首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High photosynthetic rate of a chlorophyll mutant of cotton   总被引:4,自引:3,他引:1       下载免费PDF全文
In a chlorophyll mutant (virescent) and wild-type cotton (Gossypium hirsutum L.), a number of photosynthetic parameters have been measured and compared with those published for other chlorophyll mutants. (a) The photosynthetic rates at 230 w/m2 (400-700 nm) from a tungsten lamp were 36.8 mg CO2 fixed/dm2·hr (virescent) and 39.5 mg CO2 fixed/dm2·hr (wild-type). On a chlorphyll basis, the photosynthetic rates were 36.8 and 12.1 mg CO2 fixed/mg chl·hr, respectively. (b) The photosynthetic rates at 13 w/m2 (400-700 nm) from a tungsten source were 7.1 mg CO2 fixed/dm2·hr (virescent) and 7.4 mg CO2 fixed/dm2·hr (wild-type). On a chlorophyll basis, the photosynthetic rates were 6.0 and 1.4 mg CO2 fixed/mg chl·hr, respectively. (c) The chlorophyll a/b ratios of the virescent and wild-type leaves were 3.3 and 4.1 (d) The chlorophyll/carotenoid ratios for the virescent and wild-type leaves were 3.2 and 7.3, respectively. (e) The photosynthetic carbon metabolism of the chlorophyll mutant was through the reductive pentose phosphate cycle. (f) The CO2 compensation points for the virescent and wild-type plants were similar. (g) The mutant and wild-type leaves have the same quantum yield in the red part of the visible spectrum, but the virescent leaves have a lower quantum yield in the blue part of the spectrum. (h) Virescent and wild-type leaves contain similar levels on a protein basis of several reductive pentose phosphate cycle enzymes.  相似文献   

2.
To understand how light quality influences plant photosynthesis, we investigated chloroplastic ultrastructure, chlorophyll fluorescence and photosynthetic parameters, Rubisco and chlorophyll content and photosynthesis-related genes expression in cucumber seedlings exposed to different light qualities: white, red, blue, yellow and green lights with the same photosynthetic photon flux density of 100 μmol m?2 s?1. The results revealed that plant growth, CO2 assimilation rate and chlorophyll content were significantly reduced in the seedlings grown under red, blue, yellow and green lights as compared with those grown under white light, but each monochromatic light played its special role in regulating plant morphogenesis and photosynthesis. Seedling leaves were thickened and slightly curled; Rubisco biosynthesis, expression of the rca, rbcS and rbcL, the maximal photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII electron transport (ФPSII) were all increased in seedlings grown under blue light as compared with those grown under white light. Furthermore, the photosynthetic rate of seedlings grown under blue light was significantly increased, and leaf number and chlorophyll content of seedlings grown under red light were increased as compared with those exposed to other monochromatic lights. On the contrary, the seedlings grown under yellow and green lights were dwarf with the new leaves etiolated. Moreover, photosynthesis, Rubisco biosynthesis and relative gene expression were greatly decreased in seedlings grown under yellow and green light, but chloroplast structural features were less influenced. Interestingly, the Fv/Fm, ФPSII value and chlorophyll content of the seedlings grown under green light were much higher than those grown under yellow light.  相似文献   

3.
4.
Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NRnia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen and nitrate but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second 14CO2 pulse, the total 14C incorporation of the mutant leaves was approximately 20% of that of the control. The 14C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second 14CO2 pulse followed by a 60 second chase with normal CO2, 14C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus.  相似文献   

5.
Mutation of the nuclear gene sid disables chlorophyll degradation during leaf senescence in the pasture grass Festuca pratensis. This study investigated the effect of the mutation on photosynthesis and on leaf and whole plant growth under a range of nitrogen regimes. When plants were cultivated in a static hydroponic system, the chlorophyll content of fourth leaves of the stay-green mutant Bf993 remained virtually unchanged from full expansion to complete senescence, while tissue of the wild-type (cv. Rossa) became completely yellow. The retention of chlorophyll in Bf993 was not associated with maintenance of photosynthetic activity as shown by rates of light-saturated CO2 fixation and apparent quantum efficiency. Higher levels of total N in senescing leaves of Bf993 than in Rossa indicated reduced nitrogen remobilization in the mutant. When using a range of [NH4NO3], dry matter production and tillering Mere lower for Bf993 at all but the highest [NH4NO3, which was supra-optimal for the wild type. In contrast to the static system, where fluctuations in N supply occurred, growth and [NO3?] uptake were similar in mutant and wild type when [NO3?] was continuously maintained by a flowing solution culture system. The results are discussed in relation to the role of N supply and the effect of the stay-green mutation on N recycling.  相似文献   

