首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic force microscopy (AFM) has been used to probe the surface of a capillary after coating with “soft” polymers, notably polyacrylamides. The aim was the investigation of the efficiency of coverage of the silica surface, so as to reduce or eliminate the electroosmotic flow (EOF), particularly noxious in the separation of macromolecules. The quality of such coating is strongly dependent on two variables: temperature and pH. In the first case, progressively higher temperatures produce open silica patches, where no polymer seems to be bound. The transition from coated to largely uncoated surfaces occurs at 50°C. Also the pH of the polymerizing solution strongly affects the coating efficiency. Since in all coating procedures the monomer solution is not buffered, addition of accelerator (TEMED, N,N,N′N′-tetramethylethylendiamine) induces polymer growth at pH 10–11. These pH values generate hydrolysis of the siloxane bridge anchoring the bifunctional agent (Bind Silane, onto which the polymer chain should grow) to the wall. Thus, coating and de-coating occur simultaneously. Low temperatures during polymer growth (typically 10°C) and buffered solutions (pH 7, titrated after TEMED addition) ensure a most efficient and thorough coating, with virtual elimination of EOF: well coated capillaries exhibit residual EOF values, at pH 10, of the order of 10−7 cm2 V−1 s−1 vs. a standard value for uncoated capillaries of the order of 10−4 cm2 V−1 s−1. The AFM data have been fully confirmed by direct measurement of EOF in coated and uncoated capillaries under an electric field.  相似文献   

2.
This study investigated methods of improving the separation and identification of an IgA antibody, McPC603, and its pepsin fragments. The problem presented by purification of antibody fragments (Fabs) and the antibody light chain required accurate and informative analysis of highly hydrophobic proteins, which can polymerize and fold to form secondary structures. Capillary zone electrophoresis (CZE) permits the separation of peptides and small proteins by a method which is orthogonal to the traditional method of reversed-phase HPLC. To facilitate planned studies of the antibody's biological activity, our buffer composition was kept as simple as possible. During CZE analysis, if the buffer pH is below the isoelectric point of the protein, or the protein is large (with a heterogeneous distribution of surface charges), it can irreversibly bind to the capillary wall unless the capillary is coated. We found that C1-coatings in RP-capillaries at pH 9.5 adequately prevented the antibody fragments from binding to the wall. However, the coating did not remain stable at such high pH, so different conditions were sought. We achieved adequate separations in several buffers at nearly physiological pH, in a bare silica capillary which had been coated once with a soluble cationic polymer coating (Micro-Coat applied during column conditioning). Antibody electropherograms changed depending on the type of inorganic buffer salt used in a separation. Phosphate binds to the antigen-binding site of the IgA with low affinity, and interesting effects were observed in separations using phosphate buffer. These effects will be discussed.  相似文献   

3.
Strategies reported for the separation of proteins in capillary zone electrophoresis and capillary isoelectric focusing are reviewed. The strategies are grouped into two categories: coated capillaries and buffer/sample additives. Success attained with each case and also, more importantly, the limitations of the methodology are discussed. Recent results from our own laboratory in the area of capillary isoelectric focusing in uncoated, fused silica capillaries using additives are summarized. The advantages and disadvantages of coated columns vs. additives are delineated.  相似文献   

4.
Isoelectric focusing (IEF) in thin capillaries is reviewed here. After an introduction on the genesis and chemistry of the carrier ampholyte buffers, different approaches to IEF are discussed and evaluated. The classical approach consists on IEF under conditions of suppressed electroosmotic (EOF) flow, usually obtained by covalently bonding hydrophilic polymers to the inner capillary wall. The other approach consists of IEF in dynamically (and partially) coated capillaries, so as to allow a reduced EOF flow to coexist with the IEF process, so that focusing and transport of the train of stacked bands occurs simultaneously. The various experimental parameters: focusing, elution and detection steps, pI measurements, as well as typical drawbacks, such as isoelectric precipitation are evaluated. The review ends with some examples of analytical separations, at the moment mostlyl limited to focusing of native hemoglobins (normal and point mutants). These separations are compared with those obtained by slab-gel IEF and in immobilized pH gradients.  相似文献   

5.
The procedures for the preparation of silica capillaries coated with titanium oxide or aluminum oxide are developed. These inorganic coated capillaries are studied for their applicability in capillary electrophoresis. The points of zero charge are measured as pH 5 and pH 7 for titanium oxide- and aluminum oxide-coated capillaries, respectively. Both titanium oxide and aluminum oxide coatings give better protein separations in comparison to the use of fused-silica capillaries. Separation efficiency of lysozyme as model protein is measured in the range of 20 000 theoretical plates/m of inorganic coated capillaries. However, the hydrophobic interaction between proteins and modified capillary wall possibly contributes to the tailing of observed protein peaks.  相似文献   

