首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Macrophage accumulation has been implicated in the pathogenesis of inflammatory glomerular disease. Monocyte chemoattractant protein-1 (MCP-1) plays a central role in recruiting monocytes to the glomeruli. Tumor necrosis factor-α (TNF-α) has been shown to induce MCP-1 expression in mesangial cells, although the precise mechanisms remain unclear. We previously demonstrated that RhoA and its effector, Rho-kinase (Rho-associated coiled-coil containing protein kinase, ROCK), are involved in the pathogenesis of diabetic nephropathy. However, its role in MCP-1 induction by TNF-α has not been elucidated. In the present study, we investigated whether the Rho/Rho-kinase signaling pathway regulates the TNF-α-mediated induction of MCP-1 in mesangial cells. Exposure of mouse mesangial cells (MES-13) to TNF-α resulted in an increase of MCP-1 expression (by RT-PCR) and secretion into the medium (by ELISA). Pull down and Western blot analysis revealed that TNF-α activated RhoA and Rho-kinase. Based on these observations, we speculated that the Rho/Rho-kinase signaling pathway may be involved in MCP-1 induction by TNF-α. In agreement with this concept, Y-27632, a specific Rho-kinase inhibitor, attenuated TNF-α-mediated induction of MCP-1. We demonstrated that Y-27632 inhibited TNF-α-mediated monocyte migration and attenuated TNF-α-mediated p38 MAPK activation. Based on these data we infer that Y-27632 inhibits TNF-α-induced MCP-1 expression, secretion and function through inhibition of Rho-kinase and p38 MAPK activity. Our study suggests that Rho/Rho-kinase is an important therapeutic target of monocyte recruitment and accumulation within the glomerulus in inflammatory renal disease.  相似文献   

2.
Adhesion molecules such as ICAM-1 are important in the infiltration of leukocytes into the site of inflammation. In this study, we investigated the inhibitory effects of curcumin on ICAM-1 expression and monocyte adhesiveness as well as its underlying action mechanism in the TNF-α-stimulated keratinocytes. Curcumin induced expression of heme oxygenase-1 (HO-1) in the human keratinocyte cell line HaCaT. In addition, curcumin induced Nrf2 activation in dose- and time-dependent manners in the HaCaT cells. Curcumin suppressed TNF-α- induced ICAM-1 expression and subsequent monocyte adhesion, which were reversed by the addition of tin protoporphyrin IX (SnPP), a specific inhibitor of HO-1, or HO-1 knockdown using siRNA. Furthermore, Nrf2 knockdown using siRNA reversed the inhibitory effect of curcumin on the TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes. These results suggest that curcumin may exert its anti-inflammatory activity by suppressing the TNF-α-induced ICAM-1 expression and subsequent monocyte adhesion via expression of HO-1 in the keratinocytes. [BMB Reports 2013;46(8): 410-415]  相似文献   

3.
4.
Fisetin is a natural flavonoid from fruits and vegetables that exhibits antioxidant, neurotrophic, anti-inflammatory, and anti-cancer effects in various disease models. Up-regulation of heme oxygenase-1 (HO-1) expression protects against oxidative stress-induced cell death, and therefore, plays a crucial role in cytoprotection in a variety of pathological models. In the present study, we investigated the effect of fisetin on the up-regulation of HO-1 in human umbilical vein endothelial cells (HUVECs). Small interfering RNA and pharmacological inhibitors of PKC-δ and p38 MAPK attenuated HO-1 induction in fisetin-stimulated HUVECs. Fisetin treatment resulted in significantly increased NF-E2-related factor 2 (Nrf2) nuclear translocation, and antioxidant response element (ARE)-luciferase activity, leading to up-regulation of HO-1 expression. In addition, fisetin pretreatment reduced hydrogen peroxide (H(2)O(2))-induced cell death, and this effect was reversed by ZnPP, an inhibitor of HO-1. In summary, these findings suggest that induction of HO-1 expression via Nrf2 activation may contribute to the cytoprotection exerted by fisetin against H(2)O(2) -induced oxidative stress in HUVECs.  相似文献   