6.
Characterization of a virescent chloroplast mutant of tobacco   总被引:2,自引:1,他引:1       下载免费PDF全文
Virescent mutations produce plants in which young leaves have reduced chlorophyll levels but accumulate nearly normal amounts of chlorophyll as they age; they are predominantly nuclear mutations. We describe here a virescent mutation (designated Vir-c) found in a somatic hybrid line derived from Nicotiana tabacum L. and Nicotiana suaveolens Lehm. This mutation is inherited maternally. Young, half-expanded Vir-c leaves contained three to six times less chlorophyll than did control leaves, and reached maximum chlorophyll levels much later in development. Chlorophyll synthesis rates and chloroplast numbers per cell in Vir-c were similar to the control, and carotenoid content in Vir-c was sufficient to protect chlorophyll from photo-oxidation. Photosynthetic rates of Vir-c at low light intensities suggested a reduced ability to collect light. Electron micrographs of Vir-c chloroplasts from half-expanded leaves showed a significant reduction in thylakoids per granum. The decrease in granal thylakoids was strongly associated with low chlorophyll levels; mature Vir-c leaves with nearly normal chlorophyll content showed normal granal profiles. These results are discussed in relation to virescent mutants previously described.  相似文献   

7.
Isolation,characterization, and mapping of the stay green mutant in rice   总被引:25,自引:0,他引:25  
Leaf color turns yellow during senescence due to the degradation of chlorophylls and photosynthetic proteins. A stay green mutant was isolated from the glutinous japonica rice Hwacheong-wx through N-methyl-N-nitrosourea mutagenesis. Leaves of the mutant remained green, while turning yellow in those of the wild-type rice during senescence. The stay green phenotype was controlled by a single recessive nuclear gene, tentatively symbolized as sgr(t). All the phenotypic characteristics of the mutant were the same as those of the wild-type lines except for the stay green trait. The leaf chlorophyll concentration of the mutant was similar to that of the wild-type before heading, but decreased steeply in the wild-type during grain filling, while very slowly in the mutant. However, no difference in photosynthetic activity was observed between the stay green mutant and the yellowing wild-type leaves, indicating that senescence is proceeding normally in the mutant leaves and that the mutation affects the rate of chlorophyll degradation during the leaf senescence. Using phenotypic and molecular markers, we mapped the sgr(t) locus to the long arm of chromosome 9 between RFLP markers RG662 and C985 at 1.8- and 2.1-cM intervals, respectively. Received: 29 April 2001 / Accepted: 17 July 2001  相似文献   

8.
We investigated several photosynthetic parameters of a virescent mutant of durum wheat and of its wild-type. Electron transport rate to ferricyanide was the same in the two genotypes when expressed on leaf area basis while O2 evolution of the leaf tissue in saturating light and CO2 was slightly higher in the yellow genotype. RuBPCase was also slightly higher. Quantum yield per absorbed light was similar in the two genotypes. P700 and Cyt f were less concentrated in the mutant while PS II was only marginally lower. The light response curve of CO2 assimilation indicated higher level of photosynthesis of the mutant in high light, which corresponded to a lower non-photochemical quenching compared to the wild-type. It is concluded that the reaction centres, cyt f and chlorophyll are not limiting factors of electron transport in wheat seedlings and that electron transport capacity is in excess with respect to that needed for driving photosynthesis. Since the differences in photosynthesis reflect differences in RuBPCase activity, it is suggested that this enzyme limits photosynthesis in wheat seedlings also at high light intensities.Abbreviations cyt f cytochrome f - chl chlorophyll - PS II photosystem II - Pnmax maximum photosynthesis - RuBCase Ribulose, 1-5,bisphosphate carboxylase  相似文献   