6.
We have investigated free-solution capillary electrophoresis (FSCE) and micellar electrokinetic capillary chromatography (MECC) separations of metallothionein (MT) isoforms conducted in uncoated and surface-modified fused-silica capillaries. At alkaline pH, FSCE rapidly resolves isoforms belonging to the MT-1 and MT-2 charge classes. At acidic pH, additional resolution of MT isoforms is achieved. The use of high-ionic-strength (0.5 M) phosphate buffers can result in high peak efficiencies and increased resolution for some MT isoforms. Interior capillary surface coatings such as polyamine and linear polyacrylamide polymers permit separation of MT isoforms with enhanced resolution through their effects on electroosmotic flow (EOF) and protein-wall interactions. Improvements in MT isoform resolution can also be achieved by MECC using 100 mM borate buffer pH 8.4 containing 75 mM SDS. Deproteinization of tissue cytosol samples with acetonitrile (60–80%) or perchloric acid (7%) produces extracts that can be subjected to direct analysis of MT by FSCE or MECC. We conclude that optimal separation of MT isoforms by capillary electrophoresis (CE) can be achieved with the appropriate combination of different capillaries, buffers and sample preparation techniques.  相似文献   

7.
Phosphorylated and nonphosphorylated forms of peptide substrates for protein kinase C (PKC) and calcium-calmodulin activated kinase II (CamKII) were separated by capillary zone electrophoresis. Electrophoresis of the peptide substrates and products in biologic buffer solutions in uncoated capillaries yielded asymmetric analyte peaks with substantial peak tailing. Some of the peptides also exhibited broad peaks with unstable migration times. To improve the electrophoretic separation of the peptides, several strategies were implemented: extensive washing of the capillary with a base, adding betaine to the electrophoretic buffer, and coating the capillaries with polydimethylacrylamide (PDMA). Prolonged rinsing of the capillaries with a base substantially improved the migration time reproducibility and decreased peak tailing. Addition of betaine to the electrophoretic buffer enhanced both the migration time stability as well as the theoretical plate numbers of the peaks. Finally PDMA-coated capillaries brought about significant improvements in the resolving power of the separations. These modifications all utilized an electrophoretic buffer that was compatible with a living biologic cell. Consequently they should be adaptable for the new capillary electrophoresis-based methods to measure kinase activation in single cells.  相似文献   

8.
A simple and fast dynamically coated capillary electrophoretic method was developed for the characterization and inhibition studies of alkaline phosphatases (EC 3.1.3.1). An inside capillary enzymatic reaction was performed, and hydrolysis of the substrate 4-nitrophenylphosphate to 4-nitrophenol was measured. Fused-silica capillary surface was dynamically modified with polycationic polybrene coating. By reversal of the electroosmotic flow (EOF), analysis time was reduced up to 3 min as the anionic analytes were migrated in the same direction as the EOF. Furthermore, the sensitivity of the method was increased using electroinjection through high-field amplified injection. The baseline separation of 4-nitrophenylphosphate and 4-nitrophenol was achieved by employing 50 mM sodium phosphate as the running buffer (pH 8.5), 0.0025% polybrene, and a constant voltage of −15 kV, and the products were detected at 322 nm. Under the optimized conditions, a good separation with high efficiency was achieved. The new method was applied to study enzyme kinetics and inhibitor screening. Km and Ki values obtained with the new CE method were compared well with the standard spectrophotometric method. Dynamic coating of fused-silica capillary gave fast and reproducible separation of substrate and product. The method can be easily optimized for inhibition studies of other isozymes.  相似文献   

9.
Zone electrophoresis separations of human recombinant interleukin-3 (rh IL-3) and related proteins in untreated fused silica capillaries are presented. Results using pH 9 CHES buffer show that rh IL-3 is easily separated from a common carrier, human serum albumin, in a commercial preparation.  相似文献   

