still maintain hydrogen bond contacts, molecular models suggest that formation of the -GC- staggered cross-link disrupts hydrogen bonding and may also perturb adjacent base pairs leading to an overall reduction in helix stability. Duplexes with specifically positioned and oriented cross-links can be used as substrates to study DNA repair mechanisms.  相似文献   

10.
The DNA duplex d(CTCTCG*AGTCTC).d(GAGAC-TC*GAGAG) containing a single trans- diammine-dichloroplatinum(II) interstrand cross-link (where G* and C* represent the platinated bases) has been studied by two-dimensional NMR. All the exchangeable and non-exchangeable proton resonance lines were assigned (except H5'/H5") and the NOE intensities were transformed into distances via the RELAZ program. By combining the NOESY and COSY data (330 constraints) and NMR-constrained molecular mechanics using JUMNA, a solution structure of the cross-linked duplex has been determined. The duplex is distorted over two base pairs on each side of the interstrand cross-link and exhibits a slight bending of its axis ( approximately 20 degrees ) towards the minor groove. The platinated guanine G* adopts a syn conformation. The rotation results in a Hoogsteen-type pairing between the complementary G(6)* and C(19)* residues which is mediated by the platinum moiety and is stabilized by a hydrogen bond between O6(G(6)*) and N4H(C(19)*). The rise between the cross-linked residues and the adjacent residues is increased owing to the interaction between these adjacent residues and the ammine groups of the platinum moiety. These results are discussed in relation to the slow rate of closure of the monofunctional adducts into interstrand cross-links.  相似文献   

11.
A Eastman 《Biochemistry》1985,24(19):5027-5032
Characterization of the adducts produced in DNA by the cancer chemotherapeutic drug cis-diamminedichloroplatinum(II) and a radiolabeled analogue, [3H]-cis-dichloro(ethylenediamine)platinum(II) ([3H]-cis-DEP) was recently reported [Eastman, A. (1983) Biochemistry 22, 3927]. Both drugs reacted at identical sites in DNA, most of which produced intrastrand cross-links. DNA-interstrand cross-links, which represent less than 1% of total platination, have now been characterized. DNA containing interstrand cross-links was enriched for on the basis of its renaturability after boiling. This DNA was digested to deoxyribonucleosides, and the adducts were separated by high-pressure liquid chromatography. A cross-link between two deoxyguanosines was observed to be the most prominent adduct. It is proposed that the major sequence in which this cross-link occurs is 5'-CG-3'. DNA that was incubated with [3H]-cis-DEP for 1 h showed low levels of interstrand cross-links. After removal of unreacted drug, their frequency increased significantly over 6 h with a maximum occurring at about 12 h. A similar phenomenon was seen in the case of intrastrand cross-links that contained adenine, in particular when the cross-link was between the terminal bases in an ANG trinucleotide sequence (N is any nucleotide). The primary site of reaction is at guanine, with a slow subsequent cross-link to the adenine. A model is presented that is consistent with the observation that adenine is always at the 5' terminus of these adducts. The proportion of adducts at ANG sequences also increased at elevated temperatures. This is discussed with regard to potential significance during hyperthermia treatment of patients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Campbell MA  Miller PS 《Biochemistry》2008,47(48):12931-12938
The cancer chemotherapeutic agent cis-diamminedichloroplatinum(II) or cisplatin reacts primarily with guanines in DNA to form 1,2-Pt-GG and 1,3-Pt-GNG intrastrand cross-links and, to a lesser extent, G-G interstrand cross-links. Recent NMR evidence has suggested that cisplatin can also form a coordination complex with the phosphodiester internucleotide linkage of DNA. We have examined the effects of the phosphodiester backbone on the reactions of cisplatin with oligodeoxyribonucleotides that lack or contain a GTG sequence. Cisplatin forms a stable adduct with TpT that can be isolated by reversed phase HPLC. The cis-Pt-TpT adduct contains a single Pt, as determined by atomic absorption spectroscopy (AAS) and by electrospray ionization mass spectrometry (ESI-MS), and is resistant to digestion by snake venom phosphodiesterase. Treatment of the adduct with sodium cyanide regenerates TpT. Similar adduct formation was observed when T(pT)(8) was treated with cisplatin, but not when the phosphodiester linkages of T(pT)(8) were replaced with methylphosphonate groups. These results suggest that the platinum may be coordinated with the oxygens of the thymine and possibly with those of the phosphodiester group. As expected, reaction of a 9-mer containing a GTG sequence with cisplatin yielded an adduct that contained a 1,3-Pt-GTG intrastrand cross-link. However, we found that the number and placement of phosphodiesters surrounding a GTG sequence significantly affected intrastrand cross-link formation. Increasing the number of negatively charged phosphodiesters in the oligonucleotide increased the amount of GTG platination. Surrounding the GTG sequence with nonionic methylphosphonate linkages inhibited or eliminated cross-link formation. These observations suggest that interactions between cisplatin and the negatively charged phosphodiester backbone may play an important role in facilitating platination of guanine nucleotides in DNA.  相似文献   

