首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
K Y Horiuchi  S Chacko 《Biochemistry》1989,28(23):9111-9116
The 38-kDa chymotryptic fragment of caldesmon, which possesses the actin/calmodulin binding domain, was purified and utilized to study the mechanism for the inhibition of acto-myosin ATPase by caldesmon. The intact caldesmon inhibited the acto-HMM ATPase although it caused an increase in the binding of HMM to actin, presumably due to the interaction between the S-2 region of HMM and the caldesmon located on the actin filament. The 38-kDa fragment, which lacks the S-2 binding domain, inhibited both the acto-HMM ATPase and the HMM binding to actin. The ATPase and the HMM binding to actin decreased in parallel on increasing the 38-kDa fragment bound to actin. In the presence of tropomyosin, the ATPase activity fell more rapidly than did the HMM binding to actin. Binding of intact caldesmon or 38-kDa fragment to actin inhibited the cooperative turning-on of tropomyosin-actin by NEM.S-1, which forms rigor complexes in the presence of ATP. The absence of cooperative turning-on of the acto-HMM ATPase by rigor complexes in the presence of 38-kDa fragment was associated with an inhibition of the binding of HMM to tropomyosin-actin. Addition of NEM.S-1 to tropomyosin-actin-caldesmon caused a gradual decrease in the caldesmon-induced binding of HMM to actin. The calmodulin restored the caldesmon-induced binding of HMM to tropomyosin-actin, but it had only a slight effect on the acto-HMM ATPase. These data suggest that the cooperative turning-on of the smooth muscle tropomyosin-actin by rigor bonds is modulated by the interaction of caldesmon, tropomyosin, and calmodulin on the thin filament.  相似文献   

2.
Caldesmon, an actin/calmodulin binding protein, inhibits acto-heavy meromyosin (HMM) ATPase, while it increases the binding of HMM to actin, presumably mediated through an interaction between the myosin subfragment 2 region of HMM and caldesmon, which is bound to actin. In order to study the mechanism for the inhibition of acto-HM ATPase, we utilized the chymotryptic fragment of caldesmon (38-kDa fragment), which possesses the actin/calmodulin binding region but lacks the myosin binding portion. The 38-kDa fragment inhibits the actin-activated HMM ATPase to the same extent as does the intact caldesmon molecule. In the absence of tropomyosin, the 38-kDa fragment decreased the KATPase and Kbinding without any effect on the Vmax. However, when the actin filament contained bound tropomyosin, the caldesmon fragment caused a 2-3-fold decrease in the Vmax, in addition to lowering the KATPase and the Kbinding. The 38-kDa fragment-induced inhibition is partially reversed by calmodulin at a 10:1 molar ratio to caldesmon fragment; the reversal was more remarkable in 100 mM ionic strength at 37 degrees C than in 20 or 50 mM at 25 degrees C. Results from these experiments demonstrate that the 38-kDa domain of caldesmon fragment of myosin head to actin; however, when the actin filament contains bound tropomyosin, caldesmon fragment affects not only the binding of HMM to/actin but also the catalytic step in the ATPase cycle. The interaction between the 38-kDa domain of caldesmon and tropomyosin-actin is likely to play a role in the regulation of actomyosin ATPase and contraction in smooth muscle.  相似文献   

3.
The protein caldesmon inhibits actin-activated ATP hydrolysis of myosin and inhibits the binding of myosin.ATP to actin. A fragment isolated from a chymotryptic digest of caldesmon contains features of the intact molecule that make it useful as a selective inhibitor of the binding of myosin.ATP complexes to actin without having the complexity of binding to myosin. The COOH-terminal 20 kDa region of caldesmon binds to actin with one-sixth the affinity of caldesmon with a stoichiometry of binding of one fragment per two actin monomers. This contrasts with the 1:6-9 stoichiometry of intact caldesmon. The binding of the 20 kDa fragments to actin is totally reversed by Ca(2+)-calmodulin and, like intact caldesmon, the 20 kDa fragments are competitive with the binding of myosin subfragments to actin. This competition with myosin binding is largely responsible for the inhibition of ATP hydrolysis, although both the fragments and intact caldesmon also reverse the potentiation of ATPase activity caused by tropomyosin. These polypeptides are useful both in defining the function of caldesmon and in studying the role of weakly bound cross-bridges in muscle.  相似文献   