10.
The nature of the sieving matrix for DNA fragment separation is of immense importance in capillary and microchip electrophoresis. The chemical nature of the surface of the capillary or microchannel wall is equally as important, particularly with DNA electrophoresis where a substantial electroosmotic flow (EOF) may be detrimental to the separation. Although DNA analysis has been carried out successfully in both coated and uncoated capillaries, analysis of unpurified polymerase chain reaction products has been carried out primarily with covalently coated surfaces, especially with microchip electrophoresis. In this report, double-stranded (ds) DNA fragment analysis using hydroxyethylcellulose (HEC) buffered in 1xTris-borate-EDTA is demonstrated both in uncoated capillaries and in microchips. EOF was suppressed 20% in the presence of 1.5% HEC, and the effectiveness of HEC as a polymer for dsDNA fragment analysis was dependent on the pH, with pH 8.6 being optimal. Using separation efficiency (number of theoretical plates) and resolution to gauge the effectiveness of a variety of polymers for the capillary separation of dsDNA fragments in the size range 60-587bp, HEC was found to be comparable in performance to polydimethylacrylamide (PDMA), and superior to linear polyacrylamide and polyethylene oxide for DNA analysis. With respect to longevity and robust performance, HEC could be used effectively in an uncoated capillary for more than 40 runs and for more than 90 runs (without replenishing the polymer) in an uncoated microchip. Application of the optimized HEC conditions is demonstrated through its ability to facilitate heteroduplex analysis.  相似文献   

11.
A novel noncovalently bilayer-coated capillary using cationic polymer polybrene (PB) and anionic polymer (sodium 4-styrenesulfonate) (PSS) as coatings was prepared. This PB–PSS coating showed good migration-time reproducibility for proteins and high stability in the range of pH 2–10 and in the presence of 1 M NaOH, acetonitrile and methanol. Capillary electrophoresis with PB–PSS coated capillaries was successfully applied to quantitatively investigate the stability of bovine serum albumin, ovomucoid, β-lactoglobulin and lysozyme in simulated gastrointestinal fluids. β-lactoglobulin A and β-lactoglobulin B were both stable in simulated gastric fluid with degradation percentages of 34.3% and 17.2% after 60 min of incubation, respectively. Bovine serum albumin, ovomucoid and lysozyme were stable in simulated intestinal fluid with degradation percentages of 17.7%, 23.4% and 22.8% after 60 min of incubation, respectively. The superiority of the proposed method over sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and capillary electrophoresis with untreated fused silica capillaries was demonstrated and emphasized.  相似文献   

12.
ABSTRACT

Zone electrophoresis separations of human recombinant interleukin-3 (rh IL-3) and related proteins in untreated fused silica capillaries are presented. Results using pH 9 CHES buffer show that rh IL-3 is easily separated from a common carrier, human serum albumin, in a commercial preparation.  相似文献   

13.
A quick and reproducible capillary electrophoresis method was optimized and validated for the assay of bovine serum albumin (BSA). The effects of various parameters such as pH of buffer, concentration of buffer, capillary dimensions, use of coated capillaries, and additives such as surfactants and protein solubilizers were evaluated. The capillary coatings or additives did not give any advantage in reducing the surface adsorption of BSA on the capillary walls. The optimized conditions include use of borate buffer, pH 8.5 having a concentration of 150 mM in a 27 cm capillary with an aperture window of 100 x 200 microns for detection. The optimized method for the detection of BSA was validated. The interday and intraday coefficient of variation was not greater than 7.59% at BSA concentrations of 25-1000 micrograms/ml. The method developed was reproducible and accurate.  相似文献   

14.
The performance of capillary electrophoresis (CE) operating with a sulfonated capillary for the separation of protein adducts of anticancer ruthenium(III)-based drugs was evaluated. The coated capillary was shown to yield improved resolution of albumin- and transferrin-bound species of ruthenium compared with that attained with the bare fused-silica capillary. The coating also showed an increased reproducibility of migration times and peak areas and allowed reasonably high efficiency separation of analytes (up to 1300 theoretical plates per meter), which display high affinity toward a fused-silica surface. In addition, due to rather high electroosmotic flow (EOF, > 45 × 10−5 cm2 V−1 s−1) in the coated capillary, it enabled fast counter-EOF monitoring of albumin and transferrin adducts. This benefit, together with requiring only a short flush with the background electrolyte to have migration times reproducible (at < 1.5% relative standard deviation), makes this wall-modified capillary holding promise for CE examination of fast reactions such as those accompanying protein-drug interactions and biotransformations associated with drug delivery via protein binding.  相似文献   

