首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A method is described for estimating quantitatively the frequency of transformation of pneumococci to new capsular types. It is found that, when S-(III) cells are exposed to deoxyribonucleic acid (DNA) from wild-type I strains, transformation to SI occurs at a frequency 20 to 60 times that of transformation to the binary type SI-III. SI markers on DNA isolated from binary strains behave qualitatively and quantitatively in a different manner from the same markers on DNA from wild-type I strains and will transform S-(III) cells only to SI-III. Strains are described which produce only one capsular polysaccharide, but which are genetically binary and carry a second capsular genome with a mutated gene so that the second polysaccharide is not produced. Stability and other characteristics of binary strains are discussed, and one hypothesis for the genetic organization of binary strains is presented.  相似文献   

2.
Ethionine reduced both the growth rate and the final growth level of Serratia marcescens Sr41. Growth inhibition was completely reversed by methionine. Strain D-315, defective in homoserine dehydrogenase I, was more sensitive to ethionine-mediated growth inhibition than was the wild-type strain. Ethionine-resistant mutants were isolated from cultures of strain D-316, which was derived from strain D-315 as a threonine deaminase-deficient mutant. Of 60 resistant colonies, 7 excreted threonine on minimal agar plates. One threonine-excreting strain, ETr17, was highly resistant to ethionine and, moreover, insensitive to methionine-mediated growth inhibition, whereas the parent strain was sensitive. When cultured in minimal medium with or without excess methionine, strain ETr17 had a higher homoserine dehydrogenase level than did strain D-316. The homoserine dehydrogenase activity was not inhibited by threonine or methionine. Transductional analysis revealed that the ethionine-resistant (etr-1) mutation carried by strain ETr17 was located in the metBM-argE region and caused the derepressed synthesis of homoserine dehydrogenase II. Strain ETr17 had a higher aspartokinase level than did the parent strain. By transductional cross with the argE+ marker, the etr-1 mutation was transferred into strain D-562 which was derived from D-505, a strain defective in aspartokinases I and III. The constructed strain had a higher aspartokinase level than did strain D-505 in medium with or without excess methionine, indicating that the etr-1 mutation led to the derepressed synthesis of aspartokinase II. Strain ETr17 produced about 8 mg of threonine per ml of medium containing sucrose and urea.  相似文献   

3.
Homology in capsular transformation reactions in Pneumococcus   总被引:9,自引:0,他引:9  
Summary Experiments were carried out to determine the relative effect of homology inside or outside of the capsular genomes of donor and recipient strains of pneumococci on the frequency of transfer of capsular markers. In one series of experiments, 3 recipient strains were transformed to CapIII+ by DNA from 2 donor strains. Recipient strains (III)capIII D6 1, (II)capIII D15 P1 1, and (II)capII-1 1 were each transformed to CapIII+ at different absolute frequencies dependent upon the amount of genetic information that the strain had to acquire. The chromosomal background of the donor strain carrying the CapIII capsular genome had no influence on the results, however, for each strain was transformed at the same frequency by DNA from donor strain (II)CapIII+ or donor strain (III)CapIII+. In a second series of experiments, 2 (I)CapIII-strains, a (II)CapIII-strain and a (III)CapIII-strain were transformed to heterologous type I and binary type I-III with DNA from donor strains (I)CapI+, (II)CapI+, and (III)CapI+. Again, the chromosomal background of the donor strain was unimportant to the results. The origin of the recipient strain, however, markedly influenced the frequency of transformation. (I)CapIII-strains were transformed to CapI+ at about 10 times the frequency and to CapI-III at from 18–6000 times the frequency of the other CapIII-strains. Consideration of the results leads to the conclusion that transformation of CapIII-strains to CapI+ and transformation of CapI-strains to CapIII+ are not reciprocal reactions; CapI-strains lose less information in transformation to CapIII+ than CapIII-strains gain in transformation to CapI+. In (I)CapIII-recipient strains, the residual information from the CapI capsular genome is responsible for the higher frequency of transformation to both CapI+ and to CapI-III. It is suggested that addition of exogenous linear DNA to a recipient chromosome to give rise to binary strains occurs when sequence homology with the recipient is limited to one end of a piece of transforming DNA. Models to explain the results (Figs. 1 through 3) are consistent with the experimental findings and are amenable to further testing.  相似文献   