4.
High-Mr caldesmon, which is involved in smooth muscle contraction, was phosphorylated by protein kinase C. By chymotryptic digestion, actin- and calmodulin-binding assays and immunoprecipitation with the antibody to the C-terminal 35-kDa fragment, we have identified that all phosphate groups are incorporated exclusively into this fragment, which is the functional domain for binding actin and calmodulin. Phosphorylation of high-Mr caldesmon and its C-terminal 35-kDa fragment reduced their binding abilities to both F-actin and calmodulin. Further, their inhibitory effects on the actin-activated ATPase activity of gizzard myosin were also reversed in proportion to the degree of phosphorylation. These results suggest that phosphorylation of high-Mr caldesmon by protein kinase C, which is restricted within the C-terminal 35-kDa domain, results in the modulation of its activity in the smooth muscle actin--myosin interaction.  相似文献   

5.
Binding of caldesmon to actin causes a decrease in the quantity of bound myosin and results in a reduction in the rate of actin-activated adenosine triphosphate hydrolysis. It is generally assumed that the binding of caldesmon and myosin to actin is a pure competitive interaction. However, recent binding studies of enzyme digested caldesmon subfragments directed at mapping the actin binding site of caldesmon have shown that a small 8-kD fragment around the COOH-terminal can compete directly with the myosin subfragment 1 (S-1) binding to actin; at least one other fragment that binds to actin does not inhibit the actin-activated adenosine triphosphate activity of myosin. That is, only a part of the caldesmon sequence may be responsible for directly blocking the binding of S-1 to actin. This prompts us to question the actual mode of binding of intact caldesmon and myosin S-1 to actin: whether the entire intact caldesmon molecule is competing with S-1 binding (pure competitive model) or just a small part of it (mosaic multiple-binding model). To answer this question, we measured the amount of myosin S-1 and caldesmon bound per actin monomer as a function of the total concentration of S-1 added to the system at constant concentrations of actin and caldesmon. A formalism for calculating the titration data based on the pure competitive model and a mosaic multiple-binding model was then developed. When compared with theoretical calculations, it is found that the binding of caldesmon and S-1 to actin cannot be pure competitive if no cooperativity exists between S-1 and caldesmon.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Several regions within the 35-kDa COOH-terminal portion of caldesmon have been implicated in the ability of caldesmon to inhibit actin-activated myosin ATPase activity. To further define the functional regions of caldesmon, we have studied the effects of three chymotryptic fragments, one fragment produced by CNBr digestion and two fragments produced by digestion with submaxillaris arginase C protease, on the relaxed stiffness and active force of rabbit psoas fibers. Each of the regions of caldesmon studied had either direct or indirect effects on single-fiber mechanics. The 35-kDa and 20-kDa fragments of caldesmon, like intact caldesmon, were effective inhibitors of fiber stiffness, a measure of cross-bridge attachment. The 7.3-kDa and 10-kDa fragments, which constitute the NH2 and COOH halves of the 20-kDa fragment, inhibited both relaxed fiber stiffness and active force production, but with a reduced efficacy compared to the 20-kDa fragment. These results suggest that several regions within the 35-kDa COOH-terminal region of caldesmon are required for optimum function of caldesmon and that function includes inhibition of weak cross-bridge attachment and force production.  相似文献   

