首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human neutrophils stimulated with a phorbol ester (phorbol 12-myristrate 13-acetate or phorbol 12,13-dibutyrate) responded with an increase in diacylglycerol, considered the natural activator of protein kinase C. The amounts of diacylglycerol formed were considerable, reaching 700-900% of basal after 20 min. In contrast, 4-alpha-phorbol 12-myristate 13-acetate did not induce any detectable formation of diacylglycerol. Simultaneously, phorbol 12-myristate 13-acetate exposure caused increased breakdown of both phosphatidylcholine and phosphatidylinositol 4,5-bisphosphate. These results suggest that once activated, protein kinase C can positively modulate its own activity by inducing additional formation of diacylglycerol from at least two different sources.  相似文献   

2.
The influence of tumour promoters and growth factors on glycolysis and on fructose-2,6-bisphosphate concentration was studied in isolated mouse spleen lymphocytes and in purified B-cells. The intracellular concentration of fructose 2,6-bisphosphate and the rate of lactate release were increased 2-3-fold in spleen lymphocytes exposed to active phorbol esters, mitogenic lectins, interleukin 4 or lipopolysaccharide. The maximal effect was observed after 1 h of exposure. In these cells hexose 6-phosphates increased 2-fold and 6-phosphofructo-2-kinase activity remained unchanged after treatment with phorbol 12,13-dibutyrate or with lectins. Exposure of B-cells to phorbol 12,13-dibutyrate, interleukin 4 or lipopolysaccharide increased the glycolytic flux and the concentration of fructose 2,6-bisphosphate without relation to their mitogenic activity. Lymphocytes and rat liver 6-phosphofructo-2-kinase were partially purified using the same procedure. The lymphocyte enzyme was not inhibited by sn-glycerol 3-phosphate in contrast to the potent inhibition observed in liver. Treatment of both enzymes with the catalytic subunit of the cyclic-AMP-dependent protein kinase failed to inactivate 6-phosphofructo-2-kinase from lymphocytes. These differences suggest that lymphocytes and liver contain different forms of this enzyme.  相似文献   

3.
Nitric oxide is an important precursor for peroxynitrite production under in vivo conditions leading to cell injury and cell death. In platelets, a number of cytosolic and actin binding proteins were shown to be nitrated [K.M. Naseem, S.Y. Low, M. Sabetkar, N.J. Bradley, J. Khan, M. Jacobs, K.R. Bruckdorfer, The nitration of platelet cytosolic proteins during agonist-induced activation of platelets. FEBS Lett. 473 (1) (2000) 199-122 and M. Sabetkar, S.Y. Low, K.M. Naseem, K.R. Bruckdorfer, The nitration of proteins in platelets: significance in platelet function, Free Radic. Biol. Med. 33 (6) (2002) 728-736]. We investigated the possible mechanism that regulates profilin (an actin binding protein) nitration in platelets. Activation of bovine platelets with arachidonic acid, thrombin, and phorbol 12,13-dibutyrate resulted in nitration of profilin on tyrosine residue. In vivo profilin nitration showed a four- and eight-fold increase in the presence of thrombin and phorbol 12,13-dibutyrate, respectively. Analysis of nitroprofilin levels in the presence of NOS inhibitors (1400W and EGTA), indicated that profilin nitration in phorbol 12,13-dibutyrate treated platelets is mediated by inducible nitric oxide synthase. Phorbol ester treated platelets exhibited higher levels by inducible nitric oxide synthase (491% over control), while total nitric oxide synthase activity increased by 5% over control. Higher levels of peroxynitrite in platelets treated with phorbol 12,13-dibutyrate indicated that profilin nitration is mediated by peroxynitrite. Increase in phosphatidylinositol 3-kinase (PI 3-kinase) activity in platelets treated with thrombin and phorbol 12,13-dibutyrate indicates that nitration of platelet profilin could be mediated by PI 3-kinase. A decrease in the level of nitroprofilin in PDBu treated platelets in the presence of inducible nitric oxide synthase inhibitor, 1400W, was observed suggesting that profilin nitration is mediated by PI 3-kinase dependent activation of inducible nitric oxide synthase.  相似文献   