9.
A mutant, which derived from the restorer line Jinhui10 treated with EMS, showed completely yellow green leaves, and it had low chlorophyll content and poor agronomic characteristics during the growing stage. The F1 plants from the cross between normal × the mutant showed normal green leaves, and the segregation ratio of normal to yellow green leaves was 3 : 1 in F2 population. It indicated that the trait was controlled by a single recessive nuclear gene, temporarily designated asygl3. The geneygl3 was mapped between RM468 and RM3684 with genetic distances 8.4 cM and 1.8 cM on chromosome 3. This result would be used as genetic information for fine mapping and map-based cloning ofygl3 gene.  相似文献   

10.
Conservation of respired CO2 by an efficient recycling mechanism in fruit could provide a significant source of C for yield productivity. However, the extent to which such a mechanism operates in cotton (Gossypium hirsutum L.) is unknown. Therefore, a combination of CO2 exchange, stable C isotope, and chlorophyll (Chl) fluorescence techniques were used to examine the recycling of respired CO2 in cotton fruit. Respiratory CO2 losses of illuminated fruit were reduced 15 to 20% compared with losses for dark-incubated fruit. This light-dependent reduction in CO2 efflux occurred almost exclusively via the fruit's outer capsule wall. Compared with the photosynthetic activity of leaves, CO2 recycling by the outer capsule wall was 35 to 40% as efficient. Calculation of 14CO2 fixation on a per Chl basis revealed that the rate of CO2 recycling for the capsule wall was 62.2 micromoles 14CO2 per millimole Chl per second compared with an assimilation rate of 64.6 micromoles 14CO2 per millimole Chl per second for leaves. During fruit development, CO2 recycling contributed more than 10% of that C necessary for fruit dry weight growth. Carbon isotope analyses (δ13C) showed significant differences among the organs examined, but the observed isotopic compositions were consistent with a C3 pathway of photosynthesis. Pulse-modulated Chl fluorescence indicated that leaves and fruit were equally efficient in photochemical and nonphotochemical dissipation of light energy. These studies demonstrated that the cotton fruit possesses a highly efficient, light-dependent CO2 recovery mechanism that aids in the net retention of plant C and, therein, contributes to yield productivity.  相似文献   

11.
As is the case with spinach ribulose bisphosphate carboxylase/oxygenase (Rubisco), [14C]carboxyarabinitol bisphosphate (CABP) bound to purified Chlorella Rubisco with a molar ratio of unity to large subunit of the enzyme. The concentration of binding sites in extracts of photosynthetic organisms was determined by reacting the extracts with [14C]-carboxypentitol bisphosphate (CPBP) and precipitating the resultant Rubisco-[14C]CABP complex with a combination of polyethylene glycol-4000 and MgCl2. Plots of the relationship between concentrations of [14C] CPBP in the reaction mixture and the precipitated [14C]CPBP gave a straight line and the concentration of binding sites were estimated by extrapolation to zero [14C]CPBP since the dissociation constant of CABP with Rubisco is 10−11 molar. Spinach, pea, and soybean leaves contained 6.4 to 6.8 milligrams Rubisco per milligram chlorophyll, corresponding to 92 to 97 ribulose bisphosphate-binding sites per milligram chlorophyll. The Rubisco content of sunflower and wheat leaves was 5.3 to 5.5 milligrams per milligram chlorophyll. The concentrations in C4 plants were not uniform and corn and Panicum miliaceum leaves contained 3 and 7 milligrams Rubisco per milligram chlorophyll. The Rubisco content of green algae was one-fifth to one-sixth that of C3 plant leaves and was affected by the CO2 concentration during growth. The content of Euglena and blue-green algae is also reported.  相似文献   