5.
Thrombin has been shown to increase expression of chemokines such as monocyte chemoattractant protein 1 (MCP-1) in endothelial cells, leading to the development of atherosclerosis. However, the precise mechanism of this induction remains unknown. In the present study, we investigated whether the small G protein RhoA, and its effector, Rho-kinase are involved in MCP-1 induction by thrombin in endothelial cells. Y-27632, a specific Rho-kinase inhibitor, potently inhibited MCP-1 induction by thrombin. Y-27632 significantly decreased the chemotactic activity of thrombin-stimulated supernatants of endothelial cells on monocytes. Importantly, fasudil, a specific Rho-kinase inhibitor, attenuated MCP-1 gene expression in the aorta of db/db mice. Y-27632 attenuated thrombin-mediated phosphorylation of p38MAPK and p65, indicating that Rho-kinase mediates thrombin-induced MCP-1 expression through p38MAPK and NF-κB activation. Our findings demonstrate that the Rho/Rho-kinase signaling pathway plays a critical role in thrombin-mediated MCP-1 expression and function, and suggest that Rho/Rho-kinase may be an important target in the development of new therapeutic strategies for atherosclerosis.  相似文献   

6.
Hippophae rhamnoides has been extensively used in oriental traditional medicines for treatment of asthma, skin diseases, gastric ulcers, and lung disorders. In this study, we isolated casuarinin from the leaves of H.rhamnoides and examined the effect of casuarinin on the TNF-α-induced ICAM-1 expression in a human keratinocytes cell line HaCaT. Pretreatment with casuarinin inhibited TNF-α-induced protein and mRNA expression of ICAM-1 and subsequent monocyte adhesiveness in HaCaT cells. Casuarinin significantly inhibited TNF-α-induced NF-κB activation. In addition, casuarinin inhibited activation of ERK and p38 MAPK in a dose-dependent manner. Furthermore, pretreatment with casuarinin decreased TNF-α-induced pro-inflammatory mediators, such as IL-1β, IL-6, IL-8, and MCP-1. These results demonstrated that casuarinin exerts its anti-inflammatory activity by suppressing TNF-α-induced expression of ICAM-1 and pro-inflammatory cytokines/chemokines via blockage of activation of NF-κB and ERK/p38 MAPK and can be used as a therapeutic agent against inflammatory skin diseases.  相似文献   

7.
Tristetraprolin (TTP), a substrate of p38 mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), is an RNA-binding protein that binds to AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR) of its target mRNAs and accelerates mRNA degradation. A previous study by our group showed that MK2 regulates tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) in human lung microvascular endothelial cells; however, the downstream protein of MK2 remains unknown. Interestingly, both ICAM-1 and IL-8 have AREs in the 3'-UTR of their mRNAs. In the present study, we performed experiments to determine whether MK2 regulates TNF-α-induced expression of ICAM-1 and IL-8 via TTP in human pulmonary microvascular endothelial cells (HPMECs). The study revealed that MK2 silencing significantly reduced the half-lives of ICAM-1 and IL-8 mRNAs in TNF-α-stimulated HPMECs. TTP phosphorylation levels were decreased in MK2-silenced cells. TTP silencing led to mRNA stabilization of ICAM-1 and IL-8 and upregulation of protein production following TNF-α stimulation. These results, together with our previous study and others, suggest that MK2, in HPMECs, regulates TNF-α-induced expression of ICAM-1 and IL-8 via TTP at the mRNA decay level.  相似文献   

8.
The GRB2 associated binder 1 (GAB1) is an essential docking/adaptor protein for transmitting intracellular signals of the MET tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). We found that in response to hours of HGF/SF treatment, the GAB1 protein level is degraded by a mechanism involving MET activity and the proteasomal machinery. We also showed that GAB1 is both multi- and poly-ubiquitinated in a CBL-dependent manner. A long term exposure to HGF/SF caused a more sustained down-regulation of GAB1 than of MET, associated with a loss of reactivation of the ERK MAP kinases to subsequent acute ligand treatment. These data demonstrate that GAB1 is ubiquitinated by CBL and degraded by the proteasome, and plays a role in negative-feedback regulation of HGF/SF–MET signaling.  相似文献   