4.
A nonpathogenic mutant of Agrobacterium tumefaciens strain B6 was isolated and its properties compared with the parental strain in an effort to localize the mutation. Both B6 and its mutant (B6-95) had similar colony color and morphology, were ketolactose positive, utilized octopine, and contained plasmid DNA. Kinetic analysis of DNA reannealing showed that total DNA homology and plasmid DNA homology between B6 and B6-95 was at least 90%. The length of both plasmids was found to be 58 micrometer. Plasmid DNA from both B6 and the mutant was digested with endonucleases and the fragments separated by agarose gel electrophoresis. In all cases the pattern for B6 was identical with that of B6(-95). The Ti plasmid from B6 and the mutant was transferred to an avirulent, plasmidless strain of A. tumefaciens by in vitro conjugation and transformation. All of the B6 transconjugants and transformants were virulent, whereas all of the mutant transconjugants and transformants were avirulent. Electrophoretic patterns of endonuclease-digested plasmid DNA from transformants were identical to those of plasmid DNA from B6. Therefore, we conclude that the virulence mutation lies on the Ti plasmid.  相似文献   

5.
Using filtration enrichment techniques, an Aspergillus terreus arginine auxotrophic strain which contains a mutation that abolishes ornithine transcarbamylase (OTCase) activity has been isolated. This mutant has been genetically transformed with the cloned Aspergillus nidulans OTCase gene. Prototrophic transformants arose at a frequency of about 50 transformants per microgram of plasmid DNA. Southern blot analysis of DNA from the transformants showed that the transforming DNA was ectopically integrated at different locations in the A. terreus genome, often in multiple tandem copies. The transformants were phenotypically stable for several mitotic divisions and retained their capacity to produce extracellular enzymes.  相似文献   

6.
Mutations of temperature sensitivity in R plasmid pSC101.   总被引:15,自引:5,他引:10       下载免费PDF全文
Temperature-sensitive (Ts) mutant plasmids isolated from tetracycline resistance R plasmid pSC101 were investigated for their segregation kinetics and deoxyribonucleic acid (DNA) replication. The results fit well with the hypothesis that multiple copies of a plasmid are distributed to daughter cells in a random fashion and are thus diluted out when a new round of plasmid DNA replication is blocked. When cells harboring type I mutant plasmids were grown at 43 degrees C in the absence of tetracycline, antibiotic-sensitive cells were segregated after a certain lag time. This lag most likely corresponds to a dilution of plasmids existing prior to the temperature shift. The synthesis of plasmid DNA in cells harboring type I mutant plasmids was almost completely blocked at 43 degrees C. It seems that these plasmids have mutations in the gene(s) necessary for plasmid DNA replication. Cells haboring a type II mutant plasmid exhibited neither segregation due to antibiotic sensitivity nor inhibition of plasmid DNA replication throughout cultivation at high temperature. It is likely that the type II mutant plasmid has a temperature-sensitive mutation in the tetracycline resistance gene. Antibiotic-sensitive cells haboring type III mutant plasmids appeared at high frequency after a certain lag time, and the plasmid DNA synthesis was partially suppressed at the nonpermissive temperature. They exhibited also a pleiotrophic phenotype, such as an increase of drug resistance level at 30 degrees C and a decrease in the number of plasmid genomes in a cell.  相似文献   