12.
A Photorespiratory Mutant of Chlamydomonas reinhardtii   总被引:2,自引:1,他引:1       下载免费PDF全文
A mutant strain of Chlamydomonas reinhardtii, designated 18-7F, has been isolated and characterized. 18-7F requires a high CO2 concentration for photoautrophic growth in spite of the apparent induction of a functional CO2 concentrating mechanism in air-adapted cells. In 2% O2 the photosynthetic characteristics of 18-7F and wild type are similar. In 21% O2, photosynthetic O2 evolution is severely inhibited in the mutant by preillumination in limiting CO2, although the apparent photosynthetic affinity for inorganic carbon is similar in preilluminated cells and in cells incubated in the dark prior to O2 evolution measurements. Net CO2 uptake is also inhibited when the cells are exposed to air (21% O2, 0.035% CO2, balance N2) for longer than a few minutes. [14C]Phosphoglycolate accumulates within 5 minutes of photosynthetic 14CO2 fixation in cells of 18-7F. Phosphoglycolate does not accumulate in wild type. Phosphoglycolate phosphatase activity in extracts from air-adapted cells of 18-7F is 10 to 20% of that in wild-type Chlamydomonas. The activity of phosphoglycolate phosphatase in heterozygous diploids is intermediate between that of homozygous mutant and wild-type diploids. It was concluded that the high-CO2 requiring phenotype in 18-7F results from a phosphoglycolate phosphatase deficiency. Genetic analyses indicated that this deficiency results from a single-gene, nuclear mutation. We have named the locus pgp-1.  相似文献   

13.
The supply of photosynthates by leaves for reproductive development in cotton (Gossypium hirsutum L.) has been extensively studied. However, the contribution of assimilates derived from the fruiting forms themselves is inconclusive. Field experiments were conducted to document the photosynthetic and respiratory activity of cotton leaves, bracts, and capsule walls from anthesis to fruit maturity. Bracts achieved peak photosynthetic rates of 2.1 micromoles per square meter per second compared with 16.5 micromoles per square meter per second for the subtending leaf. However, unlike the subtending leaf, the bracts did not show a dramatic decline in photosynthesis with increased age, nor was their photosynthesis as sensitive as leaves to low light and water-deficit stress. The capsule wall was only a minor site of 14CO2 fixation from the ambient atmosphere. Dark respiration by the developing fruit averaged −18.7 micromoles per square meter per second for 6 days after anthesis and declined to −2.7 micromoles per square meter per second after 40 days. Respiratory loss of CO2 was maximal at −158 micromoles CO2 per fruit per hour at 20 days anthesis. Diurnal patterns of dark respiration for the fruit were age dependent and closely correlated with stomatal conductance of the capsule wall. Stomata on the capsule wall of young fruit were functional, but lost this capacity with increasing age. Labeled 14CO2 injected into the fruit interior was rapidly assimilated by the capsule wall in the light but not in the dark, while fiber and seed together fixed significant amounts of 14CO2 in both the light and dark. These data suggest that cotton fruiting forms, although sites of significant respiratory CO2 loss, do serve a vital role in the recycling of internal CO2 and therein, function as important sources of assimilate for reproductive development.  相似文献   

14.
The seed of an excellent indica restorer line Jinhui10 (Oryza sativa L. ssp. indica) was treated by ethyl methanesulfonate (EMS); a leaf-color mutant displaying distinct phenotype throughout development grown in paddy field was identified from the progeny. The mutant leaf showed white-yellow at seedling stage and then turned to yellow-green at tillering stage, after that, virescent color appeared until to maturity. The mutant was thus temporarily designed as wyv1. The chlorophyll contents decreased significantly and the changing was consistent with the chlorotic level of wyv1 leaves. Chlorophyll fluorescence kinetic parameters measured at the seedling stage showed that co-efficiency of photochemical quenching (qP), actual photosystem II efficiency (ΦPS II), electron transport rate (ETR) and initial chlorophyll fluorescence level (Fo), net photosynthetic rate (Pn) and maximum photochemical efficiency (Fv / Fm) significantly decreased in severe chlorotic leaf of the mutant compared with that of wild type. However, no significant differences were observed for Pn and Fv/Fm between virescent leaf and normal green leaf. Genetic analysis suggested that the mutant phenotype was controlled by a single recessive nuclear gene which was finally mapped between SSR marker Y7 and Y6 on rice chromosome 3 based on F2 population of Xinong1A / wyv1. Genetic distances were 0.06 cM and 0.03 cM respectively, and the physical distance was 84 kb according to the sequence of indica rice 9311. The results must facilitate map-based cloning and functional analysis of WYV1 gene.  相似文献   