7.
K Konno 《Biochemistry》1987,26(12):3582-3589
We have prepared chymotryptically split actin that retains the characteristic properties of intact actin. Chymotryptic digestion of G-actin produces an intermediate 35-kilodalton (kDa) fragment and from this a final product of 33 kDa known as the C-terminal "core". These fragments remain attached to an N-terminal 10-kDa fragment. The 35-kDa-10-kDa complex is able to polymerize upon addition of KCl and MgCl2, like intact actin, whereas the 33-kDa-10-kDa complex is not. The 35-kDa-10-kDa complex is here termed "split actin". In the rigor state, split actin binds to myosin subfragment 1 (S-1) strongly, with the same stoichiometry as intact actin. In the rigor state, split actin forms a carbodiimide-induced cross-linked product with S-1; the cross-linking sites on the split actin and on S-1 were proved to be the N-terminal 10-kDa fragment of split actin and the 20-kDa domain of S-1. There was no cross-linking between the 50-kDa domain of S-1 and the 10 kDa of actin. Therefore, the structure of the split actin-S-1 complex differs somewhat from that of the complex with intact actin. The cross-linking of split actin to S-1 causes superactivation of S-1 ATPase to approximately the same extent as does cross-linking of intact actin, whereas non-cross-linked split actin activates S-1 ATPase to a lesser extent. The N-terminus of the 35-kDa fragment was found to be residue 45 (Val-45) by amino acid sequence analysis; so there is no residue missing in split actin.  相似文献   

8.
Nonenzymatic bonding of reducing sugars to subfragment-1 of myosin (S-1) resulted in a reduction in actin-activated S-1 ATPase activity. Fructose caused a greater reduction than glucose. The Km for binding of actin to S-1 was significantly increased with sugar derivatization. In addition, sugar derivatization lowered the ability of S-1 to promote polymerization of G-actin. Western blot analysis demonstrated that glucose was nonenzymatically incorporated into the 50 and 20 kilodalton (kDa) fragments of S-1 with preponderance in the 20-kDa fragment. The reduced affinity of derivatized myosin for actin is indicated by the increased Km, the reduced ability to stimulate actin polymerization, and the positive Western blot reaction in the 20-kDa fragment.  相似文献   

9.
Characterization of caldesmon binding to myosin   总被引:3,自引:0,他引:3  
Caldesmon inhibits the binding of skeletal muscle subfragment-1 (S-1).ATP to actin but enhances the binding of smooth muscle heavy meromyosin (HMM).ATP to actin. This effect results from the direct binding of caldesmon to myosin in the order of affinity: smooth muscle HMM greater than skeletal muscle HMM greater than smooth muscle S-1 greater than skeletal muscle S-1 (Hemric, M. E., and Chalovich, J. M. (1988) J. Biol. Chem. 263, 1878-1885). We now show that the difference between skeletal muscle HMM and S-1 is due to the presence of the S-2 region in HMM and is unrelated to light chain composition or to two-headed versus single-headed binding. Differences between the binding of smooth and skeletal muscle myosin subfragments to actin do not result from the lack of light chain 2 in skeletal muscle S-1. In the presence of ATP, caldesmon binds to smooth muscle myosin filaments with a stoichiometry of 1:1 (K = 1 x 10(6) M-1). Similar results were obtained for the binding of caldesmon to smooth muscle rod as well as the binding of the purified myosin-binding fragment of caldesmon to smooth muscle myosin. The binding of caldesmon to intact myosin is ATP sensitive. The interaction of caldesmon with myosin is apparently specific and sensitive to the structure of both proteins.  相似文献   

