首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monovalent ionophore monensin inhibits the secretion of both procollagen and fibronectin from human fibroblasts in culture. The distribution of these proteins in control and inhibited (5 x 10(-7) M monensin) cells has been studied by immunofluorescence microscopy. In control cells, both antigens are present throughout the cytoplasm and in specific deposits in a region adjacent to the nucleus, which we identify as a Golgi zone by electron microscopy. Treatment of cells with monensin causes intracellular accumulation of procollagen and fibronectin, initially in the juxta-nuclear region and also subsequently in peripheral regions. Electron microscope studies reveal that in such cells the juxta-nuclear Golgi zone becomes filled with a new population of smooth-membraned vacuoles and that normal Golgi complexes are not found. Immunocytochemically detected procollagen and fibronectin are localized in the region of these vacuoles, whereas more peripheral deposits correspond to the dilated cisternae of rough endoplasmic reticulum, which are also caused by monensin. Procollagen and fibronectin are often codistributed in these peripheral deposits. Accumulation of exportable proteins in Golgi-related vacuoles is consistent with previous analyses of the monensin effect. The subsequent development of dilated rough endoplasmic reticulum also containing accumulated proteins may indicate that there is an additional blockade at the exit from the endoplasmic reticulum, or that the synthesized proteins exceed the capacity of the Golgi compartment and that their accumulation extends into the endoplasmic reticulum.  相似文献   

2.
The synthesis of collagen can be interrupted, after the assembly of proline-rich and lysine-rich polypeptide chains called protocollagen, by incubating connective tissues anaerobically. Under these conditions the proline and lysine residues in protocollagen are not hydroxylated to hydroxyproline and hydroxylysine, and protocollagen molecules accumulate intracellularly. Chemical data and radioautographs at the level of the light and electron microscopes indicated that in tissues labeled with proline-3,4-3H under nitrogen, there appeared to be an accumulation of radioactivity over the ground cytoplasm. When the inhibition of protocollagen hydroxylase was reversed by exposing the tissue to oxygen, the accumulated protocollagen-3H was converted to collagen-3H and there was a rapid transfer of label from the ground cytoplasm to the extracellular matrix. There was no significant change in distribution of label over either the Golgi vacuoles or the cisternae of the endoplasmic reticulum. The failure to find a significant change in distribution of label over the Golgi vacuoles or the cisternae does not completely exclude the possibility that these two compartments are involved in the extrusion, but the data are consistent with the simpler notion that the completed collagen molecules pass directly from the ground cytoplasm to the extracellular matrix.  相似文献   

3.
1. Subcellular fractions of freshly isolated matrix-free embryonic chick tendon and sternal cartilage cells have been characterized by chemical analysis, electron microscopy and the location of specific marker enzymes. These data indicate the fractions to be of a high degree of purity comparable with those obtained from other tissues, e.g. liver and kidney. 2. When homogenates were assayed for protocollagen prolyl hydroxylase and protocollagen lysyl hydroxylase activities, addition of Triton X-100 (0.1%, w/v) was found to stimulate enzyme activities by up to 60% suggesting that the enzymes were probably membrane-bound. 3. Assay of subcellular fractions obtained by differential centrifugation for protocollagen prolyl hydroxylase activity indicated the specific activity to be highest in the microsomal fraction. Similar results were obtained for protocollagen lysyl hydroxylase activity. 4. Submicrosomal fractions obtained by discontinuous sucrose-gradient centrifugation were assayed for the two enzymes and protocollagen prolyl hydroxylase and protocollagen lysyl hydroxylase were found to be associated almost exclusively with the rough endoplasmic reticulum fraction in both tendon and cartilage cells.  相似文献   

4.
Rabbit antibodies to bovine basement membrane collagen were used to compare the antigenic determinants of rat parietal yolk sac basement membrane [14C]procollagen with [14C]protocollagen. Basement membrane [14C]protocollagen was found to be less antigenic than basement membrane [14C]procollagen. Hydroxylation of basement membrane [14C]protocollagen, either intracellularly or in vitro with protocollagen prolyl hydroxylase, resulted in restoration of antigenicity. The difference in antigenicity observed between basement membrane [14C]procollagen and basement membrane [14C]protocollagen appeared to depend primarily upon the presence of hydroxyproline in the collagen molecule. Glucosylgalactosylhydroxylysine was found to be unimportant for antigenicity.  相似文献   

