首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This study evaluated the efficiency and toxicity of two cryopreservation methods, solid-surface vitrification (SSV) and cryoloop vitrification (CLV), on in vitro matured oocytes and in vivo derived early stage goat embryos. In the SSV method, oocytes were vitrified in a solution of 35% ethylene glycol (EG), 5% polyvinyl-pyrrolidone (PVP), and 0.4% trehalose. Microdrops containing the oocytes were cryopreserved by dropping them on a cold metal surface that was partially immersed in liquid nitrogen. In the cryoloop method, oocytes were transferred onto a film of the CLV solution (20% DMSO, 20% EG, 10mg/ml Ficoll and 0.65 M sucrose) suspended in the cryoloop. The cryoloop was then plunged into the liquid nitrogen. In vivo derived embryos were vitrified using the same procedures. The SSV microdrops were warmed in a solution of 0.3M trehalose and those vitrified with CLV were warmed with incubation in 0.25 and 0.125 M sucrose. Oocytes and embryos vitrified by the SSV method had a significantly lower survival rate than the control (60 and 39% versus 100%, respectively; P<0.05), while the survival rate of CLV oocytes and embryos (89 and 88%, respectively) did not differ from controls. Cleavage and blastocyst rates of the surviving vitrified oocytes (parthenogenetically activated) and embryos (cultured for 9 days) were not significantly different (P>0.05) from the control nor did they differ between vitrification methods. Embryos vitrified with the CLV method gave rise to blastocysts (2/15). Our data demonstrated that the two vitrification methods employed resulted in acceptable levels of survival and cleavage of goat oocytes and embryos.  相似文献   

2.
Cryopreservation of gametes is an important tool in assisted reproduction programs to optimise captive breeding programmes of selected felid species. In this study the vitrification was evaluated in order to cryopreserve the immature domestic cat oocytes by assessing the survival of cumulus-oocyte complexes (COC), and the development competence after IVM and IVF by fresh cat epididymal sperms. From a total of 892 COC obtained from queens after ovariectomy were divided into two groups: Experiment 1 for viability evaluation (150 vitrified and 100 control COC) and Experiment 2 for assessing the developmental competence (414 vitrified and 228 control COC). The viability was evaluated by double staining with carboxyfluorescein and Trypan blue, while the developmental competence was evaluated by in vitro maturation (IVM), in vitro fertilisation (IVF) by fresh epididymal spermatozoa and in vitro culture (IVC). The vitrification was performed in OPS into sucrose medium (1 M sucrose in HSOF + 6% BSA) containing dimethyl sulfoxide (DMSO) (16.5% final concentration) and ethylene glycol (EG) (16.5% final concentration) as cryoprotectants. Percentage of non-viable COC was significantly higher in Experimental 1 vs Control 1 (11% vs 54.5%; < 0.01), while cleavage rate were significantly lower for vitrified oocytes (Experimental 2) than control 2 (18.6% vs 48.2%; < 0.01). Blastocyst rate on day 8 was higher for control oocytes than vitrified counterparts (4.3% vs 20.6% < 0.01). This vitrification protocol ensured a development to blastocyst stage and it is the first report of development of vitrified GV COC.  相似文献   

3.
The aim of this study was to evaluate the efficiency of the solid surface vitrification (SSV) and the cryoloop vitrification (CLV) methods to cryopreserve in vitro matured buffalo oocytes. Another objective of the work was to investigate whether the presence of cumulus cells affects the efficiency of oocyte vitrification in this species. In the SSV method, oocytes were vitrified in a solution of 35% ethylene glycol, 5% polyvinyl-pyrrolidone and 0.4% trehalose and they were warmed in a 0.3M trehalose solution. In the CLV method, oocytes were vitrified in 16.5% ethylene glycol and 16.5% dimethyl sulfoxide and warmed in decreasing concentrations of sucrose. The oocytes that survived vitrification were fertilized and cultured in vitro up to the blastocyst stage. Although high survival rates were recorded in all groups, when the oocytes were vitrified by the CLV method in the absence of cumulus cells, the survival rate was significantly (P<0.05) lower. However, the CLV gave a significantly higher cleavage rate compared to the SSV with the denuded oocytes (45% versus 26%, respectively; P<0.05), whereas no differences were found between methods with the cumulus-enclosed oocytes (14% versus 15%, respectively). Blastocysts were produced for the first time from in vitro matured oocytes that were vitrified-warmed in buffalo. Nevertheless, vitrification significantly decreased blastocyst yield, regardless of both the method employed and the presence or absence of cumulus cells.  相似文献   