7.
The rules that govern complementation of mutant and wild-type mitochondrial genomes in human cells were investigated under different experimental conditions. Among mitochondrial transformants derived from an individual affected by the MERRF (myoclonus epilepsy associated with ragged red fibers) encephalomyopathy and carrying in heteroplasmic form the mitochondrial tRNA(Lys) mutation associated with that syndrome, normal protein synthesis and respiration was observed when the wild-type mitochondrial DNA exceeded 10% of the total complement. In these transformants, the protective effect of wild-type mitochondrial DNA was shown to involve interactions of the mutant and wild-type gene products. Very different results were obtained in experiments in which two mitochondrial DNAs carrying nonallelic disease-causing mutations were sequentially introduced within distinct organelles into the same human mitochondrial DNA-less (rho 0) cell. In transformants exhibiting different ratios of the two genomes, no evidence of cooperation between their products was observed, even 3 months after the introduction of the second mutation. These results pointed to the phenotypic independence of the two genomes. A similar conclusion was reached in experiments in which mitochondria carrying a chloramphenicol resistance-inducing mitochondrial DNA mutation were introduced into chloramphenicol-sensitive cells. A plausible interpretation of the different results obtained in the latter two sets of experiments, compared with the complementation behavior observed in the heteroplasmic MERRF transformants, is that in the latter, the mutant and wild-type genomes coexisted in the same organelles from the time of the mutation. This would imply that the way in which mitochondrial DNA is sorted among different organelles plays a fundamental role in determining the oxidative-phosphorylation phenotype in mammalian cells. These results have significant implications for mitochondrial genetics and for studies on the transmission and therapy of mitochondrial DNA-linked diseases.  相似文献   

8.
In contrast to the DNA damage caused by far-UV (lambda < 290 nm), near-UV (290 < lambda < 400 nm) induced DNA damage is partially oxygen dependent, suggesting the involvement of reactive oxygen species. To test the hypothesis that enzymes that protect cells from oxidative DNA damage are also involved in preventing near-UV mediated DNA damage, isogenic strains deficient in one or more of exonuclease III (xthA), endonuclease IV (nfo), and endonuclease III (nth) were exposed to increasing levels of far-UV and near-UV. All strains, with the exception of the nth single mutant, were found to be hypersensitive to the lethal effects of near-UV relative to a wild-type strain. A triple mutant strain (nth nfo xthA) exhibited the greatest sensitivity to near-UV-mediated lethality. The triple mutant was more sensitive than the nfo xthA double mutant to the lethal effects of near-UV, but not far-UV. A forward mutation assay also revealed a significantly increased sensitivity for the triple mutant compared to the nfo xthA deficient strain in the presence of near-UV. However, the triple mutant was no more sensitive to the mutagenic effects of far-UV than a nfo xthA double mutant. These data suggest that exonuclease III, endonuclease IV, and endonuclease III are important in protection against near-UV-induced DNA damage.  相似文献   

9.
Medium-chain-length (mcl) poly(3-hydroxyalkanoates) (PHAs) are storage polymers that are produced from various substrates and accumulate in Pseudomonas strains belonging to rRNA homology group I. In experiments aimed at increasing PHA production in Pseudomonas strains, we generated an mcl PHA-overproducing mutant of Pseudomonas putida KT2442 by transposon mutagenesis, in which the aceA gene was knocked out. This mutation inactivated the glyoxylate shunt and reduced the in vitro activity of isocitrate dehydrogenase, a rate-limiting enzyme of the citric acid cycle. The genotype of the mutant was confirmed by DNA sequencing, and the phenotype was confirmed by biochemical experiments. The aceA mutant was not able to grow on acetate as a sole carbon source due to disruption of the glyoxylate bypass and exhibited two- to fivefold lower isocitrate dehydrogenase activity than the wild type. During growth on gluconate, the difference between the mean PHA accumulation in the mutant and the mean PHA accumulation in the wild-type strain was 52%, which resulted in a significant increase in the amount of mcl PHA at the end of the exponential phase in the mutant P. putida KT217. On the basis of a stoichiometric flux analysis we predicted that knockout of the glyoxylate pathway in addition to reduced flux through isocitrate dehydrogenase should lead to increased flux into the fatty acid synthesis pathway. Therefore, enhanced carbon flow towards the fatty acid synthesis pathway increased the amount of mcl PHA that could be accumulated by the mutant.  相似文献   