4.
Both phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate (10(-8)-10(-6) M) induced concentration-dependent increases in prostaglandin E2 (PGE2) production by human amnion cells, with maximum stimulations of 10.8-fold and 5.9-fold, respectively. 4 alpha-Phorbol 12,13-didecanoate, an inactive phorbol ester analogue, had little or no effect on PGE2 production by amnion cells. PMA and phorbol 12,13-dibutyrate (10(-7) M) induced a maximal increase in the rate of PGE2 biosynthesis within 15 min of treatment. These results suggest that there is an active protein kinase C present in amnion cells that is linked to arachidonic acid release and/or metabolism.  相似文献   

5.
We propose a serial assay of both protein kinase C activity and the related [3H]phorbol 12,13-dibutyrate binding, each carried out in 96-multiwell dishes, started and stopped row by row using a multipipet. Protein kinase C activity is observed through the transfer of the gamma-phosphoryl group of radioactive ATP onto histone H1 type III-S. Enzymatic reactions are started by adding enzyme extracts and stopped by adding trichloroacetic acid. Acidic precipitates of each row are simultaneously collected on glass fiber paper using a cell harvester. The addition of bovine serum albumin and cold ATP at the end of the reaction and the addition of trichloroacetic acid in the washing fluid lead to a high recovery of protein kinase C activity and reproducible results. Measurement of [3H]phorbol 12,13-dibutyrate binding to protein kinase C was carried out in a mixed micellar solution as described elsewhere (Y. Hannun and R. M. Bell (1987) in Methods in Enzymology, Vol. 141, pp. 287-293). The quaternary complex formed from protein kinase C, phosphatidylserine, calcium, and [3H]phorbol 12,13-dibutyrate was then bound to a beaded anionic exchanger which was automatically separated from the free phorbol 12,13-dibutyrate by microfiltration using a cell harvester. The binding reaction was highly calcium- and phosphatidylserine-dependent and calcium had to be added to washing fluid for optimal recovery. Determination of protein kinase C activity and phorbol 12,13-dibutyrate binding gave results similar to those of other published methods and the signal/noise ratio was greatly increased. Using a semi-automated cell harvester, the system is partially automated and provides accurate and reproducible results.  相似文献   

6.
Activation of bovine platelets with thrombin and phorbol 12,13-dibutyrate (PDBu) resulted in phosphorylation of profilin on serine. The phosphorylation was inhibited when platelets were pretreated with the PI 3-kinase inhibitor, LY294002, indicating that profilin phosphorylation is a downstream event with respect to PI 3-kinase activation. Phosphorylation of profilin resulted in significant decrease in actin polymerization (16.5%), indicating an increased affinity of phosphoprofilin towards actin. The critical actin monomer concentration (Cc) increased to 260 nM in the presence of phosphoprofilin in comparison with 200 nM in the presence of profilin. The interaction of phosphoprofilin with phosphatidylinositol 4,5-bisphosphate [PI (4,5)-P2] and poly (L-proline) (PLP) was examined by monitoring the quenching of tryptophan fluorescence. Scatchard plot and binding isotherm data obtained revealed no difference in PI (4,5)-P2 binding between profilin and phosphoprofilin (Kd=20.4 microM), while poly (L-proline)-binding studies indicated a sixfold decrease (27.34 microM for profilin and 4.73 microM for phosphoprofilin) in Kd with phosphoprofilin. In vivo studies with platelets indicated an increased association of p85alpha, the regulatory subunit of PI 3-kinase with phosphoprofilin over profilin. Overall, the data presented conclude that profilin phosphorylated under in vivo conditions and phosphorylation depends upon activation of PI 3-kinase. Phosphoprofilin exhibited increased affinity to poly (L-proline) sequences both in vitro and in vivo.  相似文献   