4.
Present study was designed to investigate the impact of two cryodevices; french mini straw (FMS) and open pulled straw (OPS) using two different cryoprotectants; ethylene glycol (EG) and propylene glycol (PG) on morphological damage, recovery rate, DNA damage and developmental competence of in vitro matured vitrified-thawed buffalo oocytes. In vitro matured oocytes were divided into three groups: (a) no cryoprotectant (unfrozen, control), (b) vitrified in FMS and (c) in OPS using EG/PG. After thawing, recovered oocytes were subjected to morphological evaluation, cryoinjury at DNA level and their developmental competence. Results showed that recovery rate from both the groups (b and c) were almost same. Amongst the morphological damaged oocytes, zona pellucida crack, oocyte shrinkage and splitting were significantly (P < 0.05) higher in FMS with PG as compared to FMS with EG (group b) while, OPS with EG was significantly (P < 0.05) better as it maintained the architecture of oocytes and hardly any damage was found except some cytoplasmic shrinkage and change in shape. The number of oocytes displaying DNA damage was significantly (P < 0.05) higher in FMS with PG. Cleavage and blastocysts production rate was significantly higher (P < 0.05) for the oocytes recovered from OPS as compared to FMS with PG or EG. OPS with EG gave best cleavage and blastocysts rate amongst all the groups. In conclusion, combination of EG with OPS gives the best result in terms of better recovery and survival rate, least morphological damages with good developmental competence of vitrified matured buffalo oocytes post-thawing.  相似文献   

5.
Fujihira T  Kishida R  Fukui Y 《Cryobiology》2004,49(3):286-290
In the present study, effects of concentration and pretreatment time of cytochalasin B (CB), and of two types of cryoprotectant solutions on the nuclear maturation of vitrified-warmed porcine oocytes were examined. Also, the developmental capacity of vitrified immature porcine oocytes following intracytoplasmic sperm injection (ICSI) was investigated. The nuclear maturation rate (46.8%) of the vitrified-warmed oocytes treated with 7.5 microg/mL CB for 30 min was significantly higher (P < 0.05) than those (13.9-39.2%) of the vitrified-warmed oocytes treated with 0, 2.5, or 5.0 microg/mL CB for 10 or 30 min. Additionally, the nuclear maturation rate of oocytes treated with CB and vitrified in ethylene glycol (EG) (37.1%) was significantly higher (P < 0.05) than that of EG + dimethyl sulfoxide (Me(2)SO) (23.9%). However, no significant differences were observed in the cleavage and blastocyst development rates among the control (45.2 and 20.0%, respectively), the EG group (37.8 and 13.5%, respectively) and the EG + Me(2)SO group (39.3 and 14.3%, respectively). These results demonstrated that: (1) pretreatment with 7.5 microg/mL CB was beneficial for the vitrification of immature porcine oocytes; (2) the combination of EG and Me(2)SO as a cryoprotectant was not advantageous for in vitro maturation (IVM) of vitrified immature porcine oocytes; and (3) vitrified-warmed porcine oocytes matured after IVM, developed to the blastocyst stage without distinct differences compared to fresh oocytes following ICSI.  相似文献   