9.
Endothelial inflammation plays a critical role in the development and progression of cardiovascular disease, albeit the mechanisms need to be fully elucidated. We here report that treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor (TNF) α substantially increased the expression of MCP-induced protein 1 (MCPIP1). Overexpression of MCPIP1 protected ECs against TNFα-induced endothelial activation, as characterized by the attenuation in the expression of the adhesion molecule VCAM-1 and monocyte adherence to ECs. Conversely, small interfering RNA-mediated knock down of MCPIP1 increased the expression of VCAM-1 and monocytic adherence to ECs. These studies identified MCPIP1 as a feedback control of cytokines-induced endothelial inflammation.  相似文献   

10.
11.
Ferulic acid (FA) is a phenol compound found in plants that has anti-inflammatory properties. Indoleamine 2, 3-dioxygenase (IDO) is a tryptophan catabolic enzyme induced in immune cells, including glial cells, during inflammation. Enhanced IDO expression leads to reduced tryptophan levels and increased levels of toxic metabolites, including quinolinic acid. Therefore, inhibition of IDO expression may be effective in suppressing progression of neurodegenerative diseases. In this study, we examined the effect of FA in microglial cells on IDO expression levels and related inflammatory signal molecules. FA suppressed LPS-induced IDO mRNA expression and also suppressed nuclear translocation of NF-κB and phosphorylation of p38 MAPK. However, FA did not affect the production of LPS-induced inflammatory mediators and phosphorylation of JNK. Our results indicate that FA suppresses LPS-induced IDO mRNA expression, which may be mediated by inhibition of the NF-κB and p38 MAPK pathways in microglial cells.  相似文献   

12.
Inflammation is characterized by early influx of polymorphonuclear neutrophils (PMNs), followed by a second wave of monocyte recruitment. PMNs mediate monocyte recruitment via their release of heparin binding protein (HBP), which activates CCR2 (CC-chemokine receptor 2) on monocytes. However, the pathways for such signal transmission remain unknown. Accumulating evidences have highlighted the importance of leukocyte-endothelial cell interactions in the initiation of inflammation. In this study, an interesting finding is that HBP enhances the secretion of monocyte chemotactic protein 1(MCP-1), ligand of CCR2, from a third party, the endothelial cells (ECs). HBP-induced increase in MCP-1 production was demonstrated at the protein, mRNA and secretion levels. Exposure of ECs to HBP elicited rapid phosphorylation of FAK/PI3K/AKT and p38 MAPK/NF-κB signaling. MCP-1 levels were attenuated during the response to HBP stimulation by pretreatment with a FAK inhibitor (or siRNA), a PI3K inhibitor, an AKT inhibitor, a p38 inhibitor (or siRNA) and two NF-κB inhibitors. Additionally, pretreatment with inhibitors to FAK, PI3K and AKT led to a decrease in HBP-induced phosphorylation of p38/NF-κB axis. These results showed that HBP induced MCP-1 expression via a sequential activation of the FAK/PI3K/AKT pathway and p38 MAPK/NF-κB axis. Interestingly, the patterns of HBP regulation of the expression of the adhesion molecular VCAM-1 were similar to those seen in MCP-1 after pretreatment with inhibitors (or not). These findings may help to determine key pharmacological points of intervention, thus slowing the progress of inflammatory-mediated responses in certain diseases where inflammation is detrimental to the host.  相似文献   

13.
α-Mangostin is a dietary xanthone that has been shown to have anti-cancer and anti-proliferative properties in various types of human cancer cells. This study investigates the molecular mechanism of the apoptosis-inducing effects of α-mangostin on human hepatocellular carcinoma (HCC) cells. We observed that α-mangostin reduces the viability of HCC cells in a dose- and time-dependent manner. α-Mangostin mediated apoptosis of SK-Hep-1 cells is accompanied by nuclear chromatin condensation and cell cycle arrest in the sub-G1 phases as well as phosphatidylserine exposure. Furthermore, α-mangostin triggered the mitochondrial caspase apoptotic pathway, as indicated by the loss of mitochondrial membrane potential, the release of cytochrome c from mitochondria, and the regulation of B cell lymphoma 2 family member expression. Moreover, α-mangostin inhibited a sustained activation of p38 mitogen-activated protein kinase (MAPK) phosphorylation, and treatment with a p38 MAPK inhibitor enhanced α-mangostin-induced caspase activation and apoptosis in SK-Hep-1 cells. In vivo xenograft mice experiments revealed that α-mangostin significantly reduced tumor growth and weight in mice inoculated with SK-Hep-1 cells. These findings demonstrate that α-mangostin induces mitochondria-mediated apoptosis through inactivation of the p38 MAPK signaling pathway and that α-mangostin inhibits the in vivo tumor growth of SK-Hep-1 xenograft mice.  相似文献   