10.
Medium-chain-length (mcl) poly(3-hydroxyalkanoates) (PHAs) are storage polymers that are produced from various substrates and accumulate in Pseudomonas strains belonging to rRNA homology group I. In experiments aimed at increasing PHA production in Pseudomonas strains, we generated an mcl PHA-overproducing mutant of Pseudomonas putida KT2442 by transposon mutagenesis, in which the aceA gene was knocked out. This mutation inactivated the glyoxylate shunt and reduced the in vitro activity of isocitrate dehydrogenase, a rate-limiting enzyme of the citric acid cycle. The genotype of the mutant was confirmed by DNA sequencing, and the phenotype was confirmed by biochemical experiments. The aceA mutant was not able to grow on acetate as a sole carbon source due to disruption of the glyoxylate bypass and exhibited two- to fivefold lower isocitrate dehydrogenase activity than the wild type. During growth on gluconate, the difference between the mean PHA accumulation in the mutant and the mean PHA accumulation in the wild-type strain was 52%, which resulted in a significant increase in the amount of mcl PHA at the end of the exponential phase in the mutant P. putida KT217. On the basis of a stoichiometric flux analysis we predicted that knockout of the glyoxylate pathway in addition to reduced flux through isocitrate dehydrogenase should lead to increased flux into the fatty acid synthesis pathway. Therefore, enhanced carbon flow towards the fatty acid synthesis pathway increased the amount of mcl PHA that could be accumulated by the mutant.  相似文献   

11.
A mutant strain of Escherichia coli K-12 was found in which spontaneous mutation to phage T7 resistance occurred at a very low frequency. T7 resistance in the parental strain from which this mutant was derived resulted from a mutation to excess capsular polysaccharide synthesis. The mutation preventing T7 resistance, non-9, inhibited capsule formation when transduced into capsulated strains. The non-9 mutation was cotransducible with his, the gene order in this region being non-9 his Su-1.  相似文献   

12.
The polysaccharide capsule is the primary virulence factor in Streptococcus pneumoniae. There are at least 90 serotypes of S. pneumoniae, identified based on the immunogenicity of different capsular sugars. The aim of this study was to construct pneumococcal strains that are isogenic except for capsular type. Serotype 4 strain TIGR4 was rendered unencapsulated by recombinational replacement of the capsular polysaccharide synthesis (cps) locus with the bicistronic Janus cassette (C. K. Sung, J. P. Claverys, and D. A. Morrison, Appl. Environ. Microbiol. 67:5190-5196, 2001). In subsequent transformation with chromosomal DNA, the cassette was replaced by the cps locus derived from a strain of a different serotype, either 6B, 7F, 14, or 19F. To minimize the risk of uncontrolled recombinational replacements in loci other than cps, the TIGRcps::Janus strain was "backcross" transformed three times with chromosomal DNA of subsequently constructed capsular type transformants. Capsular serotypes were confirmed in all new capsule variants by the Quellung reaction. Restriction fragment length polymorphism (RFLP) analysis of the cps locus confirmed the integrity of the cps region transformed into the TIGR strain, and RFLP of the flanking regions confirmed their identities with the corresponding regions of the recipient. Transformants had in vitro growth rates greater than or equal to that of TIGR4. All four strains were able to colonize C57BL/6 mice (female, 6 weeks old) for at least 7 days when mice were intranasally inoculated with 6 x 10(6) to 8 x 10(6) CFU. The constructed capsular variants of TIGR4 are suitable for use in studies on the role of S. pneumoniae capsular polysaccharide in immunity, colonization, and pathogenesis.  相似文献   