6.
Experiments were conducted to study the effect of cryoprotectants, dimethyl sulfoxide (DMSO), ethylene glycol (EG), 1,2-propanediol (PROH), and glycerol at different concentrations (3.5, 4, 5, 6, and 7 M each with 0.5 M sucrose and 0.4% BSA in DPBS) on survival, in vitro maturation, in vitro fertilization, and post-fertilization development of vitrified-thawed immature buffalo oocytes. The COCs were harvested from the ovaries by aspirating the visible follicles. The recovery of post-thaw morphologically normal oocytes was lower in 3.5 and 4 M DMSO, EG, and PROH compared to 5, 6, and 7 M. In all the concentrations of glycerol, an overall lower numbers of oocytes recovered were normal compared to other cryoprotectants. Less number of oocytes reached metaphase-II (M-II) stage from the oocytes cryopreserved in any of the concentrations of DMSO, EG, PROH, and glycerol compared to fresh oocytes. Among the vitrified groups, highest maturation was obtained in 7 M solutions of all the cryoprotectants. The cleavage rates of oocytes vitrified in different concentrations of DMSO, EG, PROH, and glycerol were lower than that of the fresh oocytes. The cleavage rates were higher in oocytes cryopreserved in 6 and 7 M DMSO, EG, PROH, and glycerol compared with oocytes cryopreserved in other concentrations. However, the percentage of morula and blastocyst formation from the cleaved embryos did not vary in fresh oocytes and vitrified oocytes. In conclusion, this report describes the first successful production of buffalo blastocysts from immature oocytes cryopreserved by vitrification.  相似文献   

7.
Studies were conducted to compare viability of immature and mature porcine oocytes vitrified in ethylene glycol (EG) using open-pulled straws (OPS). Oocytes that had been allowed to mature for 12 h (germinal vesicle group; GV) and 40 h (metaphase II group; MII) were divided into three treatments: (1) control; (2) treated with cytochalasin B and exposed to EG; and (3) treated with cytochalasin B and vitrified by stepwise exposure to EG in OPS. After warming, a sample of oocytes was fixed and evaluated by specific fluorescent probes before visualization using confocal microscopy. The remaining oocytes were fertilized and cleavage rate was recorded. Exposure of GV oocytes to EG or vitrification had a dramatic effect on spindle and chromosome configurations and no cleavage was obtained after in vitro fertilization. When MII oocytes were exposed to EG or were vitrified, 18 and 11% of oocytes, respectively, maintained the spindle structure and either EG exposure or vitrification resulted in substantial disruption in microfilament organization. The cleavage rates of mature oocytes after being exposed to EG or after vitrification were similar (14 and 13%, respectively) but were significantly less than that of control oocytes (69%). These results indicate that porcine oocytes at different meiotic stages respond differently to cryopreservation and MII porcine oocytes had better resistance to cryopreservation than GV stage oocytes.  相似文献   

8.
In vitro matured (IVM) buffalo oocytes at the metaphase of the second meiotic division (MII) were vitrified in 20% Me(2)SO: 20% EG (v/v) and 0.5M sucrose (VA), or 35% EG (v/v), 50mg/mL polyvinylpyrrolidone (PVP), and 0.4M trehalose (VB), either on cryotops or as 2μL microdrops. The viability was assessed after warming by fluorescein diacetate (FDA) staining and all surviving oocytes were subjected to ICSI and ethanol activation. All vitrified groups had similar recovery rates but both VA groups had significantly higher survival and pronuclear formation rates than either of the VB groups. Non treated control oocytes and non cryopreserved oocytes exposed to FDA had significantly higher survival, 2nd polar body extrusion, PN and blastocyst formation rates than any of the four vitrified groups (P<0.05). In conclusion The cryotop and microdrop methods are equally effective for buffalo oocyte vitrification, and although vitrification in VA solution yielded higher rates of survival and formation of 2 pronuclei than VB, the rate of blastocyst formation was comparable for both solutions. A detailed analysis of oocytes that extruded the second polar body after ICSI and activation revealed that only a minority (7-20% of the vitrified and 46-48% of the control oocytes) also had two pronuclei, indicating that normal activation is compromised by vitrification.  相似文献   