7.
We have examined regulation by protein kinase C (Ca2+/phospholipid-dependent enzyme) of thrombin-induced inositol polyphosphate accumulation in human platelets. When platelets are exposed to thrombin for 10 s, the protein kinase C inhibitor staurosporine causes inositol phosphate elevations over control values of 2.7-fold (inositol 1,4,5-trisphosphate (Ins(1,4,5)P3], 1.9-fold (inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4], and 1.2-fold (inositol 1,3,4-trisphosphate). In the same period, phosphatidic acid and diacylglycerol are unaffected. The myosin light chain kinase inhibitor ML-7 has no effect on inositol phosphate accumulations. Staurosporine does not inhibit Ins(1,4,5)P3 3-kinase and 5-phosphomonoesterase activities in saponin-permeabilized platelets incubated with exogenous Ins(1,4,5)P3 unless the platelets have been exposed to thrombin and protein kinase C is consequently activated. The protein kinase C agonist beta-phorbol 12,13-dibutyrate increases the Vmax of the 3-kinase 1.8-fold, with little effect on Km. Our results provide strong evidence for a role for protein kinase C in regulating inositol phosphate levels in thrombin-activated platelets. We propose that endogenously activated protein kinase C removes Ins(1,4,5)P3 by stimulating both 5-phosphomonoesterase and Ins(1,4,5)P3 3-kinase. Initial activation of phospholipase C does not appear to be affected by such protein kinase C. Inhibition of protein kinase C by staurosporine decreases 5-phosphomonoesterase activity. The resulting elevated Ins(1,4,5)P3, as substrate for Ins(1,4,5)P3 3-kinase, promotes production of Ins(1,3,4,5)P4, which also may accumulate through decreased 5-phosphomonoesterase activity and elevated Ca2+ levels. These factors apparently counteract the inhibitory effect on 3-kinase, yielding a net increase in Ins(1,3,4,5)P4.  相似文献   

8.
Biochemical characterization of rat brain protein kinase C isozymes   总被引:18,自引:0,他引:18  
Biochemical characteristics of three rat brain protein kinase C isozymes, types I, II, and III, were compared with respect to their protein kinase and phorbol ester-binding activities. All three isozymes appeared to be alike in their phorbol ester-binding activities as evidenced by their similar Kd for phorbol 12,13-dibutyrate and requirements for Ca2+ and phospholipids. However, differences with respect to the effector-mediated stimulation of protein kinase activity were detectable among these isozymes. The type I enzyme could be stimulated by cardiolipin to a greater extent than those of the type II and III enzymes. In the presence of cardiolipin, the concentrations of dioleoylglycerol or phorbol 12,13-dibutyrate required for half-maximal activation (A1/2) of the type I enzyme were nearly an order of magnitude lower than those for the type II and III enzymes. In the presence of phosphatidylserine, differences in the A1/2 of dioleoylglycerol and phorbol 12,13-dibutyrate for the three isozymes of protein kinase C were less significant than those measured in the presence of cardiolipin. Nevertheless, the A1/2 of these two activators for the type I enzyme were lower than those for the type II and III enzymes. At high levels of phosphatidylserine (greater than 15 mol %), binding of phorbol 12,13-dibutyrate to the type I enzyme evoked a corresponding stimulation of the kinase activity, whereas binding of this phorbol ester to the type II and III enzymes produced a lesser degree of kinase stimulation. For all three isozymes, the concentrations of phosphatidylserine required for half-maximum [3H]phorbol 12,13-dibutyrate binding were almost an order of magnitude less than those for kinase stimulation. Consequently, neither isozyme exhibited a significant kinase activity at lower levels of phosphatidylserine (less than 5 mol %) and phorbol 12,13-dibutyrate (50 nM), a condition sufficient to promote near maximal phorbol ester binding. In addition to their different responses to the various activators, the three protein kinase C isozymes also have different Km values for protein substrates. The type I enzyme appeared to have lower Km values for histone IIIS, myelin basic protein, poly(lysine, serine) (3:1) polymer, and protamine than those for the type II and III enzymes. These results documented that the three protein kinase C isozymes were distinguishable in their biochemical properties. In particular, the type I enzyme, which is a brain-specific isozyme, is distinct from the type II and III enzymes, both have a widespread distribution among different tissues.  相似文献   