5.
Resolution of the heavy microsomal fraction of lung tissue by Ficoll density gradient centrifugation yielded a rough endoplasmic reticulum microsomal fraction containing the highest specific activity of detergent-released lysyl hydroxylase. This same microsomal fraction was previously shown to contain the highest specific activity of detergent-released prolyl hydroxylase activity. When hydroxylation was inhibited during the biosynthesis of collagen, this microsomal fraction contained lysine-rich, hydroxylysine-deficient, collagenase-digestible substrate that could be hydroxylated in the absence of detergent. The results indicate coordinate localization of both prolyl and lysyl hydroxylation reactions within the cisternae of the rough endoplasmic reticulum.  相似文献   

6.
The ubiquitous connective tissues contain a wide range of cells including fibroblasts, osteoblasts and chondroblasts. Recently it has been demonstrated that another principal cell of the connective tissue is the smooth muscle cell in several organ systems. These have been shown to be responsible for the synthesis of the connective tissue matrix components of the uterine myometrium and of the arterial system, including collagen, both elastic fibre proteins and glycosaminoglycan. Microtubule inhibitors such as colchicine and vinblastine, and iron chelators such as alpha,alpha -dipyridyl have been used to study their morphologic and chemical effects on collagen synthesis and secretion. Colchicine produces an increase in large Golgi-associated vacuoles, which sometimes contain material reminiscent of aggregates of collagen macromolecules. Vinblastine produces alterations in the endoplasmic reticulum cisternae similar to alterations seen in ascorbic acid deficiency, and alpha,alpha-dipyridyl increases the frequency of regions in cells, interpretable as potential sites of communication of rough endoplasmic reticulum cisternae with the cell surface. Ferritin conjugated anti-procallagen sera were used to localize procollagen in cells and demonstrated procollagen not only in the cisternae of rough endoplasmic reticulum but in all of the elements of the Golgi complex as well. The studies reported in this review have shown that in cell culture arterial smooth muscle will produce not only the microfibrillar protein of the elastic fibre but soluble and/or insoluble elastin as well. Recent studies on serum factors responsible for the proliferation of connective tissue cells have demonstrated that at least one of the principal factors responsible for fibroblast and/or smooth muscle cell proliferation in culture is derived from thrombocytes. Medium containing serum derived from cell-free plasma lacks most of this proliferative effect which can be reinstated when platelets are present during recalcification to form serum. This effect is due to the platelet release reaction as shown by combining supernatant factors derived from platelets exposed to purified thrombin to cell-free, plasma derived serum. Studies with macrophages have also suggested that phagocytic macrophages release factor(s) into a cell culture medium that may also participate in stimulating fibroblasts to proliferate in vitro. The means by which these factors stimulate fibroblast proliferation and connective tissue synthesis remains to be elucidated.  相似文献   

7.
Three distinct antiprocollagen preparations were characterized and used in immunocytochemical staining of chick embryo corneal and tendon cells. The several ferritin-conjugated antibody preparations permitted similar location of procollagen in the cisternae of the rough endoplasmic reticulum and in Golgi elements in both cell types. The ability to demonstrate and interpret specific ferritin staining was dependent on the extent of membrane breakage in each of those organelles, coupled with adequate retention of cell morphology. Corneal fibroblasts appeared to suffer more extensive intracellular membrane damage under controlled conditions of homogenization than tendon fibroblasts, facilitating the identification of procollagen in Golgi vacuoles of these cells. None of the labeled material appeared to by cytoplasmic in origin since ferritin was observed in the cytoplasm only in the vicinity of Golgi elements that were extensively broken. This study extends previous immunological evidence for the presence of procollagen in the Golgi complex and calls attention to the problems to be encountered in locating the antigen in small Golgi vesicles and lamellae.  相似文献   

8.
Affinity-purified, monospecific rabbit antibodies against rat pancreatic alpha-amylase and bovine pancreatic alpha-chymotrypsinogen were used for immunoferritin observations of ultrathin frozen sections of mildly fixed exocrine pancreatic tissue from secretion-stimulated (pilocarpine) rats and from overnight-fasted rats and guinea pigs. The labeling patterns for both antibodies were qualitatively alike: Labeling occurred in (a) the cisternae of the rough endoplasmic reticulum (RER) including the perinuclear cisterna, in (b) the peripheral area between the RER and cis-Golgi face, and (c) all Golgi cisternae, condensing vacuoles, and secretory granules. Labeling of cytoplasmic matrix was negligible. Structures that appeared to correspond to rigid lamellae were unlabeled. Differences in labeling intensities indicated that concentration of the zymogens starts at the boundary of the RER and cis-side of the Golgi complex. These data support the view that the Golgi cisternae are involved in protein processing in both stimulated and unstimulated cells and that Golgi cisternae and condensing vacuoles constitute a functional unit.  相似文献   