9.
Oocyte cryopreservation is the desired tool for the ‘long-term’ storage of female genetic potential especially for endangered/valuable species. This study aims at examining the ability of different cryoprotectant (CPA) and CPA exposure techniques to protect immature feline oocytes against cryoinjury during vitrification. Immature oocytes were submitted to different CPA exposure techniques: 1) 2-step DMSO, 2) 4-step DMSO, 3) 2-step EG, 4) 4-step EG, 5) 2-step EG plus DMSO and 6) 4-step EG plus DMSO. Non-CPA treated, non-vitrified oocytes served as controls. The oocytes were then submitted either to in vitro maturation (Experiment 1, n = 334) or to vitrification/warming (Experiment 2, n = 440). The stage of nuclear maturation was subsequently determined. In Experiment 3, the vitrified immature oocytes (n = 254) were matured and fertilized in vitro, and their developmental competence was assessed. A total of 424 embryos derived from vitrified immature oocytes were transferred into the oviduct of 6 recipient queens (Experiment 4).Vitrification reduced significantly the meiotic and developmental competence of immature cat oocytes compared with the non-vitrified controls. The EG alone or a combination of EG and DMSO yielded higher maturation rates than DMSO, irrespective of the CPA equilibration techniques used. The 4-step EG vitrification resulted in the highest maturation rate (37.6%) but cleavage and blastocyst rates were significantly lower than the non-vitrified controls (24.8% and 30.2% vs 62.5% and 49.3%, respectively). Pregnancy was established in recipients receiving embryos derived from non-vitrified and vitrified/warmed immature oocytes. It is concluded that the stepwise CPA exposure technique can be successfully applied for vitrification of immature cat oocytes, in terms of in vitro development but it is likely to affect in utero development.  相似文献   

10.
Experiments were conducted to find an optimal incubation period in a sucrose solution during dilution of cryoprotectants for obtaining a higher level of survival and development of cat oocytes cryopreserved by vitrification method. In the first experiment, in vitro-matured fresh oocytes were exposed to 0.5M sucrose solution for 1 or 5 min before in vitro fertilization (IVF). The percentage of development to the blastocyst stage significantly decreased in oocytes exposed for 5 min, compared with oocytes exposed for 1 min and control oocytes without exposure to sucrose (P<0.05). In the second experiment, oocytes that had been vitrified in 40% ethylene glycol and 0.3M sucrose were liquefied and then incubated in 0.5M sucrose for 0.5, 1 or 5 min to dilute the cryoprotectant. The percentage of cleavage (>or=2-cell stage) of vitrified-liquefied oocytes incubated for 0.5 min was significantly higher (P<0.05) than that of other groups. Development of vitrified-liquefied oocytes to the morula and blastocyst stages after IVF was observed only in oocytes incubated in sucrose for 0.5 min. The present study indicates that the oocytes have sensitivity to the toxic effect of sucrose and that the incubation period during dilution of the cryoprotectant is of critical importance for developmental competence of vitrified-liquefied cat oocytes.  相似文献   

11.
We evaluated the effect of three different cryodevices on membrane integrity, tubulin polymerization, maturation promoting factor (MPF) activity and developmental competence of in vitro matured (IVM) ovine oocytes. IVM oocytes were exposed during 3 min to 7.5% DMSO and 7.5% ethylene glycol (EG) in TCM199 and 25 sec to 0.5 M sucrose, 16.5% DMSO and 16.5% EG, loaded in open pulled straws (OPS), cryoloops (CL) or cryotops (CT) and immersed into liquid nitrogen. Untreated (CTR) or exposed to vitrification solutions but not cryopreserved (EXP) oocytes were used as controls. After warming, double fluorescent staining evidenced a lower membrane integrity in vitrified groups compared to the controls (P < 0.01). After in vitro fertilization and culture OPS and CL groups evidenced a lower cleavage rate than CT and controls (P < 0.01) while blastocysts were obtained only in CL and EXP, at a lower rate than CTR (P < 0.01). All vitrified groups showed alterations in spindle conformation, which were partially recovered in OPS and CT groups. MPF activity was lower in treated compared to CTR and CT showed the lowest value (P < 0.01). After 2 hr culture MPF activity was restored in all groups except CT. Parthenogenetic activation was higher in treated compared to CTR and CT evidenced the highest value. Our results indicate that cryodevice influences not only the ability to survive cryopreservation but is also associated with molecular alterations which affect developmental competence.  相似文献   

