首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a plant with bird-dispersed seeds, the effectiveness of seed dispersal can change with fruit availability at scales ranging from individual plants to neighborhoods, and the scale at which frugivory patterns emerge may be specific for frugivorous species differing in their life-history and behavior. The authors explore the influence of multispecies fruit availability at two local spatial scales on fruit consumption of Eugenia uniflora trees for two functional groups of birds. The authors related visitation and fruit removal by fruit gulpers and pulp mashers to crop size and conspecific and heterospecific fruit abundance to assess the potential roles that facilitative or competitive interactions play on seed dispersal. The same fruiting scenario influenced fruit gulpers (legitimate seed dispersers) and pulp mashers (inefficient dispersers) in different ways. Visits and fruit removal by legitimate seed dispersers were positively related to crop size and slightly related to conspecific, but not to heterospecific fruit neighborhoods. Visits and fruit consumption by pulp mashers was not related to crop size and decreased with heterospecific fruit availability in neighborhoods; however, this might not result in competition for dispersers. The weak evidence for facilitative or competitive processes suggest that interaction of E. uniflora with seed dispersers may depend primarily on crop size or other plant’s attributes susceptible to selection. The results give limited support to the hypothesis that spatial patterns of fruit availability influence fruit consumption by birds, and highlight the importance of considering separately legitimate and inefficient dispersers to explain the mechanisms that lie behind spatial patterns of seed dispersal.  相似文献   

2.
So far, it is poorly understood how differential responses of avian seed dispersers and fruit predators to changes in habitat structure and fruit abundance along land-use gradients may translate into consequences for the seed dispersal of associated plants. We selected a gradient of habitat modification (forest, semi-natural, and rural habitat) characterized by decreasing tree cover and a high variation in local fruit availability. Along this gradient we quantified fruit removal by avian seed dispersers and fruit predators from 18 Sorbus aucuparia trees. We analyzed the relative importance of tree cover and fruit abundance in explaining species richness, abundance and fruit removal rates of both guilds from S. aucuparia trees. Species richness and abundance of seed dispersers decreased with decreasing tree cover, whereas fruit removal by seed dispersers decreased with decreasing fruit abundance independent of tree cover. Both variables had no effect on species richness, abundance and fruit removal by fruit predators. Consequently, seed dispersers dominated relative fruit removal in fruit-rich sites but the dispersal/predation ratio shifted in favor of predation in fruit-poor habitat patches. Our study demonstrates that variation in local habitat structure and fruit abundance can cause guild-specific responses. Such responses may result in a shift in fruit removal regimes and might affect the dispersal ability of dependent fruiting plants. Future studies should aim at possible consequences for plant recruitment and guild-specific responses of frugivores to disturbance gradients on the level of entire plant–frugivore associations.  相似文献   

3.
The large ateline primates are efficient seed dispersers in Neotropical forests and hunting is driving their populations to extinction, but we do not know whether other frugivores could substitute primates in their ecological role as seed dispersers. In this study we test this possibility using a potential keystone species (Bursera inversa) at Tinigua Park, Colombia. This plant species allows us to compare seed removal rates between emergent, isolated trees, without primate visitors and trees with connected crowns. We used traps to estimate fruit production and seed removal rates in six different trees, and fruiting trees were observed during 2 yr to quantify the number of seeds manipulated by different animal species. We carried out seed predation experiments to test if seed removal by predators was affected by distance or density effects. We found that the most productive trees attracted more visiting species and seed removal rates differed among trees, the lowest corresponding to trees without primate access. Seed removal rates from the ground by predators were not higher below parental trees than away from them, but the distribution of saplings in the forest suggests that seed dispersal is advantageous. Although it is likely that the effect of primate extinctions will vary depending on tree species traits, conserving the populations of primate seed dispersers is critical to maintain the ecological processes in this forest.  相似文献   