9.
The effect of hydralazine on several parameters of collagen biosynthesis has been studied in cultured human skin fibroblasts. Cells treated with hydralazine synthesized procollagen which was severely deficient in hydroxyproline and hydroxylysine, indicating inhibition of prolyl and lysyl hydroxylase reactions in the cell. Assays of prolyl and lysyl hydroxylase activities, however, revealed markedly increased levels in hydralazine-treated cells. The stimulatory effect of hydralazine could not be simulated in cell extracts, demonstrating its requirement for intact cells. The effect occurred slowly over a period of 96 h and was dependent on hydralazine concentration between 10 and 100 microM. This phenomenon was also observed in lysyl hydroxylase-deficient mutants. In both normal and mutant cells the relative magnitude of the hydralazine effect could be modified by ascorbic acid in the culture medium. Ascorbic acid increased the response of prolyl hydroxylase to hydralazine from 1.5- to 2-fold to 3- to 7-fold, whereas it decreased the response of lysyl hydroxylase to hydralazine from 4- to 8-fold to 2- to 3-fold. Total collagen synthesis was substantially reduced in hydralazine-treated cells; the time course and the dose-response relationship were similar to those observed for the hydroxylases. alpha, alpha'-Dipyridyl, an iron chelator, mimicked these effects of hydralazine. The studies suggest the existence in cultured cells of a compensatory mechanism for overproduction of these crucial enzymes in collagen biosynthesis, a mechanism which remains functional in cells derived from patients afflicted with hydroxylysine-deficient collagen disease.  相似文献   

10.
Reichert's membrane and the endodermal cells of the parietal yolk sac were examined for the presence of laminin antigenicity using anti-laminin antibodies and the peroxidase-antiperoxidase sequence. Immunostaining was observed through the full width of Reichert's membrane and within endodermal cells. In these cells immunostaining was observed in rough endoplasmic reticulum (rER) cisternae and Golgi apparatus. The Golgi staining could occur in any saccule, but predominated in components interpreted as the last saccule of the stack, the GERL element, and associated prosecretory granules. The secretory granules found in the ectoplasm were also immunostained. Finally, multivesicular bodies showed some staining. The immunostaining of Reichert's membrane indicates the presence of laminin itself, while that of rER cisternae and the Golgi apparatus is attributed to laminin precursors. Presumably the biosynthesis of laminin occurs along the usual protein pathway, that is, from rER through Golgi saccules and the GERL element to secretory granules, which release their content into Reichert's membrane. The laminin immunostaining of Reichert's membrane and endodermal cells is similar to that of type IV collagen. It is, therefore, likely that the two substances are processed and secreted simultaneously.  相似文献   

11.
J Saraste  K Hedman 《The EMBO journal》1983,2(11):2001-2006
The route of transport of Semliki Forest virus (SFV) membrane glycoproteins to the plasma membrane was studied using immunoperoxidase electron microscopy. SFV glycoproteins were localized in cultured BHK-21 fibroblasts infected with a temperature-sensitive mutant ts-1 of SFV, which shows a temperature-dependent, reversible defect in the transport of membrane glycoproteins to the cell surface. At 39 degrees C (restrictive temperature) the viral proteins were retained in the endoplasmic reticulum and the nuclear membrane. After shift of the infected cultures to 28 degrees C (permissive temperature) the proteins were synchronously transported to the Golgi complex. In the Golgi complex the labeled proteins were first (at 2.5 min) detected in large Golgi-associated vacuoles (GAV). Subsequently, i.e., at 5-30 min, the viral glycoproteins appeared in the cisternal stack: at 5 min the label was found in one or two of the proximal cisternae whereas at 15 or 30 min also the more distal cisternae were partially or uniformly labeled. At all time points examined after the temperature-shift, peroxidase label was found in 50 nm vesicles which were frequently coated. At 30 min, in addition to the 50 nm vesicles, larger 80 nm vesicles, which often had a cytoplasmic coat were labeled in the Golgi region. These results identify two major size classes of both coated and smooth vesicles which appear to function in the transport of the viral membrane proteins from the endoplasmic reticulum via distinct GAV and the stacked Golgi cisternae to the plasma membrane.  相似文献   