12.
The aim of this work was to evaluate whether providing a support of cumulus cells during IVF of buffalo denuded oocytes submitted to vitrification-warming enhances their fertilizing ability. In vitro matured denuded oocytes were vitrified by Cryotop in 20% EG + 20% of DMSO and 0.5 M sucrose and warmed into decreasing concentrations of sucrose (1.25 M-0.3M). Oocytes that survived vitrification were fertilized: 1) in the absence of a somatic support (DOs); 2) in the presence of bovine cumulus cells in suspension (DOs+susp); 3) on a bovine cumulus monolayer (DOs+monol); and 4) with intact bovine COCs in a 1:1 ratio (DOs+COCs). In vitro matured oocytes were fertilized and cultured to the blastocyst stage as a control.An increased cleavage rate was obtained from DOs+COCs (60.9%) compared to DOs, DOs+susp (43.6 and 38.4, respectively; P < 0.01) and DOs+monol (47.5%; P < 0.05). Interestingly, cleavage rate of DOs+COCs was similar to that of fresh control oocytes (67.8%). However, development to blastocysts significantly decreased in all vitrification groups compared to the control (P < 0.01).In conclusion the co-culture with intact COCs during IVF completely restores fertilizing capability of buffalo denuded vitrified oocytes, without improving blastocyst development.  相似文献   

13.
The purpose of this study was to evaluate the ability of cat oocytes, at different stages of maturation, to survive after cryopreservation and to assess their subsequent development following IVM and IVF. In the initial toxicity trial, immature oocytes were exposed to different concentrations of DMSO and ethylene glycol (EG). Resumption of meiosis and metaphase II were evaluated after removal of the cryoprotectant and IVM. The highest rates of resumption of meiosis (51.4%) were achieved after exposure to 1.5 mol l(-1) of cryoprotectants, and no difference was observed with control oocytes. Metaphase II was obtained in 25.7% (P<0.01) and 22.9% (P<0.005) of oocytes exposed to 1.5 mol l(-1) of DMSO and ethylene glycol, although at lower rates than in control oocytes (54.4%). On the basis of this finding, 1.5 mol l(-1) of cryoprotectant was chosen for freezing cat oocytes at the germinal vesicle stage (immature) or at metaphase II stage (mature). Post-thaw viability was assessed by the evaluation of the embryo development in vitro. After fertilization, mature oocytes frozen in ethylene glycol cleaved in better proportions (38.7%) than immature oocytes (6.8%, P<0.001), and no differences were observed in the cleavage rate of oocytes frozen at different maturation stages with DMSO (immature 12.8%; mature 14.1%). Embryonic development beyond the 8-cell stage was obtained only when mature oocytes were frozen with ethylene glycol (11.3%). This study suggests that cryopreserved cat oocytes can be fertilized successfully and that their development in vitro is enhanced when mature oocytes are frozen with ethylene glycol. The stage of maturation may be a key element in improving cat oocyte cryopreservation.  相似文献   