10.
Localisation of light chain and actin binding sites on myosin   总被引:6,自引:0,他引:6  
A gel overlay technique has been used to identify a region of the myosin S-1 heavy chain that binds myosin light chains (regulatory and essential) and actin. The 125I-labelled myosin light chains and actin bound to intact vertebrate skeletal or smooth muscle myosin, S-1 prepared from these myosins and the C-terminal tryptic fragments from them (i.e. the 20-kDa or 24-kDa fragments of skeletal muscle myosin chymotryptic or Mg2+/papain S-1 respectively). MgATP abolished actin binding to myosin and to S-1 but had no effect on binding to the C-terminal tryptic fragments of S-1. The light chains and actin appeared to bind to specific and distinct regions on the S-1 heavy chain, as there was no marked competition in gel overlay experiments in the presence of 50-100 molar excess of unlabelled competing protein. The skeletal muscle C-terminal 24-kDa fragment was isolated from a tryptic digest of Mg2+/papain S-1 by CM-cellulose chromatography, in the presence of 8 M urea. This fragment was characterised by retention of the specific label (1,5-I-AEDANS) on the SH1 thiol residue, by its amino acid composition, and by N-terminal and C-terminal sequence analyses. Electron microscopical examination of this S-1 C-terminal fragment revealed that: it had a strong tendency to form aggregates with itself, appearing as small 'segment-like' structures that formed larger aggregates, and it bound actin, apparently bundling and severing actin filaments. Further digestion of this 24-kDa fragment with Staphylococcus aureus V-8 protease produced a 10-12-kDa peptide, which retained the ability to bind light chains and actin in gel overlay experiments. This 10-12-kDa peptide was derived from the region between the SH1 thiol residue and the C-terminus of S-1. It was further shown that the C-terminal portion, but not the N-terminal portion, of the DTNB regulatory light chain bound this heavy chain region. Although at present nothing can be said about the three-dimensional arrangement of the binding sites for the two kinds of light chain (regulatory and essential) and actin in S-1, it appears that these sites are all located within a length of the S-1 heavy chain of about 100 amino acid residues.  相似文献   

11.
A Muhlrad 《Biochemistry》1989,28(9):4002-4010
The 23-kDa N-terminal tryptic fragment was isolated from the heavy chain of rabbit skeletal myosin subfragment 1 (S-1). The heavy-chain fragments were dissociated by guanidine hydrochloride following limited trypsinolysis, and the 23-kDa fragment was isolated by gel filtration and ion-exchange chromatography. Finally, the fragment was renatured by removing the denaturants. The CD spectrum of the renatured fragment shows the presence of ordered structure. The tryptophan fluorescence emission spectrum of the fragment is considerably shifted to the red upon adding guanidine hydrochloride which indicates that the tryptophans are located in relatively hydrophobic environments. The two 23-kDa tryptophans, unlike the rest of the S-1 tryptophans, are fully accessible to acrylamide as indicated by fluorescence quenching. The isolated 23-kDa fragment cosediments with F-actin in the ultracentrifuge and significantly increases the light scattering of actin in solution which indicates actin binding. The binding is rather tight (Kd = 0.1 microM) and ionic strength dependent (decreasing with increasing ionic strength). ATP, pyrophosphate, and ADP dissociate the 23-kDa-actin complex with decreasing effectiveness. The isolated 23-kDa fragment does not have ATPase activity; however, it inhibits the actin-activated ATPase activity of S-1 by competing presumably with S-1 for binding sites on actin. F-Actin binds to the 23-kDa fragment immobilized on the nitrocellulose membrane. The fragment was further cleaved, and one of the resulting peptides, containing the 130-204 stretch of residues, was found to bind actin on the nitrocellulose membrane, indicating that this region of the 23-kDa fragment participates in forming an actin binding site.  相似文献   

12.
The movement of reconstituted thin filaments over an immobilized surface of thiophosphorylated smooth muscle myosin was examined using an in vitro motility assay. Reconstituted thin filaments contained actin, tropomyosin, and either purified chicken gizzard caldesmon or the purified COOH-terminal actin-binding fragment of caldesmon. Control actin-tropomyosin filaments moved at a velocity of 2.3 +/- 0.5 microns/s. Neither intact caldesmon nor the COOH-terminal fragment, when maintained in the monomeric form by treatment with 10 mM dithiothreitol, had any effect on filament velocity; and yet both were potent inhibitors of actin-activated myosin ATPase activity, indicating that caldesmon primarily inhibits myosin binding as reported by Chalovich et al. (Chalovich, J. M., Hemric, M. E., and Velaz, L. (1990) Ann. N. Y. Acad. Sci. 599, 85-99). Inhibition of filament motion was, however, observed under conditions where cross-linking of caldesmon via disulfide bridges was present. To determine if monomeric caldesmon could "tether" actin filaments to the myosin surface by forming an actin-caldesmon-myosin complex as suggested by Chalovich et al., we looked for caldesmon-dependent filament binding and motility under conditions (80 mM KCl) where filament binding to myosin is weak and motility is not normally seen. At caldesmon concentrations > or = 0.26 microM, actin filament binding was increased and filament motion (2.6 +/- 0.6 microns/s) was observed. The enhanced motility seen with intact caldesmon was not observed with the addition of up to 26 microM COOH-terminal fragment. Moreover, a molar excess of the COOH-terminal fragment competitively reversed the enhanced binding seen with intact caldesmon. These results show that tethering of actin filaments to myosin by the formation of an actin-caldesmon-myosin complex enhanced productive acto-myosin interaction without placing a significant mechanical load on the moving filaments.  相似文献   