9.
Abstract: The phorbol ester 4β-phorbol 12,13-dibutyrate increases the final extent of Ca2+-dependent glutamate release during the continuous depolarization of the synaptosomal plasma membrane. Based on this finding, we suggested that the sustained activation of protein kinase C has a positive influence on the efficiency of synaptic vesicle recycling in the presence of saturating concentrations of Ca2+. Previous work from our laboratory demonstrated that this 4β-phorbol 12,13-dibutyrate-dependent enhancement of synaptic vesicle recycling persists following the removal of 4β-phorbol 12,13-dibutyrate, requires localized Ca2+ entry through voltage-regulated channels, and is insensitive to the protein kinase inhibitor staurosporine. In the present study, we examined the possibility that the facilitation of glutamate release may be propagated through interactions between the protein kinase C- and multifunctional Ca2+/calmodulin-dependent protein kinase pathways. However, our data argue strongly against the involvement of such a mechanism in the persistent enhancement of sustained glutamate release. We observed that 4β-phorbol 12,13-dibutyrate did not increase the availability of cytosolic free calmodulin or the level of autonomous Ca2+/calmodulin-dependent protein kinase activity. In addition, we determined the effects of various serine/threonine kinase and phosphatase inhibitors on the phorbol ester-dependent enhancement of sustained glutamate release and found that protein kinase C increased the extent, but not the duration, of Ca2+-dependent glutamate release through a kinase-independent mechanism. Given our finding that the actin-depolymerizing agent cytochalasin D totally occluded the effect of 4β-phorbol 12,13-dibutyrate on release, we postulate that protein kinase C signals may be transduced through direct interactions between protein kinase C isoforms and cytoskeletal protein kinase C binding proteins.  相似文献   

10.
When platelets are stimulated by thrombin they immediately undergo inositol lipid hydrolysis via phospholipase C activation. However, subsequently an increased production of phosphatidylinositol 4,5-bisphosphate is observed. Phospholipases C were inhibited by lowering the cytoplasmic free calcium concentration by preincubation with Quin-2-tetra(acetoxymethyl) ester. Aggregation and secretion were also totally suppressed. Under these conditions we observed an increased labeling of phosphatidylinositol 4,5-bisphosphate, indicating a stimulation of inositol lipid kinases, independent of lipid hydrolysis by phospholipase C. Conversely the production of phosphatidylinositol 3,4-bisphosphate was totally abolished. These results suggest a different regulation of the kinases/phosphatases responsible for the production of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate.  相似文献   

11.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

12.
Abstract: Sustained activation of protein kinase C significantly enhanced a secondary (slow) phase in the depolarization-induced release of glutamate from isolated hippocampal nerve endings. The phorbol ester, 4β-phorbol 12,13-dibutyrate, was used to sustain the activation of presynaptic protein kinase C for a prolonged (10-min) period, and then this relatively water-soluble phorbol ester was removed by superfusion before a 2-min stimulus of continuous membrane depolarization. These conditions were used to investigate the persistent effects of sustained protein kinase C activation on the magnitude of the slow phase of evoked glutamate release, in which the efficiency of synaptic vesicle mobilization and recycling may be primary determinants of response magnitude. It is reported here that sustained protein kinase C activation selectively increased the Ca2+-dependent component of glutamate release during a prolonged phase of K+-induced depolarization. The magnitude of this persistent effect on Ca2+-dependent glutamate release was directly related to the dose of 4β-phorbol 12,13-dibutyrate and the duration of exposure that was used to prime the release apparatus, was observed using two alternative synaptosomal preparations, and was evident regardless of the depolarizing stimulus used (elevated [KCl] or 4-aminopyridine). However, 4β-phorbol 12,13-dibutyrate did not alter the release induced by the Ca2+ ionophore ionomycin. Thus, the persistent effects of protein kinase C activation on a prolonged phase of glutamate release were dependent on the route of Ca2+ influx. The finding that voltage-regulated Ca2+ channel blockers were able to neutralize completely the 4β-phorbol 12,13-dibutyrate-dependent facilitation of K+-evoked glutamate release provided further support for this conclusion. Thus, 4β-phorbol 12,13-dibutyrate significantly potentiated the sustained release of glutamate without altering the strict requirement that is normally displayed by synaptosomes for localized and voltage-regulated Ca2+ entry.  相似文献   