4.
I examined the role of bird dispersal in invasiveness of three non-native plant species in California, USA: Triadica sebifera, Ligustrum lucidum, and Olea europaea. I selected these species because their invasiveness in California is uncertain, but a survey of ornithologists highlighted them as likely bird-dispersed. I quantified bird frugivory of these plants, compared them with a native species (Heteromeles arbutifolia), and explored the management implications of dispersal mutualisms for these and other incipient invasive plants. Fruit removal by birds was sufficient to permit spread for all study species. Seed dispersers (rather than seed predators) and pulse feeders (flocking species with potential for long distance dispersal) performed most fruit removal for the non-native species, a pattern indicative of an effective dispersal regime. The number of fruiting trees per stand was a significant predictor of bird visitation. Founding population size may thus be important in management of invasive, bird-dispersed plants. Disperser-defined niches were relatively narrow because a few disperser species performed the majority of fruit removal from study trees, but each fruit species was consumed by a variety of potential dispersers. This results in strong pairwise niche overlap between some plant species. Ordinated by bird use, study site-species combinations clustered more by geographic location than by plant species, emphasizing the opportunistic nature of bird foraging. None of the non-native focal plant species appears dispersal limited, and all have formed novel mutualisms in California. It is possible that these plants are now in lag phases preceding bird-mediated invasion. Consideration of bird dispersal when evaluating invasiveness is therefore an imperative.  相似文献   

5.
Understanding the mutualistic services provided by species is critical when considering both the consequences of their loss or the benefits of their reintroduction. Like many other Pacific islands, New Zealand seed dispersal networks have been changed by both significant losses of large frugivorous birds and the introduction of invasive mammals. These changes are particularly concerning when important dispersers remain unidentified. We tested the impact of frugivore declines and invasive seed predators on seed dispersal for an endemic tree, hinau Elaeocarpus dentatus, by comparing seed dispersal and predation rates on the mainland of New Zealand with offshore sanctuary islands with higher bird and lower mammal numbers. We used cameras and seed traps to measure predation and dispersal from the ground and canopy, respectively. We found that canopy fruit handling rates (an index of dispersal quantity) were poor even on island sanctuaries (only 14% of seeds captured below parent trees on islands had passed through a bird), which suggests that hinau may be adapted for ground‐based dispersal by flightless birds. Ground‐based dispersal of hinau was low on the New Zealand mainland compared to sanctuary islands (4% of seeds dispersed on the mainland vs. 76% dispersed on islands), due to low frugivore numbers. A flightless endemic rail (Gallirallus australis) conducted the majority of ground‐based fruit removal on islands. Despite being threatened, this rail is controversial in restoration projects because of its predatory impacts on native fauna. Our study demonstrates the importance of testing which species perform important mutualistic services, rather than simply relying on logical assumptions.  相似文献   

6.
动物对花楸树种实的取食与传播   总被引:4,自引:1,他引:3  
花楸树是我国东北林区重要的非木质资源树种,其种实既有自然散布方式,也有动物散布方式.本文通过对花楸树种实散布过程中动物活动特点的研究,探索动物取食和传播花楸树种实的规律及其对花楸树天然更新的影响.在2008和2009年花楸树果实成熟期,通过定期观察取食花楸树果实的鸟类及其取食方式,确定对花楸树果实有拜访行为的鸟类有8种,其中食果肉鸟类斑鸫、灰喜鹊和白背啄木鸟对花楸树种实有传播作用,它们对花楸树果实的拜访频率分别为54%、12%和7%,取食后第一落点集中于距离母树5~10 m之间(占68.2%),其次为距离母树5 m以内(占27.3%),距离母树10 m以外的比例很小(占4.5%).果实在鸟类消化道内的滞留时间可达20 min,表明潜在传播距离会很长.人工摆放果实和种子试验表明,在不同生境地面摆放的果实6~7 d内全部消失,果实的取食者主要是啮齿类和地面取食的鸟类,取食率均较高(50%~70%);种子的取食者为啮齿类、地面取食的鸟类和蚁类,取食率均较低(1%~5%).花楸树为多种动物提供食物,而动物为花楸树传播种子,动物的取食对花楸树的天然更新有重要影响.  相似文献   