15.
The photosynthetic properties of a yellow lethal mutant, Oy/oy, and two yellow-green mutants of maize which are allelic (a homozygous recessive oy/oy and a heterozygous dominant Oy/+) were examined. Although Oy/oy had little or no chlorophyll or capacity for CO2 fixation compared to normal siblings, it had 28% as much ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activity, and from 40% to near normal activities of C4 cycle enzymes.Both yellow-green mutants had only half as much chlorophyll per leaf area as normal green seedlings in greenhouse-grown plants in winter and spring. However, the absorbance of light by the mutants was relatively high, as their transmittance was only 5 to 8% greater than normal leaves. In winter-grown greenhouse plants, the activities of Rubisco and several C4 cycle enzymes in the mutants were unaffected and similar to those of normal seedlings on a leaf area basis. After allowing for small differences in leaf absorbance, the light response curves for photosynthesis in the mutants were similar on a leaf area basis but much higher on a chlorophyll basis than those of the normal seedlings. In spring-grown greenhouse plants the enzyme activities and photosynthesis rates were about 30% lower per leaf area in the yellow-green mutant leaves compared to the wild type. The maximum carboxylation efficiency (measured under low CO2 and 1000 mol quanta m-2 s-1) in the mutants and normal leaves was similar on a Rubisco protein basis. The results indicate that maize can undergo a 50% reduction in chlorophyll content without a corresponding reduction in enzymes of carbon assimilation, and still maintain a high capacity for photosynthesis.Abbreviations Chl chlorophyll - PEP phosphoenolypruvate - Rubisco ribulose-1,5-bisphosphate carboxylase oxygenase This research was supported by CSIRO and by USDA Competitive Grant 86-CRCR-1-2036.  相似文献   

16.
When grown photoautotrophically at air levels of CO2, Chlamydomonas reinhardii possesses a system involving active transport of inorganic carbon which increases the intracellular CO2 concentration considerably above ambient, thereby stimulating photosynthetic CO2 assimilation. In previous investigations, two mutant strains of this unicellular green alga deficient in some component of this CO2-concentrating system were recovered as strains requiring high levels of CO2 to support photoautotrophic growth. One of the mutants, ca-1-12-1C, is a leaky (nonstringent) CO2-requiring strain deficient in carbonic anhydrase (EC 4.2.1.1) activity, while the other, pmp-1-16-5K, is a stringent CO2-requiring strain deficient in inorganic carbon transport. In the present study a double mutant (ca pmp) was constructed to investigate the physiological and biochemical interaction of the two mutations. The two mutations are unlinked and inherited in a Mendelian fashion. The double mutant was found to have a leaky CO2-requiring phenotype, indicating that the mutation ca-1 overcomes the stringent CO2-requirement conferred by the mutation pmp-1. Several physiological characteristics of the double mutant were very similar to the carbonic-anhydrase-deficient mutant, including high CO2 compensation concentration, photosynthetic CO2 response curve, and deficiency of carbonic-anhydrase activity. However, the labeling pattern of metabolites during photosynthesis in 14CO2 was more like that of the bicarbonatetransport-deficient mutant, and accumulation of internal inorganic carbon was intermediate between that of the two original mutants. These data indicate a previously unsuspected complexity in the Chlamydomonas CO2-concentrating system.  相似文献   

17.
建兰叶艺品种光合色素含量及叶绿素荧光特性分析   总被引:1,自引:0,他引:1  
以建兰栽培品种‘八宝奇珍’Cymbidium ensifolium ‘Ba Bao Qi Zhen’为材料,对其正常绿色叶片及黄化变异叶片的光合色素含量、叶绿素荧光参数进行比较。结果表明,‘八宝奇珍’黄化变异叶片的叶绿素总量、叶绿素a 和叶绿素b 含量均显著低于正常绿色叶片,且随着黄化面积的增大呈现递减趋势;黄化变异叶片的初始荧光量(Fo)、最大荧光产量(Fm)、Kautsky 诱导效应最大荧光(Fp)、稳态光适应光化学淬灭系数(qP)以及光适应稳态荧光产量(Ft_Lss)均显著低于正常绿色叶片;PSⅡ原初光能转化效率(Fv/Fm)与正常绿色叶片无明显差异;稳态非光化学荧光淬灭系数(NPQ)高于正常绿色叶片。  相似文献   