14.
Gupta MK  Uhm SJ  Lee HT 《Theriogenology》2007,67(2):238-248
Cryopreservation of normal, lipid-containing porcine oocytes has had limited practical success. This study used solid surface vitrification (SSV) of immature germinal vesicle (GV) and mature meiosis II (MII) porcine oocytes and evaluated the effects of pretreatment with cytochalasin B, cryoprotectant type (dimethylsulfoxide (DMSO), ethylene glycol (EG), or both), and warming method (two-step versus single-step). Oocyte survival (post-thaw) was assessed by morphological appearance, staining (3',6'-diacetyl fluorescein), nuclear maturation, and developmental capacity (after in vitro fertilization). Both GV and MII oocytes were successfully vitrified; following cryopreservation in EG, more than 60% of GV and MII stage porcine oocytes remained intact (no significant improvement with cytochalasin B pretreatment). Oocytes (GV stage) vitrified in DMSO had lower (P<0.05) nuclear maturation rates (31%) than those vitrified in EG (51%) or EG+DMSO (53%). Survival was better with two-step versus single-step dilution. Despite high survival rates, rates of cleavage (20-26%) and blastocyst formation (3-9%) were significantly lower than for non-vitrified controls (60 and 20%). In conclusion, SSV was a very simple, rapid, procedure that allowed normal, lipid-containing, GV or MII porcine oocytes to be fertilized and develop to the blastocyst stage in vitro.  相似文献   

15.
The present study investigated the effects of the sexual maturity of oocyte donors on in vitro maturation (IVM) and the parthenogenetic developmental capacity of fresh minke whale oocytes. The effects of cytochalasin B (CB) pretreatment and two types of cryoprotectant solutions (ethylene glycol (EG) or ethylene glycol and dimethylsulfoxide (EG + DMSO)) on the in vitro maturation of vitrified immature whale oocytes were compared, and the developmental capacity of vitrified immature whale oocytes following IVM and intracytoplasmic sperm injection examined (ICSI). The maturation rate did not differ significantly with sexual maturity (adult, 60.9%; prepubertal, 53.1%), but the parthenogenetic activation rate of oocytes from adult donors (76.7%) was significantly higher (p < 0.05) than that of oocytes from prepubertal donors (46.4%). The maturation rates after vitrification and warming were not significantly different between the EG (22.2%) and EG + DMSO groups (30.2%), or between the CB-treated (30.4%) and non-CB-treated groups (27.3%). These results indicate that parthenogenetic activation of in vitro matured oocytes from adult minke whales was superior to that from prepubertal whales, but that the developmental capacity of the whale oocytes after parthenogenetic activation or ICSI was still low. The present study also showed that CB treatment before vitrification and two kinds of cryoprotectants did not improve the IVM rate following the vitrification of immature whale oocytes.  相似文献   

16.
The objective of this work was to study the effect of a preparation of human recombinant gonadotrophins (r-FSH and r-LH) on the in vitro maturation (IVM) and development of sheep oocytes. In addition, the viability of fresh and vitrified blastocysts obtained after transfer was tested. Oocytes collected from slaughtered animals were divided into five different maturation groups. All groups were matured in a medium containing TCM199 with 4 mg/ml BSA, 100 microM cysteamine and 1 microg/ml estradiol-17beta. Each group was also treated with one of the following: 0.1 UI/ml r-FSH (r-FSH group), 0.1UI/ml r-LH (r-LH group), 0.1 UI/ml r-FSH and 0.1 UI/ml r-LH (r-FSH/r-LH group), 5 microg/ml FSH and 5 microg/ml LH hypophysial gonadotrophins (h-G group) as a control, or no gonadotrophins (no-G group). After in vitro fertilization with fresh ram semen, presumptive zygotes were cultured in vitro for 6-7 days and a total of 109 blastocysts were then transferred in pairs into synchronized ewes. To determine the viability of embryos after vitrification, 36 blastocysts from the r-FSH/r-LH group and 30 from the h-G group were vitrified in 10% ethylene glycol (EG) and 10% dimethylsulphoxide (DMSO) for 5min, followed by 20% EG, 20% DMSO and 0.5M Sucrose (S) for <45 s. They were loaded into open pulled straws (OPS) and plunged into LN(2). After warming, the blastocysts were transferred in pairs into synchronized ewes.The highest maturation rate was reached in the r-FSH/r-LH group (91.9%). However, no statistical difference was found when this group was compared with the h-G group (84.0%). Likewise, the cleavage rate of the r-FSH/r-LH group (81.4%) was not significantly different from that of the h-G group (82.3%). The cleavage rates of all other groups, however, were significantly lower than the r-FSH/r-LH and h-G groups. The blastocyst rate was highest in the h-G group (53.6%), and it was statistically higher than in the r-FSH/r-LH group (41.5%). The blastocyst rate was very similar between groups r-FSH and r-FSH/r-LH (42.0 and 41.5%, respectively). The lowest lambing rate (31.8%) was in the no-G group. The highest lambing rate was achieved in the r-FSH/r-LH group (66.6%). The vitrified embryos of h-G and r-FSH/r-LH groups had a very similar lambing rate (16.6% and 19.4%). In conclusion, these data provide support for the hypothesis that sheep oocytes respond to human recombinant gonadotrophins used for in vitro embryo production.  相似文献   