7.
Summary The likelihood that a plant's seeds will be dispersed by fruit-eating birds may depend upon the size and shape of its fruits. Assuming that elongate fruits can be swallowed more easily than spherical fruits of equal volume and that plant fitness is enhanced by seed dispersal by many individuals and species of birds, natural selection should favour increasing fruit elongation with increasing fruit size in bird-dispersed plants. According to this view, this allometric pattern would be adaptive. Alternatively, fruit shape in bird-dispersed plants may be constrained by development or phylogeny. To determine whether there was any evidence to support the adaptive allometry hypothesis, we examined allometric relationships between length and diameter in fruits and seeds in a group of neotropical bird-dispersed plant species. Using the major axis technique, we regressed ln(diameter) on ln(length) for fruits and seeds at various taxonomic levels: (1) within individual trees ofOcotea tenera (Lauraceae) (2) among 19 trees within a population ofO. tenera, as well as among pooled fruits from multiple trees within 20 other species in the Lauraceae, (3) among 25 sympatric species within a plant family (Lauraceae) and (4) among 167 species representing 63 angiosperm families within a plant community in Monteverde, Costa Rica. At most taxonomic levels, a tendency for fruit length to increase more rapidly than fruit diameter among fruits (negative allometry) occurred more frequently than expected by chance. Estimated slopes of the regressions of fruit length on fruit diameter were < 1 within 15 of the 19 individualO. tenera trees, among tree means withinO. tenera, among pooled fruits within 16 of the 20 other species in the Lauraceae, among species means within the Lauraceae and among means of all bird-dispersed species in the lower montane forests of Monteverde. Seed allometry showed similar patterns, although for both fruits and seeds the broad confidence intervals of the slopes estimated by major axis regression overlapped 1 in many cases. Among the 63 Monteverde family means, fruit length and diameter scaled isometrically. Based on measurements of ontogenetic changes in fruit shape in a single species,O. viridifolia, we found no evidence that negative allometry in fruit shape within the Lauraceae was an inevitable consequence of developmental constraints. Instead, increasing elongation of fruits and seeds in certain plant taxa is consistent with adaptation to gape-limited avian seed dispersers. Contrary results from vertebrate-dispersed species from Malawi and Spain may reflect differences between the New and Old World in plant taxa, seed dispersers or evolutionary history.  相似文献   

8.
The recruitment of a dioecious bird-dispersed tree, the hollyIlex aquifolium (Aquifoliaceae), was studied consideringthe stages of fruit removal by birds, seed rain, post-dispersal seed predation,seed germination and seedling survival. The main objective was to test theeffect of different microhabitats within a beech forest on recruitment stages.Migrant thrushes were the main dispersers of this tree whose fruit crops wereentirely removed during two study years. Seed rain was greatest beneath hollytrees regardless of their sex and lowest in the open sites. Post-dispersal seedpredation was examined by two experiments and did not differ betweenmicrohabitats despite its quantitative importance (about 70%). Seedlingemergence, which probably corresponded to seeds from several cohorts, wasgreater beneath trees than in open sites and the density of second-yr to 5cm seedlings depended on the presence-absence of ungulateherbivores and litter. While the former had a detrimental effect, the latterhada beneficial effect on seedling abundance. Seedling survival showed nosignificant variations between microhabitats but depended on seedling densityinsome microhabitats (holly, beech). Finally, the initial seed arrival seemed todetermine microhabitat suitability for holly seedling establishment. However,under heavy browsing the density of seedlings may be strongly reduced leadingtomicrohabitat homogeneity for holly seedling establishment.  相似文献   

9.
To avoid seed predation, plants may invest in protective seed tissues. Often related to seed size, allocation in seeds' physical defenses can also be influenced by dispersers. We explore the relationships between seed traits (seed mass and hardness) and seed removal in 22 Myrtaceae species of the Brazilian Atlantic Forest, a dominant and diverse fleshy-fruited taxon dispersed by birds, rodents, and other mammals. Our goal is to understand how seed traits influence seed removal rates, and whether dispersers can affect tissue allocation in the seed coat. Seeds were exposed to field removal experiments. In the laboratory, total seed mass and seed coat mass were obtained. To evaluate the influence of seed traits on removal, we performed Kruskal–Wallis and Simple Linear Regression tests. We assessed seed coat and seed mass covariation through standardized major-axis allometric regressions. Harder seeds were larger than softer ones. Seed traits affect removal rates, as tougher and heavier seeds had lower removal. Seed mass significantly predicts seed coat proportion in seven of the 14 species tested. Bird-dispersed species tend to exhibit lower proportions of seed coat as seed mass increases, whereas rodent-dispersed species apparently present the opposite trend, with seed coat proportion increasing with seed mass. Such difference may be caused by the contrasting seed predation pressure represented by birds and rodents. Energy allocation for defense, expressed in seed coat proportion, is greater in large seeds, as these are mostly dispersed by rodents whose propensity to cache and disperse seeds is greater for large and well-protected seeds.  相似文献   