13.
A Schwartz  L Marrot  M Leng 《Biochemistry》1989,28(20):7975-7979
The purpose of this work was the comparison of the conformational changes induced in the double helix by the adducts formed at d(GG) and d(AG) sites in the reaction between the antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP) and DNA. Two duplexes (20-mer) containing either a single d(A*G*) or a single d(G*G) adduct were studied by means of gel electrophoresis and artificial nuclease and chemical probes. It is shown that the d(G*G*) and the d(A*G*) adducts bend DNA similarly, but at the nucleotide level they distort differently the double helix. We suggest that the weaker interactions between platinated A residues and the other nucleotides, as compared to the interactions between platinated G residues and the other nucleotides, are largely responsible for the differences in the distortions induced in DNA by the d(A*G) and d(G*G*) adducts. This suggestion is supported by the study of the distortions induced in duplexes by the d(G*G*) adducts, one of the platinated G residues being paired with a T residue.  相似文献   

14.
Noronha AM  Wilds CJ  Miller PS 《Biochemistry》2002,41(27):8605-8612
Short DNA duplexes containing a 1,3-N(4)C-alkyl-N(4)C interstrand cross-link that joins the two C residues of a -CNG- sequence were prepared using either a phosphoramidite or convertible nucleoside approach. The alkyl cross-link consists of 2, 4, or 7 methylene groups. The duplexes, which contain a seven-base-pair core and A(3)/T(3) complementary 3'-overhanging ends, were characterized by enzymatic digestion and MALDI-TOF mass spectrometry. Ultraviolet thermal denaturation studies showed that the duplexes denature in a cooperative manner and that the length of the cross-link affects the thermal stability. Thus, the transition temperature of the ethyl cross-linked duplex, 42 degrees C, is 16 degrees C higher than the melting temperature of the corresponding non-cross-linked control, whereas the transition temperatures of the butyl and heptyl cross-linked duplexes, 73 and 72 degrees C, respectively, are 46-47 degrees C higher. The reduced molecularity of denaturation of the cross-linked duplexes versus melting of the non-cross-linked duplex most likely accounts for these differences. Examination of molecular models suggests that the ethyl cross-link is too short to span the distance between the two C residues at the site of the cross-link in B-form DNA without causing distortion of the helix, whereas less and no distortion would be expected for the butyl and heptyl cross-links, respectively. The circular dichroism spectra, which show greatest deviation in the ethyl cross-linked duplex from B-form DNA, are consistent with this expectation. Anomalous mobilities on native polyacrylamide gels of multimers produced by self-ligation of each of the cross-linked duplexes suggest that the ethyl and butyl cross-linked duplexes undergo bending deformations, whereas multimers derived from the heptyl cross-linked duplex migrated normally. The bending angle was estimated to be 20 degrees, 13 degrees, and 0 degrees for the ethyl, butyl, and heptyl cross-linked duplexes, respectively. Thus, it appears that the degree of bending in these N(4)C-alkyl-N(4)C cross-linked duplexes is controlled by the length of the cross-link.  相似文献   