14.
15.
Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A2, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A2 synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-induced upregulation of COX-2 is mediated by activation of the NF-κβ signaling pathway.  相似文献   

16.
Prostaglandin H synthase 2 (PGHS-2), a highly inducible isoenzyme, is responsible for overproduction of the prostaglandins (PGs) in inflammatory sites.We established that among fish oil polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), but not docosahexaenoic acid (DHA), greatly decreased interleukin-1β (IL-1β)-induced PGHS-2 expression in human pulmonary microvascular endothelial cells (HPMECs). Lipoxygenase products 12 (S)-hydroperoxyeicosapentaenoic acid ((S)-HpEPE), 15 (S)-HpEPE and leukotriene (LT) D5 reproduced similar inhibitory effect, suggesting that they may be the intermediate metabolites responsible for PGHS-2 down-regulation by EPA. Accordingly, the EPA effect is prevented by nordihydroguaiaretic acid (NDGA) and by REV 5901, nonspecific and specific 5-lipoxygenase inhibitors, respectively. Besides, inhibition of cyclooxygenase activity by ibuprofen, indomethacin or aspirin was not able to prevent this effect. Moreover, cyclooxygenase metabolites of EPA (PGs D3, E3 and I3) markedly potentiate IL-1β-induced PGHS-2 expression, probably by increasing intracellular cAMP levels. Peroxisome proliferator-activated receptors (PPARs) are known to be activated by fatty acids (FAs) such as EPA. We found here that HPMECs express only weak amounts of PPARα and PPARγ whose activation by synthetic agonists, Wy-14,643 and ciglitazone, does not cause any inhibition of IL-1β-induced PGHS-2 expression. This finding ruled out the involvement of PPARs in the EPA inhibitory effect. In addition, we established that EPA, which failed to inhibit nuclear factor-κB (NF-κB) activation, suppressed p38 mitogen-activated protein kinase (MAPK) phosphorylation in stimulated HPMECs.Our data demonstrate that EPA, unlike DHA, down-regulates PGHS-2 expression in HPMECs probably through its 5-lipoxygenase-dependent metabolites and advocates a beneficial role for this FA in limiting inflammatory response.  相似文献   

17.

Background

Among a variety of inflammatory mediators, visfatin is a proinflammatory adipocytokine associated with inflammatory reactions in obesity, metabolic syndrome, chronic inflammatory disease, and autoimmune disease. However, the biological role of visfatin in secretion of major mucins in human airway epithelial cells has not been reported. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of visfatin on MUC8 and MUC5B expression in human airway epithelial cells.

Results

Visfatin significantly induced MUC8 and MUC5B expression. Visfatin significantly activated phosphorylation of p38 MAPK. Treatment with SB203580 (p38 MAPK inhibitor) and knockdown of p38 MAPK by siRNA significantly blocked visfatin-induced MUC8 and MUC5B expression.Visfatin significantly increased ROS formation. Treatment with SB203580 significantly attenuated visfatin-induced ROS formation. Treatment with NAC (ROS scavenger) and DPI (NADPH oxidase inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression. However, treatment with NAC and DPI did not attenuate visfatin-activated phosphorylation of p38 MAPK. Visfatin significantly activated the phosphorylation of NF-κB. Treatment with PDTC (NF-κB inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression.