10.
Ongoing global climate change is predicted to increase the frequency and magnitude of extreme weather events, impacting population dynamics and community structure. There is, however, a critical lack of case studies considering how climatic perturbations affect biotic interactions. Here, we document how an obligate seed dispersal mutualism was disrupted by a temporally anomalous and meteorologically extreme interlude of unseasonably frigid weather, with accompanying snowstorms, in subtropical China, during January–February 2008. Based on the analysis of 5892 fecal samples (representing six mammalian seed dispersers), this event caused a substantial disruption to the relative seed dispersal function for the raisin tree Hovenia dulcis from prestorm 6.29 (2006) and 11.47 (2007), down to 0.35 during the storm (2008). Crucially, this was due to impacts on mammalian seed dispersers and not due to a paucity of fruit, where 4.63 fruit per branch were available in January 2008, vs. 3.73 in 2006 and 3.58 in 2007. An induced dietary shift occurred among omnivorous carnivores during this event, from the consumption fruit to small mammals and birds, reducing their role in seed dispersal substantially. Induced range shift extinguished the functionality of herbivorous mammals completely, however, seed dispersal function was compensated in part by three omnivorous carnivores during poststorm years, and thus while the mutualism remained intact it was enacted by a narrower assemblage of species, rendering the system more vulnerable to extrinsic perturbations. The storm's extended effects also had anthropogenic corollaries – migrating ungulates becoming exposed to heightened levels of illegal hunting – causing long‐term modification to the seed dispersal community and mutualism dynamics. Furthermore, degraded forests proved especially vulnerable to the storm's effects. Considering increasing climate variability and anthropogenic disturbance, the impacts of such massive, aberrant events warrant conservation concern, while affording unique insights into the stability of mutualisms and the processes that structure biodiversity and mediate ecosystem dynamics.  相似文献   

11.
Seed dispersal often limits tropical forest regeneration and animals disperse most rainforest tree seeds. This presents two important questions for restoration ecologists: (1) which animals are common seed dispersers? and (2) which restoration techniques attract them? Fourteen restoration sites were planted with four tree species in three designs, (1) controls (no planting, natural regeneration) (2) islands (trees planted in small patches), and (3) plantations (trees planted continuously over a large patch). We sampled birds in November, February, and April 2007–2008 with mist nets, in February and July 2009 with observations, and in July 2008 with both techniques. We documented 30 seed species from fecal samples of captured birds. All identified seed species were early‐successional forms. Four tanager species, three thrushes, two saltators, two flycatchers, and one finch were categorized as common seed dispersers, based on their high likelihood of dispersing seeds. Common dispersers were generalist species with small gape widths (<15 mm). Common dispersers were captured significantly more often in plantations than controls in most seasons and more often in plantations than islands during one season. Common disperser observations were significantly greater in plantations than controls during two periods and in plantations compared with islands in one period. Results indicate that plantation‐style planting is the conservative strategy to maximize attractiveness to common dispersers in tropical restoration sites. Island planting is an alternative when resources are limited although disperser activity may be lower in some seasons than in plantations. Additional research should investigate how to attract large, forest‐associated dispersers.  相似文献   