13.
We studied the effects of caldesmon, a major actin- and calmodulin-binding protein found in a variety of muscle and non-muscle tissues, on the various ATPase activities of skeletal-muscle myosin. Caldesmon inhibited the actin-activated myosin Mg2+-ATPase, and this inhibition was enhanced by tropomyosin. In the presence of the troponin complex and tropomyosin, caldesmon inhibited the Ca2+-dependent actomyosin Mg2+-ATPase; this inhibition could be partly overcome by Ca2+/calmodulin. Caldesmon, phosphorylated to the extent of approximately 4 mol of Pi/mol of caldesmon, inhibited the actin-activated myosin Mg2+-ATPase to the same extent as did non-phosphorylated caldesmon. Both inhibitions could be overcome by Ca2+/calmodulin. Caldesmon also inhibited the Mg2+-ATPase activity of skeletal-muscle myosin in the absence of actin; this inhibition also could be overcome by Ca2+/calmodulin. Caldesmon inhibited the Ca2+-ATPase activity of skeletal-muscle myosin in the presence or absence of actin, at both low (0.1 M-KCl) and high (0.3 M-KCl) ionic strength. Finally, caldesmon inhibited the skeletal-muscle myosin K+/EDTA-ATPase at 0.1 M-KCl, but not at 0.3 M-KCl. Addition of actin resulted in no inhibition of this ATPase by caldesmon at either 0.1 M- or 0.3 M-KCl. These observations suggest that caldesmon may function in the regulation of actin-myosin interactions in striated muscle and thereby modulate the contractile state of the muscle. The demonstration that caldesmon inhibits a variety of myosin ATPase activities in the absence of actin indicates a direct effect of caldesmon on myosin. The inhibition of the actin-activated Mg2+-ATPase activity of myosin (the physiological activity) may not be due therefore simply to the binding of caldesmon to the actin filament causing blockage of myosin-cross-bridge-actin interaction.  相似文献   

14.
Interaction of smooth muscle caldesmon with S-100 protein   总被引:1,自引:0,他引:1  
The interaction of caldesmon with certain Ca-binding proteins was investigated by means of electrophoresis under non-denaturating conditions. In the presence of Ca2+ calmodulin, troponin C and S-100 protein form a complex with caldesmon. No complex formation takes place in the absence of Ca2+. Lactalbumin and pike parvalbumin (pI4.2) do not interact with caldesmon independently of Ca-concentration. Both S-100 protein and calmodulin effectively inhibit phosphorylation of caldesmon by Ca-phospholipid-dependent protein kinase. At low ionic strength S-100 protein reverses the inhibitory action of caldesmon on the skeletal muscle acto-heavy meromyosin ATPase more effectively than calmodulin. It is supposed that in certain tissues and cell compartments the proteins belonging to the S-100 family are able to substitute for calmodulin in the caldesmon-dependent regulation of actin and myosin interaction.  相似文献   