13.
Interaction of protein kinase C (PKC) isozymes with phosphatidylinositol 4,5-bisphosphate (PIP2) was investigated by monitoring the changes in the intrinsic fluorescence of the enzyme, the kinase activity, and phorbol ester binding. Incubation of PKC I, II, and III with PIP2 resulted in different rates of quenching of PKC fluorescence and different degrees of inactivation of these enzymes. Other inositol-containing phospholipids such as phosphatidylinositol and phosphatidylinositol 4-phosphate also caused differential rates of quenching of the intrinsic fluorescence of these enzymes. These latter two phospholipids were, however, less potent in the inactivation of PKCs than PIP2. The IC50 of PIP2 were 2, 4, and 11 microM for PKC I, II, and III, respectively. Inactivation of PKCs by PIP2 cannot be reversed by extensive dilution of PIP2 with Nonidet P-40 nor by digestion of PIP2 with phospholipase C. Interaction of PIP2 with the various PKC isozymes was greatly facilitated in the presence of Mg2+ or Ca2+ as evidenced by the accelerated quenching of the PKC fluorescence, however, these divalent metal ions protected PKC from the PIP2-induced inactivation. Binding of PIP2 to PKC in the absence of divalent metal ion also caused a reduction of [3H]phorbol 12,13-dibutyrate binding as a result of reducing the affinity of the enzyme for phorbol ester. Based on gel filtration chromatography, it was estimated that one molecule of PKC interacted with one PIP2 micelle with an aggregation number of 80-90. The PIP2-bound PKC could further interact with phosphatidylserine in the presence of Ca2+ to form a larger complex. Binding of PKC to both PIP2 and phosphatidylserine in the presence of Ca2+ was also evident by changes in the intrinsic fluorescence of PKC. As the interaction of PKC with PIP2, but not with phosphatidylserine, could be enhanced by millimolar concentrations of Mg2+, we propose that PIP2 may be a component of the membrane anchor for PKC under basal physiological conditions when [Ca2+]i is low and Mg2+ is plentiful. Under the in vitro assay conditions, PIP2 could stimulate PKC activity to a level approximately 10-20% of that by diacylglycerol. The stimulatory effect of PIP2 on PKC apparently is not due to binding to the same site recognized by diacylglycerol or phorbol ester, because PIP2 cannot effectively compete with phorbol 12,13-dibutyrate in the binding assay.  相似文献   

14.
Increasing concentrations of chlorpromazine (30-500 microM) caused a progressive lysis of gel-filtered platelets, as monitored by the extracellular appearance of cytoplasmic ([14C]adenine-labelled) adenine nucleotides. The chlorpromazine-induced lysis was markedly enhanced by thrombin and phorbol ester, and complete cytolysis was found at chlorpromazine concentrations of 100 microM and above in the presence of thrombin. At non-lytic concentrations, chlorpromazine caused a dramatic increase in the thrombin- or phorbol ester-mediated incorporation of 32P into phosphatidylinositol 4-phosphate and, to a lesser extent, into phosphatidylinositol 4,5-bisphosphate in platelets pulse-labelled with [32P]Pi. Chlorpromazine alone also caused an incorporation of 32P into the phosphoinositides. Non-lytic concentrations of chlorpromazine had no effect on the phosphorylation of the 47 kDa protein (regarded as the substrate for protein kinase C), but markedly inhibited the accompanying secretion of ATP + ADP and beta-hexosaminidase when platelets were incubated with 0.17 microM-phorbol ester or 0.1-0.2 unit of thrombin/ml. At lower concentrations of thrombin, chlorpromazine did not inhibit, but slightly enhanced, secretion. A protein of 82 kDa was phosphorylated during the interaction of platelets with thrombin and phorbol ester, and this phosphorylation was enhanced by chlorpromazine (non-lytic). These results suggest that the previously reported inhibition of protein kinase C by chlorpromazine is probably non-specific and due to cytolysis. However, since non-lytic concentrations of chlorpromazine inhibit secretion, but not protein kinase C, in platelets, activation of protein kinase C is not involved in the stimulation-secretion coupling, or chlorpromazine acts at a step after kinase activation. Possible mechanisms of this inhibition by chlorpromazine are discussed in the light of its effect on phosphoinositide metabolism and protein phosphorylation.  相似文献   