15.
The study of DNA repair has been facilitated by the development of extract-based in vitro assay systems and the use of synthetic DNA duplexes that contain site-specific lesions as repair substrates. Unfortunately, exposed DNA termini can be a liability when working in crude cell extracts because they are targets for DNA end-modifying enzymes and binding sites for proteins that recognize DNA termini. In particular, the double-strand break repair protein Ku is an abundant DNA end-binding protein that has been shown to interfere with nucleotide excision repair (NER) in vitro. To facilitate the investigation of NER in whole-cell extracts, we explored ways of modifying the exposed ends of synthetic repair substrates to prevent Ku binding and improve in vitro NER efficiency. Replacement of six contiguous phosphodiester linkages at the 3'-ends of the duplex repair substrate with nuclease-resistant nonionic methylphosphonate linkages resulted in a 280-fold decrease in binding affinity between Ku and the modified duplex. These results are consistent with the published crystal structure of a Ku/DNA complex [Walker et al. (2001) Nature 412, 607-614] and show that the 3'-terminal phosphodiester linkages of linear DNA duplexes are important determinants in DNA end-binding by Ku. Using HeLa whole-cell extracts and a 149-base pair DNA duplex repair substrate, we tested the effects of modification of exposed DNA termini on NER-mediated in vitro excision of a 1,3-GTG-Pt(II) intrastrand cross-link. Methylphosphonate modification at the 3'-ends of the repair substrate resulted in a 1.6-fold increase in excision. Derivatization of the 5'-ends of the duplex with biotin and subsequent conjugation with streptavidin to block Ku binding resulted in a 2.3-fold increase excision. By combining these modifications, we were able to effectively reduce Ku-derived interference of NER excision in vitro and observed a 4.4-fold increase in platinum lesion excision. These modifications are easy to incorporate into synthetic oligonucleotides and may find general utility whenever synthetic linear duplex DNAs are used as substrates to investigate DNA repair in whole-cell extracts.  相似文献   

16.
The structural origin underlying differential nucleotide excision repair (NER) susceptibilities of bulky DNA lesions remains a challenging problem. We investigated the 10S (+)-trans-anti-[BP]-N(2)-2'-deoxyguanosine (G*) adduct in double-stranded DNA. This adduct arises from the reaction, in vitro and in vivo, of a major genotoxic metabolite of benzo[a]pyrene (BP), (+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, with the exocyclic amino group of guanine. Removal of this lesion by the NER apparatus in cell-free extracts has been found to depend on the base sequence context in which the lesion is embedded, providing an excellent opportunity for elucidating the properties of the damaged DNA duplexes that favor NER. While the BP ring system is in the B-DNA minor groove, 5' directed along the modified strand, there are orientational distinctions that are sequence dependent and are governed by flanking amino groups [Nucleic Acids Res.35 (2007), 1555-1568]. To elucidate sequence-governed NER susceptibility, we conducted molecular dynamics simulations for the 5'-...CG*GC..., 5'-...CGG*C..., and 5'-...TCG*CT... adduct-containing duplexes. We also investigated the 5'-...CG*IC... and 5'-...CIG*C... sequences, which contain "I" (2'-deoxyinosine), with hydrogen replacing the amino group in 2'-deoxyguanosine, to further characterize the structural and dynamic roles of the flanking amino groups in the damaged duplexes. Our results pinpoint explicit roles for the amino groups in tandem GG sequences on the efficiency of NER and suggest a hierarchy of destabilizing structural features that differentially facilitate NER of the BP lesion in the sequence contexts investigated. Furthermore, combinations of several locally destabilizing features in the hierarchy, consistent with a multipartite model, may provide a relatively strong recognition signal.  相似文献   