15.
L M Coluccio  A Bretscher 《Biochemistry》1990,29(50):11089-11094
In intestinal microvilli, the 110K-calmodulin complex is the major component of the cross-bridges which connect the core bundle of actin filaments to the membrane. Our previous work showed that the 110-kDa polypeptide can be divided into three functional domains: a 78-kDa fragment that contains the ATPase activity and the ATP-reversible F-actin-binding site, a 12-kDa fragment required for binding calmodulin molecules, and a terminal 20-kDa domain of unknown function [Coluccio, L. M., & Bretscher, A. (1988) J. Cell Biol. 106, 367-374]. By analysis of limited alpha-chymotryptic cleavage products, we now show that the molecular organization is very similar to that described for the S1 fragment of myosin. The catalytic site was identified by photoaffinity labeling with [5,6-3H]UTP, and fragments binding F-actin were identified by cosedimentation assays. Cleavage of the 78-kDa fragment yielded major fragments of 32 and 45 kDa, followed by cleavage of the 45-kDa fragment to a 40-kDa fragment. Of these, only the 32-kDa fragment was labeled by [5,6-3H]UTP. Physical characterization revealed that the 45- and 32-kDa fragments exist as a complex that can bind F-actin, whereas the 40-kDa/32-kDa complex cannot bind actin. We conclude that the catalytic site is located in the 32-kDa fragment and the F-actin-binding site is present in the 45-kDa fragment; the ability to bind actin is lost upon further cleavage of the 45-kDa fragment to 40 kDa. Peptide sequence analysis revealed that the 45-kDa fragment lies within the molecule and suggests that the 32-kDa fragment is the amino terminus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Digestion of caldesmon with carboxypeptidase Y is accompanied by loss of its ability to inhibit actomyosin ATPase activity and to bind actin and calmodulin. Similarly, carboxypeptidase Y digestion of a terminal 40 kDa chymotryptic fragment of caldesmon abolishes its inhibition of the actomyosin ATPase and binding to actin and calmodulin. This represents the first direct demonstration that these functional domains of caldesmon are located close to the carboxy-terminus of the molecule.  相似文献   

17.
We have isolated two proteolytic fragments of subfragment 1 (S-1) of myosin from rabbit skeletal muscle. These fragments, identified by their molecular weights of 20 and 50 kDa, may be functional domains that, when isolated, retain their specific function. We have studied several structural and functional features of the 20 and 50 kDa fragments. Considerable secondary structure in both fragments has been observed in CD spectrum studies. Previously CD spectra showed 64% ordered structure for the 20 kDa fragment (Muhlrad and Morales, M.F. (1984) Proc. Natl. Acad. Sci. 81, 1003) and here we show 71% ordered structures for the 50 kDa fragment. Fluorescence lifetime studies of tryptophan residues in the 50 kDa fragment and 1,5-IAEDANS-labeled SH-1 in the 20 kDa fragment are used to investigate the tertiary structure of the fragments. We find the tertiary structure relating to this measurement of both fragments to be intact; however, the reaction of 1,5-IAEDANS with SH-1 on the isolated 20 kDa fragment is less specific than with S-1. Furthermore, the fragments showed a tendency to aggregate. The domain concept of S-1 was supported by the characteristic biochemical function of the isolated fragments. Both of the fragments were effective in competing with S-1 for binding to actin in acto-S-1 ATPase measurements. From these studies and in direct binding measurement the 20 kDa fragment proved to bind with higher affinity to actin than did the 50 kDa fragment.  相似文献   