15.
The gamma subunit of the human T lymphocyte T3 antigen is rapidly phosphorylated on serine residues in vivo during the initiation of T cell activation by a polyclonal mitogen (Phaseolus vulgaris phytohemagglutinin), an activator of protein kinase C (phorbol 12,13-dibutyrate), and an elevator of intracellular calcium (ionomycin). The sites of phosphorylation were identified by comparing tryptic peptide analyses of T3 gamma chains labeled in vivo with various synthetic peptides, corresponding to portions of the cytoplasmic domain of the gamma chain that had been labeled in vitro using purified protein kinase C. Two sites, serines 123 and 126, were phosphorylated in response to ionomycin, whereas a single site, serine 126, was phosphorylated when T lymphocytes were stimulated by P. vulgaris phytohemagglutinin or when protein kinase C was directly activated by phorbol 12,13-dibutyrate. Immune activation of T cells via the protein kinase C pathway thus induces phosphorylation of a single site on the T3 gamma chain, namely serine 126.  相似文献   

16.
Tumour-promoting phorbol esters (phorbol-12-myristate-13-acetate, PMA; phorbol-12,13-dibutyrate, PDBu) but not 4β-phorbol, activate protein kinase C. Using human platelets pre-labelled with quin2 or 32PO4 we examined the effects of these compounds on human platelet cytosolic free Ca2+ ([Ca2+]j) and on [32]phosphatidic acid ([32P]PtdOH). PMA and PDBu, but not 4β-phorbol inhibited thrombin-, PAF- and vasopressin-induced elevation of [Ca2+], and [2+P]PtdOH formation. It is suggested that protein kinase C may act to terminate the transduction processes that link receptor occupancy to cellular activation.  相似文献   

17.
M H Lee  R M Bell 《Biochemistry》1991,30(4):1041-1049
The mechanism of protein kinase C (PKC) activation by phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol (PI) was investigated by using Triton X-100 mixed micellar methods. The activation of PKC by PIP2, for which maximal activity was 60% of that elicited by sn-1,2-diacyglycerol (DAG), was similar to activation by DAG in several respects: (1) activation by PIP2 and DAG required phosphatidylserine (PS) as a phospholipid cofactor, (2) PIP2 and DAG reduced the concentration of Ca2+ and PS required for activation, (3) the concentration dependences of activation by PIP2 and DAG depended on the concentration of PS, and (4) PIP2 and DAG complemented one another to achieve maximal activation. On the other hand, PIP2 activation of PKC differed from activation by DAG in several respects. With increasing concentrations of PIP2, (1) the optimal concentration of PS required was constant at 12 mol%, (2) the maximal activity at 12 mol% PS increased, and (3) the cooperativity for PS decreased. PIP2 did not inhibit [3H]phorbol 12,13-dibutyrate (PDBu) binding of PKC at saturating levels of PS; however, at subsaturating levels of PS, PIP2 enhanced [3H]PDBu binding by acting as a phospholipid cofactor. PIP did not function as an activator but served as a phospholipid cofactor in the presence of PS. While PIP2, PIP, and PI did not support DAG-dependent PKC activation as phospholipid cofactors, their presence reduced the amount of PS required for maximal activation to as low as 2 mol% from 8 mol%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effect of direct phosphorylation by recombinant p44erk1 mitogen-activated protein kinase on the inhibitory activity of caldesmon and its C-terminal fragment H1 was studied in vitro. Neither inhibition of actin-tropomyosin activated ATPase of heavy meromyosin by caldesmon or H1, nor inhibition of the actin-tropomyosin motility over heavy meromyosin by H1 was significantly affected by the phosphorylation while only a moderate effect on the actin-activated component of heavy meromyosin ATPase inhibition was observed. Phosphopeptide mapping of caldesmon immunoprecipitated from [32P]PO4-labelled intact gizzard strips revealed that it is predominantly phosphorylated at mitogen-activated protein kinase sites in unstimulated tissue and that it is stimulated for 1 h with phorbol 12,13-dibutyrate. We find that phorbol 12,13-dibutyrate also induces a transitory phosphorylation of caldesmon peaking at 15 min after addition and this phosphorylation is not attributed to mitogen-activated protein kinase, protein kinase C, Ca2+/calmodulin-dependent kinase II or casein kinase II. We suggest that a yet unidentified kinase, rather than mitogen-activated protein kinase, may be involved in regulation of the caldesmon function in vivo.  相似文献   