18.
Regulation of photosynthetic rates of submerged rooted macrophytes   总被引:1,自引:0,他引:1  
Summary Fourteen temperate, submerged macrophytes were cultivated in the laboratory at high DIC levels (3.3–3.8 mM), 10.4–14.4 mol photons (PAR) m-2 d-1 and 15°C. Photosynthesis at photosaturation ranged between 0.59 and 17.98 mg O2 g-1 DW h-1 at ambient pH (8.3) and were markedly higher between 1.76 and 47.11 mg O2 g-1 DW h-1 at pH 6.5 under elevated CO2 concentrations. Photosynthetic rates were significantly related to both the relative surface area and the chlorophyll content of the leaves. Consequently, the photosynthetic rate was much less variable among the species when expressed per surface area and chlorophyll content instead of dry mass. The chlorophyll content was probably a main predictor of photosynthesis of submerged leaves because of the direct relationship of chlorophyll to the light harvesting capacity and/or a coupling to the capacity for photosynthetic electron transport and carboxylation. A comparison with terrestrial leaves characterized the submerged leaves by their low chlorophyll concentrations and low photosynthetic rates per surface area due to the thin leaves. Photosynthetic rates per chlorophyll content in submerged leaves at CO2 saturation, however, were at the same level as photosynthesis in terrestrial leaves measured at ambient CO2 when appropriate corrections were made for differences in incubation temperature.  相似文献   

19.
为了解竹柏(Podocarpus nagi)的光合特性,以3 a生全绿叶和花叶竹柏为材料,测定其光合色素含量和气体交换参数。结果表明,全绿叶竹柏叶片的叶绿素a、叶绿素b、类胡萝卜素、叶绿素a+b、叶绿素a/b和叶绿素a+b/类胡萝卜素均显著高于花叶竹柏;全绿叶竹柏叶片的初始量子效率、最大光合速率和暗呼吸速率均显著高于花叶,而光饱和点和光补偿点均显著低于花叶;全绿叶竹柏叶片的初始羧化效率、光合速率、CO2饱和点和光呼吸速率均高于花叶,而CO2补偿点低于花叶。2种颜色叶片的气孔导度、蒸腾速率和水分利用效率均随着光合有效辐射的增大而增大,且均表现为全绿叶花叶,而胞间CO2浓度则相反,表现为花叶全绿叶。因此,全绿叶竹柏利用弱光的能力强于花叶竹柏,而花叶竹柏利用强光的能力更强,在园林绿化配置中,可根据2种颜色叶片的光合特性合理配置。  相似文献   

20.
《BBA》2018,1859(10):1067-1074
In the present study, we studied the role of chloroplastic ATP synthase in photosynthetic regulation during leaf maturation. We measured gas exchange, chlorophyll fluorescence, P700 redox state, and the electrochromic shift signal in mature and immature leaves. Under high light, the immature leaves displayed high levels of non-photochemical quenching (NPQ) and P700 oxidation ratio, and higher values for proton motive force (pmf) and proton gradient (ΔpH) across the thylakoid membranes but lower values for the activity of chloroplastic ATP synthase (gH+) than the mature leaves. Furthermore, gH+ was significantly and positively correlated with CO2 assimilation rate and linear electron flow (LEF), but negatively correlated with pmf and ΔpH. ΔpH was significantly correlated with LEF and the P700 oxidation ratio. These results indicated that gH+ was regulated to match photosynthetic capacity during leaf maturation, and the formation of pmf and ΔpH was predominantly regulated by the alterations in gH+. In the immature leaves, the high steady-state ΔpH increased lumen acidification, which, in turn, stimulated photoprotection for the photosynthetic apparatus via NPQ induction and photosynthetic control. Our results highlighted the importance of chloroplastic ATP synthase in optimizing the trade-off between CO2 assimilation and photoprotection during leaf maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号