12.
Recruitment limitation of trees in tropical forests can occur because of high rates of seed predation or low rates of seed dispersal, but the degree to which limitation is influenced by variation in seed predator abundance, and hence variation in seed predation and dispersal, is not well understood. We experimentally reduced the density of a granivorous small mammal (Heteromys desmarestianus) by 90 % to assess the degree to which its rates of seed predation and dispersal limit seed to seedling survival of nine species of trees in a Neotropical lowland forest. Overall, the proportion of seeds that germinated was influenced more by high rates of predation than by limited dispersal. Reduction in density of H. desmarestianus resulted in an order of magnitude decrease in fruit removal rates and an order of magnitude increase in both the absolute and relative numbers of seeds that germinated. However, the proportion of seeds that were cached remained relatively constant across all periods and between control grids and removal plots. In removal plots, H. desmarestianus dispersed and cached about 10 % of the fruits they handled, of which approximately 25 % germinated. This was 2 to 3 times greater than the germination rates of undispersed seeds, and for two species dispersed seeds were the only ones that germinated. The results suggest the simultaneous occurrence of both seed predation and dispersal limitation for trees with animal-dispersed seeds, but there may also be a hierarchy of importance in the relative strength of these two mechanisms that is determined by the dynamics of seed predator populations.  相似文献   

13.
We examined assemblages of trees and two major groups of vertebrate seed dispersers, birds and primates, in Ugandan protected areas to evaluate the roles of dispersal limitation and species sorting in community assembly. We conducted partial Mantel tests to investigate relationships between community similarity, environmental distance and geographic distance. Results showed that environmental factors, specifically temperature and rainfall, significantly and more strongly structured tree assemblages than geographic distance. Analysis of tree dispersal modes revealed wind‐dispersed tree guilds were significantly dispersal limited but trees dispersed by animals were not. For assemblages of vertebrate seed dispersers, dispersal limitation significantly and more strongly structured assemblages of primates than species sorting whereas environmental factors significantly and more strongly structured assemblages of birds than dispersal limitation. We therefore examined whether trees dispersed by primates were more dispersal limited than trees dispersed by birds. We found consistent trends that primate fruit trees were more dispersal limited than bird fruit trees using three definitions of dispersal syndromes based on fruit color. Our results suggest that the dispersal abilities of primary consumers may affect the distribution of primary producers at large spatial scales.  相似文献   

14.
The seed dispersal patterns of bird-dispersed trees often show substantial seasonal and annual variation due to temporal changes in frugivorous bird and bird-dispersed fruit distributions. Elucidating such variation and how it affects plant regeneration is important for understanding the evolution and seed dispersal maintenance strategies of these plants. In this study, we investigated the seed dispersal quantity and distance of a bird-dispersed plant, Swida controversa, for 2 years and detected large seasonal variations in dispersal pattern. Early in the fruiting season, short seed dispersal distance and large amounts of fruit consumption by birds (seed dispersal quantity) were observed. In contrast, late in the fruiting season, a long seed dispersal distance and small seed dispersal quantity were observed. This relationship between seed dispersal distance and quantity may help to maintain constant seed dispersal effectiveness during the long S. controversa fruiting season. Annual variation was also detected for both seed dispersal quantity and distance. More effective seed dispersal was achieved in the masting year, because both seed dispersal quantity and distance were greater than that in the non-masting year. These seed dispersal dynamics may contribute to the evolution and maintenance of S. controversa masting behavior. Thus, we identified substantial temporal variation on both seasonal and annual scales in the seed dispersal pattern of a bird-dispersed plant. The temporal variation in seed dispersal pattern revealed in this study probably plays a substantial role in the life history and population dynamics of S. controversa.  相似文献   

15.
Erodium paularense is a threatened plant species that is subject to seed predation by the granivorous ant Messor capitatus. In this paper we assessed the intensity and pattern of ant seed predation and looked for possible adaptive strategies at the seed and plant levels to cope with this predation. Seed predation was estimated in 1997 and 1998 at the population level by comparing total seed production and ant consumption, assessed by counting seed hulls in refuse piles. According to this method, ant seed predation ranged between 18% and 28%. A more detailed and direct assessment conducted in 1997 raised this estimate to 43%. In this assessment spatial and temporal patterns of seed predation by ants were studied by mapping all nest entrances in the studied area and marking the mature fruits of 109 reproductive plants with a specific colour code throughout the seed dispersal period. Intact fruit coats were later recovered from the refuse piles, and their mother plants and time of dispersal were identified. Seeds dispersed at the end of the dispersal period had a greater probability of escaping from ant seed predation. Similarly, in plants with late dispersal a greater percentage of seeds escaped from ant predation. Optimum dispersal time coincided with the maximum activity of granivorous ants because, at this time, ants focused their harvest on other plant species of the community. It was also observed that within-individual seed dispersal asynchrony minimised seed predation. From a conservation perspective, results show that the granivorous ant–plant interaction cannot be assessed in isolation and that the intensity of its effects basically depends on the seed dispersal pattern of the other members of the plant community. Furthermore, this threat must be assessed by considering the overall situation of the target population. Thus, in E. paularense, the strong limitation of safe-sites for seedling establishment reduces the importance of seed predation.  相似文献   