19.
The beta-adrenoceptor blocker propranolol stimulated testosterone secretion by rat testicular interstitial cells (Leydig cell-enriched preparation) in vitro at concentrations ranging from 10(-5) M to 10(-4) M. Treatment of these cells with H7 (20 microM), an inhibitor of protein kinase C, reduced the stimulatory effect of L-propranolol on testosterone secretion by about 5-fold. At concentrations ranging from 31.25 microM to 1000 microM, L-propranolol reduced [3H]phorbol 12,13-dibutyrate binding (IC50 = 75 microM) to rat testicular interstitial cells. At similar concentrations, L-propranolol displaced the binding of [3H]phorbol 12,13-dibutyrate to the homogenate of these cells by only 5%. These findings suggest that the effect of L-propranolol on [3H]phorbol 12,13-dibutyrate binding could be indirect, possibly by increasing the concentration of a chemical mediator interacting with the regulatory domain of protein kinase C. At even lower concentrations (10(-9) M to 10(-7) M), propranolol added directly to the reaction mixture with protein kinase C partially purified from rat testicular interstitial cells increases the phosphorylation of histone. This phosphorylation was comparable to that obtained with (25 microg/ml) phosphatidylserine. The D- and L-stereoisomers of propranolol were equally active. A complete reversal of this propranolol effect on histone phosphorylation was achieved with (20 microM) H-7. In the absence of Ca2+, propranolol was not able to phosphorylate the histone. Taken together, these results suggest that protein kinase C could be the putative kinase involved in this reaction and that its activation by propranolol may be due to interaction of the drug with the regulatory domain of the enzyme at a site differing from the site of interaction with phorbol 12,13-dibutyrate. The ability of propranolol to activate the putative protein kinase C could be related to its stimulatory effect on testosterone secretion by Leydig cells.  相似文献   

20.
Physiologic regulation of protein kinase C activity requires its interaction with cellular membranes. We have recently shown that binding of the enzyme to plasma membranes is controlled by Ca2+, whereas enzyme activators, like phorbol esters, regulate both membrane binding and enzyme activity. Here we describe the factors which control the dissociation of protein kinase C from the plasma membrane. In the absence of phorbol esters, the dissociation reaction is rapid and is determined by varying the Ca2+ concentration between 0.1 and 1 microM. However, the presence of 4-beta-phorbol 12,13-dibutyrate greatly reduces enzyme release in response to Ca2+ depletion; removal of the phorbol ester itself permits efficient membrane-enzyme dissociation. The stabilization of the membrane-protein kinase C complex by phorbol esters can be reversed by ATP with an apparent Km for the nucleotide of 6.5 microM. The ATP effect requires MgCl2 and cannot be reproduced by other nucleotides or by a nonhydrolyzable analogue, suggesting that an ATP-dependent phosphorylation reaction may be involved. 4-beta-Phorbol 12,13-dibutyrate appears to stabilize membrane-enzyme association by reducing the apparent Km for Ca2+ to about 15 nM, whereas ATP reverses the phorbol ester effect by increasing the Km for Ca2+ to about 760 nM. Furthermore, the strong degree of negative cooperativity displayed by the Ca2+-dependent enzyme-membrane dissociation is consistent with the presence of multiple interacting Ca2+-binding sites on protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号