13.
M R Lifsics  E D Lancy  Jr    R Maurer 《Journal of bacteriology》1992,174(21):6965-6973
In Salmonella typhimurium, dnaQ null mutants (encoding the epsilon editing subunit of DNA polymerase III [Pol III]) exhibit a severe growth defect when the genetic background is otherwise wild type. Suppression of the growth defect requires both a mutation affecting the alpha (polymerase) subunit of DNA polymerase III and adequate levels of DNA polymerase I. In the present paper, we report on studies that clarify the nature of the physiological defect imposed by the loss of epsilon and the mechanism of its suppression. Unsuppressed dnaQ mutants exhibited chronic SOS induction, indicating exposure of single-stranded DNA in vivo, most likely as gaps in double-stranded DNA. Suppression of the growth defect was associated with suppression of SOS induction. Thus, Pol I and the mutant Pol III combined to reduce the formation of single-stranded DNA or accelerate its maturation to double-stranded DNA. Studies with mutants in major DNA repair pathways supported the view that the defect in DNA metabolism in dnaQ mutants was at the level of DNA replication rather than of repair. The requirement for Pol I was satisfied by alleles of the gene for Pol I encoding polymerase activity or by rat DNA polymerase beta (which exhibits polymerase activity only). Consequently, normal growth is restored to dnaQ mutants when sufficient polymerase activity is provided and this compensatory polymerase activity can function independently of Pol III. The high level of Pol I polymerase activity may be required to satisfy the increased demand for residual DNA synthesis at regions of single-stranded DNA generated by epsilon-minus pol III. The emphasis on adequate polymerase activity in dnaQ mutants is also observed in the purified alpha subunit containing the suppressor mutation, which exhibits a modestly elevated intrinsic polymerase activity relative to that of wild-type alpha.  相似文献   

14.
We showed previously that a mutant strain of group B Streptococcus (GBS) defective in capsule production was avirulent. This study describes the derivation of an unencapsulated mutant from a highly encapsulated wild-type strain of type III GBS, COH1, by transposon mutagenesis with Tn916ΔE. The mutant, COH1-13, was sensitive to phagocytic killing by human leukocytes in vitro and was relatively avirulent in a neonatal rat sepsis model compared with the wild-type strain. No capsular polysaccharide was evident in the cytoplasm or on the cell surface of the mutant strain. The Tn916ΔE insertion site in COH1-13 was mapped to the same chromosomal location as the Tn916 insertion site in the unencapsulated type III mutant COH31-15 reported previously. Nucleotide sequencing of DNA flanking the insertion site in COH1-13 revealed an open reading frame, designated cpsD, with significant homology to the rfbP gene of Salmonella typhimurium. RfbP encodes a galactosyl transferase enzyme that catalyses the transfer of galactose to undecaprenol phosphate, the initial step in O-polysaccharide synthesis. A particulate fraction of a lysate of wild-type strain GBS COH1 mediated the transfer of galactose from UDP-galactose to an endogenous acceptor. The galactose–acceptor complex partitioned into organic solvents, suggesting it is lipid in nature or membrane-associated. Galactosyl transferase activity was significantly reduced in the unencapsulated mutant strain COH1-13. These results, together with the similarity in deduced amino acid sequence between cpsD and rfbP suggest that cpsD encodes a galactosyl transferase essential for assembly of the GBS type III capsular polysaccharide.  相似文献   

15.
A heteroplasmic G-to-A transition at nucleotide pair (np) 14459 within the mitochondrial DNA (mtDNA)-encoded NADH dehydrogenase subunit 6 (ND6) gene has been identified as the cause of Leber hereditary optic neuropathy (LHON) and/or pediatric-onset dystonia in three unrelated families. This ND6 np 14459 mutation changes a moderately conserved alanine to a valine at amino acid position 72 of the ND6 protein. Enzymologic analysis of mitochondrial NADH dehydrogenase (complex I) with submitochondrial particles isolated from Epstein-Barr virus-transformed lymphoblasts revealed a 60% reduction (P < 0.005) of complex I-specific activity in patient cell lines compared with controls, with no differences in enzymatic activity for complexes II plus III, III and IV. This biochemical defect was assigned to the ND6 np 14459 mutation by using transmitochondrial cybrids in which patient Epstein-Barr virus-transformed lymphoblast cell lines were enucleated and the cytoplasts were fused to a mtDNA-deficient (p 0) lymphoblastoid recipient cell line. Cybrids harboring the np 14459 mutation exhibited a 39% reduction (p < 0.02) in complex I-specific activity relative to wild-type cybrid lines but normal activity for the other complexes. Kinetic analysis of the np 14459 mutant complex I revealed that the Vmax of the enzyme was reduced while the Km remained the same as that of wild type. Furthermore, specific activity was inhibited by increasing concentrations of the reduced coenzyme Q analog decylubiquinol. These observations suggest that the np 14459 mutation may alter the coenzyme Q-binding site of complex I.  相似文献   