16.
Seed dispersal by animals is a complex process involving several distinct stages: fruit removal by frugivores, seed delivery in different microhabitats, seed germination, seedling establishment, and adult recruitment. Nevertheless, studies conducted until now have provided scarce information concerning the sequence of stages in a plant's life cycle in its entirety. The main objective of this study was to evaluate the immediate consequences of frugivore activity for Eugenia umbelliflora (Myrtaceae) early recruitment by measuring the relative importance of each fruit‐eating bird species on the establishment of new seedlings in scrub and low restinga vegetation in the Atlantic rainforest, Brazil. We conducted focal tree observations on E. umbelliflora trees recording birds' feeding behaviour and post‐feeding movements. We also recorded the fate of dispersed seeds in scrub and low restinga vegetation. We recorded 17 bird species interacting with fruits in 55 h of observation. Only 30% of the handled fruits were successfully removed. From 108 post flight movements of exit from the fruiting trees, 30.6% were to scrub and 69.4% to low restinga forest. Proportion of seed germination was higher in low restinga than in the scrub vegetation. Incorporating the probabilities of seeds' removal, deposition, and germination in both sites, we found that the relative importance of each frugivorous bird as seed dispersers varies largely among species. Turdus amaurochalinus and Turdus rufiventris were the best dispersers, together representing almost 12% probability of seed germination following removal. Our results show the importance of assessing the overall consequence of seed dispersal within the framework of disperser effectiveness, providing a more comprehensive and realistic evaluation of the relative importance of different seed dispersers on plant population dynamics.  相似文献   

17.
Habitat fragmentation can break down the movement processes of frugivorous animals, thus influencing the relationship between plants and their seed dispersers by altering the number and identity of seed dispersers, and their relative contribution to seed dispersal. We studied the assemblages of frugivorous birds, their composition, species richness, and visitation rates to fruiting plants growing in the different landscape elements (forest fragments, live fences, and trees isolated in pastures) embedded in a Brazilian fragmented, agricultural landscape. By following the post‐feeding movements of frugivorous birds, we inferred the direction of seed movement from and to each of these landscape elements. Fruiting trees growing at different landscape elements were visited by frugivorous birds at similar rates. Isolated trees attracted a greater and distinct bird assemblage than trees in forest fragments or live fences. Judging by the post‐feeding flights of birds, the seeds of isolated trees were the most likely to reach all the landscape elements considered, but the contribution of isolated trees to the seeds falling in forested habitats or pastures depended on their degree of isolation. A few bird species were able to move widely, visiting fruiting plants in all landscape elements, and promoting long‐distance dispersal for plants. These few birds are of special interest because they are mobile links that connect habitats in fragmented landscapes with their seed dispersal services. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

18.
The population dynamics of invasive plants are influenced by positive and negative associations formed with members of the fauna present in the introduced range. For example, mutualistic associations formed with pollinators or seed dispersers may facilitate invasion, but reduced fitness from attack by native herbivores can also suppress it. Since population expansion depends on effective seed dispersal, interactions with seed dispersers and predators in a plant species introduced range may be of particular importance. We explored the relative contributions of potential seed dispersers (ants) and vertebrate predators (rodents and birds) to seed removal of two diplochorous (i.e., wind- and ant-dispersed), invasive thistles, Cirsium arvense and Carduus nutans, in Colorado, USA. We also conducted behavior trials to explore the potential of different ant species to disperse seeds, and we quantified which potential ant dispersers were prevalent at our study locations. Both ants and vertebrate predators removed significant amounts of C. arvense and C. nutans seed, with the relative proportion of seed removed by each guild varying by location. The behavior trials revealed clear seed preferences among three ant species as well as differences in the foragers’ abilities to move seeds. In addition, two ant species that acted as potential dispersal agents were dominant at the study locations. Since local conditions in part determined whether dispersers or predators removed more seed, it is possible that some thistle populations benefit from a net dispersal effect, while others suffer proportionally more predation. Additionally, because the effectiveness of potential ant dispersers is taxon-specific, changes in ant community composition could affect the seed-dispersal dynamics of these thistles. Until now, most studies describing dispersal dynamics in C. arvense and C. nutans have focused on primary dispersal by wind or pre-dispersal seed predation by insects. Our findings suggest that animal-mediated dispersal and post-dispersal seed predation deserve further consideration.  相似文献   