15.
A study of the capillary electrophoretic separations of proteins and peptides using high-molecular-mass polyethyleneimine (PEI) is presented. Experiments were performed in the PEI-coated capillaries together with the use of this polymer as a buffer additive under different separation conditions. The effects of pH and the concentration of PEI in the buffer on the electroosmotic flow and the migration orders of biopolymers were investigated. The use of the cationic polymer offers an alternative for the modification of the separation selectivity and resolution of biopolymers.  相似文献   

16.
Two capillary electrophoretic methods were developed and evaluated for measurement of glycated hemoglobin A1c (HbA1c). First, a capillary electrophoresis analysis is performed with a sodium tetraborate buffer (pH 9.3) as background electrolyte in a neutrally coated capillary. HbA1c is separated from HbA0 due to specific interactions of borate anions with the cisdiol pattern in the saccharide moiety of glycohemoglobin. Second, a capillary isoelectric focusing method, which exploits a difference in pI values of HbA0 and HbA1c, is performed with Servalyt pH 6–8 or alternatively with Biolyte pH 6–8 carrier ampholytes spiked with a narrow pH cut of pH 7.2 prepared by preparative fractionation of Servalyt pH 4–9 carrier ampholytes. Both methods reflect recent developments in the methodology of capillary electrophoresis. They allow quantifying HbA1c in generic capillary electrophoresis analyzer with specificity that is consistent with previously reported electrophoretic assays in slab gels and capillaries.  相似文献   

17.
Three methods for preparing hydrophilic coatings on polysiloxane bonded CElect H-type capillary electrophoresis columns have been shown. The polyalkylsiloxane-bonded phase is the first coating layer on the capillary surface, and nonionic surfactant, hydrophilic polymer, or polymer surfactant, adsorbed onto this first layer through hydrophobic interactions, forms the second coating layer. The resultant capillary surfaces are inert, hydrophilic, and suitable for highly efficient protein separations. The effectiveness and applicability of these capillary surface modification methods were tested for the separations of a variety of proteins over a wide range of buffer pH values under different capillary electrophoretic operation modes.  相似文献   

18.
Cellulases and hemicellulases are two classes of enzymes produced by filamentous fungi and secreted into the cultivation medium. Both classes of enzymes consist of a subset of classes of which the fungi produce several enzymes with varying molecular mass and pI but similar enzymatic activities. Current methods are limited in their ability to quantify all of these enzymes when all are present simultaneously in a mixture. Five different cellulases (two cellobiohydrolases and three endoglucanases) and one hemicellulase (endoxylanase) were separated using capillary electrophoresis (CE) in a fused silica capillary at pH values close to neutral. The improvement of the separation of these six proteins by the addition of alpha,omega-diaminoalkanes with chain lengths from three to seven carbon units was investigated. Dynamically coating the capillary with 1,3-diaminopropane resulted in separation of the six enzymes and the reproducibility of the migration times was between 0.6 and 1.9%. Two cases-quantitative determination of the enzyme concentrations in cultivation samples and investigation of adsorption of the enzymes onto cellulose-demonstrated the advantages and perspectives of CE analysis of these broad groups of enzymes.  相似文献   

19.
A rapid capillary electrophoresis procedure was developed for determining the anti-cancer components, camptothecins, in Nothapodytes foetida. The hydrophobic compound was extracted from plant tissue (ca. 1 mL of DMSO for 100 mg of dried plant tissue) with a water-miscible organic solvent, DMSO, at elevated temperature (60 degrees C). The extract was directly injected into the separation capillary (untreated fused silica, 34 cm in length, 75 microm i.d.) and analysed in MEKC mode (369 nm). Within 5 min of migration, camptothecins were successfully separated and quantified by adding organic modifiers to the running buffer (20% DMSO, 90 mm SDS in 10 mm borate buffer, pH 8.60). The linear dynamic range for camptothecin was from 5 to 400 microg/mL. This method was proven to be very suitable for monitoring the amount of camptothecins during the cultivation of the medicinal plant.  相似文献   

20.
A chiral capillary monolithic column for capillary electrochromatography (CEC) was prepared by covalent bonding of cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) on the silica monolithic matrix within the confine of a 50-microm i.d. bare fused silica capillary. Several pairs of enantiomers including neutral and basic analytes were baseline resolved on the newly prepared chiral capillary monolithic column in CEC with aqueous mobile phases. Fast enantioseparation was achieved due to the favorable dynamic properties of silica monolith. The covalent bonding of CDMPC as the chiral stationary phase for CEC also enabled the use of THF in mobile phase for enantioseparation of prazquantel by overcoming the incompatibility of THF and the physically coated CDMPC on a column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号