17.
A theoretical model for the binding of cis-Pt(NH3)2(+2) to DNA   总被引:1,自引:0,他引:1  
The binding of cis-Pt(NH3)2B1B2 to the bases B1 and B2, i.e., guanine (G), cytosine (C), adenine (A), and thymine (T), of DNA is studied theoretically. The components of the binding are analyzed and a model structure is proposed for the intrastrand binding to the dB1pdB2 sequence of a kinked double helical DNA. Quantum mechanical calculations of the ligand binding energy indicates that cis-Pt(NH3)2(+2) (cis-PDA) binds to N7(G), N3(C), O2(C), O6(G), N3(A), N7(A), O4(T) and O2(T) in order of decreasing binding energy. Conformational analysis provides structures of kinked DNA in which adjacent bases chelate to cis-PDA. Only bending toward the major groove allows the construction of acceptable square planar complexes. Examples are presented for kinks of -70 degrees and -40 degrees at the receptor site to orient the base pairs for ligand binding to B1 and B2 to form a nearly square planar complex. The energies for complex formation of cis-PDA to the various intra-strand base sites in double stranded DNA are estimated. At least 32 kcal/mole separates the energetically favorable dGpdG.cis-PDA chelate from the dCpdG.cis-PDA chelate. All other possible chelate structures are much higher in energy which correlates with their lack of observation in competition with the preferred dGpdG chelate. The second most favorable ligand energy occurs with N3(C). A novel binding site involving dC(N3)pdG(N7) is examined. Denaturation can result in an anti----syn rotation of C about its glycosidic bond to place N3(C) in the major groove for intrastrand binding in duplex DNA. This novel intrastrand dCpdG complex and the most favored dGpdG structure are illustrated with stereographic projections.  相似文献   

18.
In the reaction of the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP) with DNA, bifunctional intrastrand and interstrand cross-links are formed. In this work, we show that at 37 degrees C interstrand cross-links (ICL) are labile and rearrange into intrastrand cross-links. The ICL instability was first studied with a 10 base pairs (bp) double-stranded oligonucleotide containing a unique site-specific ICL resulting from chelation of the N7 position of two guanine residues on the opposite strands of DNA at the d(GC/GC) site by a cis-diammineplatinum(II) residue. The bonds between the platinum and the N7 of guanine residues within the interstrand adduct are cleaved. In 50 mM NaCl or NaClO4, this cleavage results in the formation of monofunctional adducts which subsequently form intrastrand cross-links. One cleavage reaction takes place per cross-linked duplex in either of both DNA strands. Whereas the starting cross-linked 10 bp duplex is hydrogen bonded, the two complementary DNA strands separate after the cleavage of the ICL. Under these conditions, the cleavage reaction is irreversible allowing its rate measurement (t1/2= 29+/-2 h) and closure of monofunctional adducts to intrastrand cross-links occurs within single-stranded DNA. Within a longer cross-linked oligonucleotide (20 bp), ICL are apparently more stable (t1/2= 120+/-12 h) as a consequense of monofunctional adducts closure back to ICL. We propose that the ICL cleavage is reversible in DNA and that these adducts rearrange finally into intrastrand cross-links. Our results could explain an 'ICL unhooking' in previously reported in vivo repair studies [Zhenet al. (1993)Carcinogenesis14, 919-924].  相似文献   

19.
Antitumor cisplatin [cis-diamminedichloroplatinum(II)] forms on DNA predominantly intrastrand cross-links between neighboring purine residues. Several discoveries suggested that the toxicity of cisplatin originated from these lesions. The formation of 1,2-GG intrastrand cross-link of cisplatin leads to marked conformational alterations in DNA including a directional, rigid bend toward the major groove and local unwinding. These altered structures attract various cellular proteins. This phenomenon has been postulated to mediate antitumor properties of cisplatin. Importantly, the binding affinity of several proteins that specifically recognize 1,2-GG intrastrand cross-link to platinated DNA is modulated by the nature of the base pairs that immediately flank the platinated d(GpG) site. However, the influence of sequence context on DNA bending and unwinding due to the formation of the 1,2-GG intrastrand cross-link has not been extensively investigated. In the present study we have employed electrophoretic retardation (phasing) assay to analyze bending and unwinding induced by the single, site-specific 1,2-GG intrastrand cross-link immediately flanked by various bases formed by cisplatin in nine oligodeoxyribonucleotide duplexes. The results indicate that bending and unwinding of DNA as a consequence of the formation of the major adduct of cisplatin is, in the first approximation, independent of the base pairs flanking the platinated d(GpG) site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号