12.
Hosokawa N  Nagata K 《FEBS letters》2000,466(1):19-25
In cells, only properly folded procollagen trimers are secreted from the endoplasmic reticulum (ER), while improperly folded abnormal procollagens are retained within the ER. Ascorbic acid is a co-factor in procollagen hydroxylation, which in turn is required for trimer formation. We examined chaperone proteins which bound to procollagen in the absence of ascorbic acid, a model which mimics the human disease scurvy at the cellular level. We found that both prolyl 4-hydroxylase (P4-H)/protein disulfide isomerase (PDI) and HSP47 bound to procollagen in the absence of ascorbic acid. However, the binding of PDI to procollagen decreased when HSP47 was co-transfected, suggesting that HSP47 and PDI compete for binding to procollagen. These data indicate that P4-H/PDI and HSP47 have cooperative but distinct chaperone functions during procollagen biosynthesis.  相似文献   

13.
The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

14.
Summary The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using (i) monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and (ii) cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

15.
A. Sauer  D. G. Robinson 《Planta》1985,164(2):287-294
The enzyme prolyl hydroxylase which is responsible for the hydroxylation of peptidyl proline has been investigated in extracts of maize roots. The optimum conditions under which this enzyme can be assayed have been determined using both a colorometric and a radiochemical assay. The enzyme has certain features in common with vertebrate prolyl hydroxylase (pH optimum, requirement for ferrous ion, inhibition by tricine and phosphate buffers, stimulation by bovine serum albumin) but prefers poly-L-proline to collagenous substrates. Centrifugation studies shows that the enzyme is mainly membrane-bound and is primarily localized in the endoplasmic reticulum, although the presence of small amounts in the Golgi apparatus cannot be ruled out.Abbreviations EDTA ethylenediaminetetraacetic acid - ER endoplasmic reticulum - GApp Golgi apparatus  相似文献   

16.
A fraction greatly enriched in microsomes was prepared from chick embryo limb bone tissue homogenates by differential centrifugation in a high density solution of Metrizamide. This fraction was used to determine the submicrosomal localization of prolyl hydroxylase. At a low concentration (0.05%) of the non-ionic detergents Triton X-100 and Brij-35, 90 to 93% of prolyl hydroxylase activity was released from microsomes. Concentrations of Triton X-100 greater than 0.1% were required to solubilize the intrinsic membrane enzyme NADH-ferricyanide reductase and to release membrane-bound ribosomes, while Brij-35 did not extensively solubilize membrane components even at concentrations up to 0.4%. In addition, prolyl hydroxylase activity which could subsequently be released from microsomes by Brij-35 was relatively resistant to trypsin proteolysis at concentrations which removed more than 50% of the ribosomes and approximately 40% of the protein from microsomes. These results suggest that 90 to 93% of prolyl hydroxylase activity in connective tissue is located within the cisternae of the endoplasmic reticulum. Gel filtration of prolyl hydroxylase released from microsomes or found in the soluble fraction of limb bone homogenates revealed two peaks of activity corresponding to molecular weights of 230,000 and 450,000 to 500,000. The latter is twice the value reported for purified chick embryo prolyl hydroxylase. A fraction of the total prolyl hydroxylase activity (generally 20 to 35%) in microsome preparations could be measured in the absence of detergent, although the microsomal membrane should be impermeable to the large unhydroxylated collagen chains used as substrate. On the basis of experimental data, it was concluded that detergent-independent activity was most likely due to damaged microsomal membranes and that this damage was sufficient to allow substrate and trypsin to enter the cisternae but not to allow prolyl hydroxylase to be released.  相似文献   

17.
By the use of electron immunoperoxidase cytochemistry at the ultrastructural level, the relationship of the surrounding sac of the autophagic vacuoles to the different cytomembranes was studied. When the endoplasmic reticulum was completely stained for microsomal carboxyesterase E1, the enzyme was not found to be labeled in the developed envelopes forming autophagic vacuoles. The autophagic envelope at the formative stages was also devoid of albumin which intensely stained Golgi cisternae. However, although it was rare, the endoplasmic reticulum showed an electron-lucent region like an early autophagic envelope in its cisternae which was lacking in carboxyesterase E1. In addition, deeply curving swelled cisternae where carboxyesterase E1 was found at the edges were occasionally encountered. These observations suggest that the segregating membranes arise from an endoplasmic reticulum and the structural characteristics of the endoplasmic membranes change at very early stages of formation of autophagic vacuoles. Acid phosphatase, a lysosomal marker enzyme, began to be localized on sections of the double membranes of newly created autophagic vacuoles. The enzyme spread all along the limiting membranes of the autophagic vacuoles, while, at the same time, the double membranes were converted into a single membrane. A lysosomal membrane glycoprotein (LGP107) was also localized on the surrounding envelope of autophagic vacuoles in a fashion similar to that of acid phosphatase. Lysosomal hydrolases seem to play some role in the conversion of double limiting membranes into a single limiting membrane.  相似文献   