17.
Effect of EGF on in vitro maturation of domestic cat oocytes   总被引:4,自引:0,他引:4  
The objective of this study was to evaluate the influence of different concentrations of epidermal growth factor (EGF) on in vitro maturation of domestic cat oocytes. A total of 444 cat oocytes were matured in MSOF (maturation synthetic oviductal fluid) in the presence of varying EGF concentrations: (1) MSOF (control); (2) MSOF+10 ng/mL EGF (EGF10); (3) MSOF+25 ng/mL EGF (EGF25); and (4) MSOF+50 ng/mL EGF (EGF50). After IVM, oocytes were in vitro fertilized to verify the effect of adding EGF on cytoplasmic maturation. Cleavage rate was recorded and noncleaving oocytes were stained with Hoechst 33258 and examined to determine nuclear maturation rate. Cleaved zygotes were cultured in vitro and embryo stages were evaluated on days 6 and 7. There was no difference among groups in the total number of oocytes reaching the metaphase II (MII) stage (P>0.05). The EGF25 group had the highest (P<0.01) blastocyst yield (37.5%) and developmental competence (60.9%). Cleavage rate and resulting morulae and blastocysts on day 6 for EGF25 group were higher (P<0.01) than control and EGF50 groups. Although EGF did not significantly enhance nuclear maturation rate, it had a dose-related positive effect on cytoplasmic maturation, since the oocyte's ability to cleave and reach the blastocyst stage was improved at 25 ng/mL, with intermediate improvement at 10 ng/mL, but 50 ng/mL had no significant benefit. In conclusion, the addition of EGF to the maturation medium enhanced cytoplasmic maturation of cat oocytes in vitro.  相似文献   

18.
The aim of this study was to compare the effectiveness of two different vitrification carrier systems for oocyte cryopreservation. In vitro matured (IVM) bovine oocytes were vitrified in open pulled straws (OPS) or flexipet denuding pipettes (FDP), and the effects of cryopreservation determined on the cytoskeletal components and developmental capacity of the oocytes. Three experimental groups were established according to whether the oocytes were vitrified in OPS (OPS group), FDP (FDP group) or left untreated (CTR group). Twenty two hours after the onset of maturation, sub-groups of 2–4 oocytes were pre-equilibrated in 1 mL of Hepes-TCM 199 with 20% fetal calf serum (FCS) (HM), 10% dimethyl sulfoxide (DMSO) and 10% ethylene glycol (EG) for 30 s. The oocytes were then transferred to a 20-μL drop of HM containing 20% DMSO, 20% EG and 0.5 M of sucrose, which was used to load the OPS or FDP before their immersion in liquid nitrogen (LN2). Oocytes were thawed by plunging the OPS or FDP into 0.25 M sucrose in HM, and then placed for 5 min each in 0.15 and 0 M sucrose in HM. After warming, spindle configuration, chromosome distribution and embryo development were assessed. Frozen–thawed semen was used for fertilization. Zygotes were denuded at 22 h post-insemination, and cultured in SOF medium for 9 days at 38.5 °C in a 5% CO2, 5% O2 and 90% N2 atmosphere. All experiments were performed using both cow and calf oocytes to establish sensitivity differences. After in vitro fertilization and culture, oocytes in the FDP group showed a lower cleavage rate than those in the OPS or control groups (P < 0.05), while blastocysts were only obtained in the OPS group, at a lower rate than controls. After warming, double fluorescent staining revealed higher rates of spindle and chromosome abnormalities in the FDP group compared to the OPS group (P < 0.05). No differences between cow and calf oocytes were observed in the different experiments. Our results indicate that the carrier system affects the capacity of IVM oocytes to survive cryopreservation. Unexpectedly, the flexipet denuding pipette failed to improve results and high rates of clustered chromatin and abnormal spindles were observed in calf and cow oocytes vitrified by the FDP method. In conclusion, the use of the flexipet denuding pipette modifies the cytoskeletal components and compromises the developmental capacity of in vitro matured calf and cow oocytes.  相似文献   