18.
The 110K-calmodulin complex isolated from intestinal microvilli is an ATPase consisting of one polypeptide chain of 110 kD in association with three to four calmodulin molecules. This complex is presumably the link between the actin filaments in the microvillar core and the surrounding cell membrane. To study its structural regions, we have partially cleaved the 110K-calmodulin complex with alpha-chymotrypsin; calmodulin remains essentially intact under the conditions used. As determined by 125I-calmodulin overlays, ion exchange chromatography, and actin-binding assays, a 90-kD digest fragment generated in EGTA remains associated with calmodulin. The 90K-calmodulin complex binds actin in an ATP-reversible manner and decorates actin filaments with an arrow-head appearance similar to that found after incubation of F-actin with the parent complex; binding occurs in either calcium- or EGTA-containing buffers. ATPase activity of the 90-kD digest closely resembles the parent complex. In calcium a digest mixture containing fragments of 78 kD, a group of three at approximately 40 kD, and a 32-kD fragment (78-kD digest mixture) is generated with alpha-chymotrypsin at a longer incubation time; no association of these fragments with calmodulin is observed. Time courses of digestions and cyanogen bromide cleavage indicate that the 78-kD fragment derives from the 90-kD peptide. The 78-kD mixture can also hydrolyze ATP. Furthermore, removal of the calmodulin by ion exchange chromatography from this 78-kD mixture had no effect on the ATPase activity of the digest, indicating that the ATPase activity resides on the 110-kD polypeptide. The 78 kD, two of the three fragments at approximately 40 kD, and the 32-kD fragments associate with F-actin in an ATP-reversible manner. Electron microscopy of actin filaments after incubation with the 78-kD digest mixture reveals coated filaments, although the prominent arrowhead appearance characteristic of the parent complex is not observed. These data indicate that calmodulin is not required either for the ATPase activity or the ATP-reversible binding of the 110K-calmodulin complex to F-actin. In addition, since all the fragments that bind F-actin do so in an ATP-reversible manner, the sites required for F-actin binding and ATP reversibility likely reside nearby.  相似文献   

19.
Caldesmon inhibits actomyosin ATPase and filament sliding in vitro, and therefore may play a role in modulating smooth and non-muscle motile activities. A bacterially expressed caldesmon fragment, 606C, which consists of the C-terminal 150 amino acids of the intact molecule, possesses the same inhibitory properties as full-length caldesmon and was used in our structural studies to examine caldesmon function. Three-dimensional image reconstruction was carried out from electron micrographs of negatively stained, reconstituted thin filaments consisting of actin and smooth muscle tropomyosin both with and without added 606C. Helically arranged actin monomers and tropomyosin strands were observed in both cases. In the absence of 606C, tropomyosin adopted a position on the inner edge of the outer domain of actin monomers, with an apparent connection to sub-domain 1 of actin. In 606C-containing filaments that inhibited acto-HMM ATPase activity, tropomyosin was found in a different position, in association with the inner domain of actin, away from the majority of strong myosin binding sites. The effect of caldesmon on tropomyosin position therefore differs from that of troponin on skeletal muscle filaments, implying that caldesmon and troponin act by different structural mechanisms.  相似文献   

20.
The cross-linking of the F-actin-caldesmon complex with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide in the presence of N-hydroxysuccinimide generated four major adducts which were identified on polyacrylamide gels. By cross-linking 3H-actin to 14C-caldesmon, these were found to represent 1:1 cross-linked complexes of actin and caldesmon displaying different electrophoretic mobilities. Tropomyosin did not noticeably affect the cross-linking process. The same four fluorescent species resulting from the cross-linking of caldesmon to F-actin labeled with N-[7-(dimethylamino)-4-methyl-3-coumarinyl]maleimide were subjected separately to partial cleavages with hydroxylamine or cyanogen bromide. These treatments yielded fluorescent 41- and 37-kDa fragments, respectively, from each cross-linked entity indicating unambiguously that caldesmon was cross-linked only to the NH2-terminal actin stretch of residues 1-12. This region is also known to serve for the carbodiimide-mediated cross-linking of the myosin subfragment-1 heavy chain (Sutoh, K. (1982) Biochemistry 21, 3654-3661). A covalent caldesmon-F-actin conjugate containing a protein molar ratio close to 1:19 was isolated following dissociation of uncross-linked caldesmon. It showed a low level of activation of the ATPase activity of skeletal myosin subfragment-1, and the binding of Ca2(+)-calmodulin to the derivative did not cause the reversal of the ATPase inhibition. In contrast, the reversible binding of caldesmon to F-actin cross-linked to myosin subfragment-1 did not inhibit the accelerated ATPase of the complex. The overall data point to the dual involvement of the actin's NH2 terminus in the inhibitory binding of caldesmon and in actomyosin interactions in the presence of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号