18.
Antibodies to pure lysyl hydroxylase from whole chick embryos were prepared in rabbits and used for immunological characterization of this enzyme of collagen biosynthesis. In double immunodiffusion a single precipitation line was seen between the antiserum and crude or pure chick-embryo lysyl hydroxylase. The antiserum effectively inhibited chick-embryo lysyl hydroxylase activity, whether measured with the biologically prepared protocollagen substrate or a synthetic peptide consisting of only 12 amino acids. This suggests that the antigenic determinant was located near the active site of the enzyme molecule. Essentially identical amounts of the antiserum were required for 40% inhibition of the same amount of lysyl hydroxylase activity units from different chick-embryo tissues synthesizing various genetically distinct collagen types. In double immunodiffusion a single precipitation line of complete identity was found between the antiserum and the purified enzyme from whole chick embryos and the crude enzymes from chick-embryo tendon, cartilage and kidneys. These results do not support the hypothesis that lysyl hydroxylase has collagen-type-specific or tissue-specific isoenzymes with markedly different specific activities or immunological properties. The antibodies to chick-embryo lysyl hydroxylase showed a considerable degree of species specificity when examined either by activity-inhibition assay or by double immuno-diffusion. Nevertheless, a distinct, although weak, cross-reactivity was found between the chick-embryo enzyme and those from all mammalian tissues tested. The antiserum showed no cross-reactivity against prolyl 3-hydroxylase, hydroxylysyl galactosyl-transferase or galactosylhydroxylysyl glucosyltransferase in activity-inhibition assays, whereas a distinct cross-reactivity was found against prolyl 4-hydroxylase. Furthermore, antiserum to pure prolyl 4-hydroxylase inhibited lysyl hydroxylase activity. These findings suggest that there are structural similarities between these two enzymes, possibly close to or at their active sites.  相似文献   

19.
The formation of 3-hydroxyproline was studied with crude rat kidney cortex extract as a source of enzyme and chick embryo tendon protocollagen and procollagen or cartilage protocollagen as a substrate. Synthesis of 3-hydroxyproline was observed with all these substrates and the formation of 3-hydroxyproline ranged up to seven residues per pro-alpha-chain. The highest rate of 3-hydroxylation took place at 20 degrees C and the reaction required Fe2+, O2,2-oxoglutarate and ascorbate. The formation of 3-hydroxyproline was affected by chain length and the conformation of the substrate, in that longer polypeptide chains proved better substrates, while the native triple-helical conformation of protocollagen or procollagen completely prevented the reaction. Formation of 3-hydroxyproline with tendon procollagen as a substrate was not inhibited by antiserum to prolyl 4-hydroxylase or by poly(L-proline) when these substances were used in concentrations which clearly inhibited 4-hydroxyproline formation with tendon protocollagen as a substrate. Furthermore, pure prolyl 4-hydroxylase did not synthesize any 3-hydroxyproline under conditions in which the crude rat kidney cortex enzyme would readily do so. The data thus strongly suggest that prolyl 3-hydroxylase and prolyl 4-hydroxylase are separate enzymes.  相似文献   

20.
Human skin fibroblasts were cultured under conditions optimized for collagen synthesis, and the effects of ascorbic acid on procollagen production, proline hydroxylation and the activity of prolyl hydroxylase were examined in cultures. the results indicated that addition of ascorbic acid to confluent monolayer cultures of adult human skin fibroblasts markedly increased the amount of [3H]hydroxyproline synthesized. Ascorbic acid, however, did not increase the synthesis of 3H-labeled collagenous polypeptides assayed independently of hydroxylation of proline residues, nor did it affect the amount of prolyl hydroxylase detectable by an in vitro enzyme assay. Also long-term cultures of the cells or initiation of fibroblast cultures in the presence of ascorbic acid did not lead to an apparent selection of a cell population which might be abnormally responsive to ascorbic acid. Thus, ascorbic acid appears to have one primary action on the synthesis of procollagen by cultured human skin fibroblasts: it is necessary for synthesis of hydroxyproline, and consequently for proper triple helix formation and secretion of procollagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号