19.
Survival of oocytes recovered from vitrified sheep ovarian tissues   总被引:11,自引:0,他引:11  
The objective of this work was to develop an effective vitrification technique for cryopreserving oocytes in sheep ovarian tissues. Ovaries were surgically recovered from 15 pubertal ewes and the ovarian cortex was cut into sections. Ovarian tissues were placed in equilibration medium consisting of 4% (v/v) ethylene glycol (EG) and 20% (v/v) FBS in TCM-199 on ice for 30 min and transferred to vitrification solution (35% EG, 5% polyvinylpyrrolidone, 0.4M trehalose and 20% FBS in TCM-199) for 5 min. Ovarian tissues were vitrified by dropping the tissue on the surface of a steel cube cooled by liquid nitrogen. Cumulus-enclosed oocyte complexes (COC) were also collected and vitrified following the procedure used for ovarian tissues. After 2-3 weeks of storage in liquid nitrogen, ovarian tissues and COC were thawed at 37 degrees C in 0.3M trehalose and COC in ovarian tissues were mechanically and enzymatically isolated. Vitrified COC and freshly collected COC were washed twice in maturation medium (TCM-199 supplemented with 0.255 mM pyruvate and 10% heat-treated estrus cow serum) and cultured in 50 microl drops of maturation medium under paraffin oil for 23-25h at 39 degrees C in a humidified atmosphere of 5% CO(2) in air. After culture, cumulus cells were removed by hyaluronidase treatment and vortexing and oocytes were fixed and stained. No significant differences were observed between vitrified oocytes, oocytes recovered from vitrified ovarian tissues and non-vitrified control oocytes in the percentage of oocytes with acceptable staining per total number of oocytes fixed or with visible chromatin per total number of oocytes with acceptable staining. However, fewer (P<0.05) oocytes obtained from vitrified ovarian tissues (70%) reached metaphase II compared to vitrified oocytes (88%) and non-vitrified control oocytes (90%). In contrast, when oocytes with at least 3-5 layers of cumulus cells were considered from each of the three groups, no differences (P>0.05) were observed due to treatment in the percentages of oocytes developing to metaphase II. These results demonstrate that sheep oocytes can be successfully cryopreserved by vitrification of ovarian tissues and exhibit in vitro maturation rates similar to that of vitrified and non-vitrified oocytes.  相似文献   

20.
The aim of this study was to evaluate the developmental capacity of immature bovine oocytes after vitrification with 20% ethylene glycol (EG)+20% dimethyl sulfoxide (Me(2)SO) and 0.5M sucrose (SUC), by open pulled straw (OPS) technology. The effect of treatment with cytochalasin D before vitrification was also examined. No differences were observed in cleavage and blastocyst rates among the group vitrified without cytochalasin D treatment (Vitri) (49.0% and 6.1%) and that with cytochalasin D treatment before vitrification (CDVitri) (46.4% and 3.6%), but both were lower (P<0.05) than the unvitrified control group (85.1 and 45.9%). Calves were obtained after transfer of fresh and vitrified blastocysts from the Vitri group and after transfer of vitrified blastocysts from the CDVitri group. Cytochalasin D treatment does not improve the development of immature bovine vitrified oocytes. The results show that a small proportion of immature oocytes vitrified with this technology are fully competent to produce blastocysts, which may be transferred immediately or vitrified before transfer, and go on to develop healthy offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号