19.
Several plant characteristics, such as fruit production, nutrient reward, secondary compounds, and fruit color display, affect fruit choice by birds. On the other hand, several bird attributes affect their efficiency as dispersers. Here we investigate the ornithochoric seed dispersal of Pera glabrata Schott (Euphorbiaceae) in a cerrado fragment in southeastern Brazil. A set of bird attributes, such as frequency of visits, number of diaspores eaten, time spent foraging, methods of taking and handling the diaspores and agonistic interactions were analyzed in order to infer about the potential of each species to act as a seed disperser. Birds were the unique seed dispersers of these oil-rich diaspores. We observed 414 bird visits during 60 hours of focal observations in five trees from December 1999 to January 2000. Twenty bird species from seven families ate the diaspores of P. glabrata, but only 14 species were considered potential seed dispersers because they swallowed the diaspores, increasing the probabilities for the seeds to be defecated and/or regurgitated away from the parent trees. The main potential seed dispersers were: Turdus leucomelas (Muscicapidae), Dacnis cayana (Emberizidae), Colaptes melanochloros (Picidae) and Elaenia spp. (Tyrannidae). We did not find any significant seasonal change in the number of visits on the fruiting trees throughout the day. We also did not find any relation between the number of visits per tree and fruit production. The most effective seed dispersers of P. glabrata were generalist birds, which have a high visiting rate, high fruit consumption rate, and spend short periods on the plants. The large number of species recorded as potential seed dispersers of P. glabrata, being most of them very abundant even in Brazilian disturbed areas, may guarantee seed dispersal of this plant in small fragments and regenerating areas.  相似文献   

20.
南京中山植物园秋冬季鸟类对植物种子的传播作用   总被引:13,自引:0,他引:13  
1999年10月20日-2000年1月20日,在南京中山植物园内随机收集鸟粪样品160份,共分离出874粒结构完整的种子和果核、3块鞘翅目昆虫残体和1块鸟类羽毛残块。已鉴定出842粒种子和果核,分属于16科20属26种(变种)。在鸟粪样品中出现频率较高的种子依次分别属于冬青(Ilex purpurea)(22.22%)、圆柏(Sabina chinensis)(11.11%)、盐肤木(Rhus chinensis)(10.63%)、朴树(Celtis sinensis)(9.18%)、爬山虎(Parthenocissus tricuspidata)(7.73%)、龙柏(S.chinensis cv.kaizuca)(7.25%)等;种子数量相对较多的植物种类主要有冬青(23.52%)、盐肤木(16.15%)、圆柏(13.54%)、爬山虎(7.96%)、龙柏(7.96%)、小果蔷薇(Rosa cymosa)(5.34%)等。除经鸟粪传播外,鸟类还通过衔取果实以及在吞食果实后将种子呕出的方式传播种子。初步发芽试验表明,鸟粪样品中的爬山虎、盐肤木的种子,以及被鸟呕出的樟树(Cinnamomum camphora)、楝树(Melia azedarach)的种子均可发芽出苗。鸟类传播种子使南京中山植物园内樟树、冬青、海桐(Pittosporum tobira)和红豆杉(Taxus chinensis)等栽培树种成功地侵入到位于植物园北缘的虎山山坡黑松(Pinus thunbergii)、枫香(Liquidambar formosana)群落、以及植物园内山溪边的枫杨(Pterocarya stenoptera)、朴树群落等生境中。鸟类对种子的传播作用扩大了南京中山植物园内那些具有肉质果实、种子具有坚硬种皮或种子包被于坚硬果核中的植物种类的分布范围,促进了它们的自然更新。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号