Conclusions

These results suggest that visfatin induces MUC8 and MUC5B expression through p38 MAPK/ROS/NF-κB signaling pathway in human airway epithelial cells.  相似文献   

18.
Viscolin, a major active component in a chloroform extract of Viscum coloratum, has antioxidative and anti-inflammatory properties. We focused on its effects on the expression of vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α)-treated human umbilical vein endothelial cells (HUVECs). The TNF-α-induced expression of VCAM-1 was significantly reduced by respectively 38 ± 7 or 34 ± 16% when HUVECs were pretreated with 10 or 30 μM viscolin, as shown by Western blotting, and was also significantly reduced by pretreatment with the antioxidants N-acetylcysteine, diphenylene iodonium chloride, and apocynin. Viscolin also reduced TNF-α-induced VCAM-1 mRNA expression and promoter activity, decreased reactive oxygen species (ROS) production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and significantly reduced the binding of monocytes to TNF-α-stimulated HUVECs. The attenuation of TNF-α-induced VCAM-1 expression and cell adhesion was partly mediated by a decrease in JNK phosphorylation. Furthermore, viscolin reduced VCAM-1 expression in the aorta of TNF-α-treated mice in vivo. Taken together, these data show that viscolin inhibits TNF-α-induced JNK phosphorylation, nuclear translocation of NF-κB p65, and ROS generation and thereby suppresses VCAM-1 expression, resulting in reduced adhesion of leukocytes. These results also suggest that viscolin may prevent the development of atherosclerosis and inflammatory responses.  相似文献   

19.
Guo F  Zhou Z  Dou Y  Tang J  Gao C  Huan J 《Cytokine》2012,57(3):417-428
The purpose of study is to investigate the effects of GEF-H1/RhoA pathway in regulating intercellular adhesion molecule-1 (ICAM-1) expression in lipopolysaccharide (LPS)-activated endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to LPS induced GEF-H1 and ICAM-1 expression in dose- and time-dependent up-regulating manners. Pretreatment with Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activity, reduced LPS-related phosphorylation of p65 at Ser 536 in a dose-dependent manner. Inhibition of TLR4 expression significantly blocked LPS-induced RhoA activity, NF-κB transactivation, GEF-H1 and ICAM-1 expression. Coimmunoprecipitation assay indicated that LPS-activated TLR4 and GEF-H1 formed a signalling complex, suggesting that LPS, acting through TLR4, stimulates GEF-H1 expression and RhoA activity, and thereby induces NF-κB transactivation and ICAM-1 gene expression. However, GEF-H1/RhoA regulates LPS-induced NF-κB transactivation and ICAM-1 expression in a MyD88-independent pathway because inhibition of MyD88 expression could not block LPS-induced RhoA activity. Furthermore, pretreatment with Y-27632, an inhibitor of ROCK, significantly reduced LPS-induced p38, ERK1/2 and p65 phosphorylation, indicating that ROCK acts as an upstream effector of p38 and ERK1/2 to promote LPS-induced NF-κB transactivation and ICAM-1 expression. What is more, the p38 inhibitor (SB203580) but not ERK1/2 inhibitor (PD98059) blocked LPS-induce NF-κB transactivation and ICAM-1 expression, which demonstrates that RhoA mediates LPS-induced NF-κB transactivation and ICAM-1 expression dominantly through p38 but not ERK1/2 activation. In summary, our data suggest that LPS-induced ICAM-1 synthesis in HUVECs is regulated by GEF-H1/RhoA-dependent signaling pathway via activation of p38 and NF-κB.  相似文献   

20.
Previously, we demonstrated that protein kinase D (PKD) plays a protective role during H2O2-induced intestinal cell death. Here, we sought to determine whether this effect is mediated by nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Treatment with H2O2 activated NF-κB in RIE-1 cells; H2O2 also induced the translocation of NF-κB p65 as well as phosphorylation of IκB-α. PKD1 siRNA inhibited H2O2-induced activation, translocation of NF-κB, and phosphorylation of IκB-α. We also found that overexpression of wild type PKD1 attenuated H2O2-induced phosphorylation of p38 MAPK and its upstream activator, MAPK kinase (MKK) 3/6, whereas the phosphorylation was increased by PKD1 siRNA or kinase-dead PKD1. Phosphorylation of neither extracellular signal-regulated kinases (ERK) 1/2 nor c-Jun N-terminal kinases (JNK) was altered by PKD1 plasmids or siRNA. Our findings suggest that PKD protects intestinal cells through up-regulation of NF-κB and down-regulation of p38 MAPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号