16.
17.
The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 X 10(-9) and 3.4 X 10(-7) transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42, 857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 X 10(-8) to 1.3 X 10(-4) transformants per recipient with plasmid DNA and at an average frequency of 8.3 X 10(-5) transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [3H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations.  相似文献   

18.
The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 X 10(-9) and 3.4 X 10(-7) transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42, 857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 X 10(-8) to 1.3 X 10(-4) transformants per recipient with plasmid DNA and at an average frequency of 8.3 X 10(-5) transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [3H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations.  相似文献   

19.
The addition of soluble cellodextrins of increasing size to a cell envelope preparation of Acetobacter xylinum stimulated cellulose synthesis from UDPG. This stimulation was attributed to both acceptor and activator effects. Enzymes required for cellulose synthesis were found to be heat-unstable and those required for synthesis of glycosylated lipid components from UDPG, heat-stable. Both heat-inactivated envelope fragments and supernatant fluid from whole cells were necessary for cellulose synthesis from UDPG. Cellulose was not formed from UDPG in the presence of either supernatant fluid alone or heat-inactivated envelopes alone.The combined results of this and previous studies suggest that either the cell envelope is necessary for synthesis of a more immediate precursor to cellulose than UDPG, or that the synthesis from UDPG requires a matrix. The former suggestion and its possible link with lipid intermediate involvement was strengthened by the observation of inefficient glycoxylated lipid formation by a celluloseless mutant strain of A. xylinum. The possible locations of various enzyme activities required for the synthesis of the cellulose precursor are indicated and a possible microfibril nucleation process is discussed.  相似文献   

20.
In gram-positive bacteria, HPr, a phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), is phosphorylated by an ATP-dependent, metabolite-activated protein kinase on seryl residue 46. In a Bacillus subtilis mutant strain in which Ser-46 of HPr was replaced with a nonphosphorylatable alanyl residue (ptsH1 mutation), synthesis of gluconate kinase, glucitol dehydrogenase, mannitol-1-P dehydrogenase and the mannitol-specific PTS permease was completely relieved from repression by glucose, fructose, or mannitol, whereas synthesis of inositol dehydrogenase was partially relieved from catabolite repression and synthesis of alpha-glucosidase and glycerol kinase was still subject to catabolite repression. When the S46A mutation in HPr was reverted to give S46 wild-type HPr, expression of gluconate kinase and glucitol dehydrogenase regained full sensitivity to repression by PTS sugars. These results suggest that phosphorylation of HPr at Ser-46 is directly or indirectly involved in catabolite repression. A strain deleted for the ptsGHI genes was transformed with plasmids expressing either the wild-type ptsH gene or various S46 mutant ptsH genes (S46A or S46D). Expression of the gene encoding S46D HPr, having a structure similar to that of P-ser-HPr according to nuclear magnetic resonance data, caused significant reduction of gluconate kinase activity, whereas expression of the genes encoding wild-type or S46A HPr had no effect on this enzyme activity. When the promoterless lacZ gene was put under the control of the gnt promoter and was subsequently incorporated into the amyE gene on the B. subtilis chromosome, expression of beta-galactosidase was inducible by gluconate and repressed by glucose. However, we observed no repression of beta-galactosidase activity in a strain carrying the ptsH1 mutation. Additionally, we investigated a ccpA mutant strain and observed that all of the enzymes which we found to be relieved from carbon catabolite repression in the ptsH1 mutant strain were also insensitive to catabolite repression in the ccpA mutant. Enzymes that were repressed in the ptsH1 mutant were also repressed in the ccpA mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号