首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionary history of the reef fish genus Naso (F. Acanthuridae) was examined using a complete species-level molecular phylogeny of all recognized (19) species based on three loci (one nuclear ETS2 and two mitochondrial 16S, cyt b). This study demonstrates that distinct foraging modes and specialized body shapes arose independently at different times in the evolutionary history of the genus. Members of the subgenus Axinurus, characterized by a scombriform morphology, caudal fin structure and pelagic foraging mode, were consistently placed basal to the remaining Naso species, suggesting that pelagic foraging is plesiomorphic and benthic foraging derived in this genus. We used a genus-level phylogeny (nuclear marker, ETS2), which included several taxa from all other acanthurid genera, to obtain a range of age estimates for the most recent common ancestor of the genus Naso. These age estimates (range of 52-43.3 MY) were then used to estimate divergence times (by nonparametric rate smoothing method) of the node giving rise to extant Naso species using the combined sequence data (from all loci). The reconstruction of the pattern of divergence of extant species indicates two sequences of events. The basal species characterized by pelagic foraging modes arose during the Eocene and Oligocene. Most of the remaining Naso species, including those characterized by benthic foraging, arose over a period of 20 MY during the Miocene. Diversification during this period was associated with major plate tectonic and glaciation events, resulting in changes in sea level, ocean temperature and productivity regimes. Regardless of the foraging mode exhibited, all species of Naso have a caudal propulsive unit similar to that observed in pelagic scombriform fishes, a legacy of the basal position of the subgenus Axinurus in the phylogeny of the genus.  相似文献   

2.
SINE sequences are interspersed throughout virtually all eukaryotic genomes and greatly outnumber the other repetitive elements. These sequences are of increasing interest for phylogenetic studies because of their diagnostic power for establishing common ancestry among taxa, once properly characterized. We identified and characterized a peculiar family of composite tRNA-derived short interspersed SINEs, DANA-SINEs, associated with mutational activities in Danio rerio, in a group of species belonging to one of the most basal bony fish families, the Polypteridae, in order to investigate their own inner specific phylogenetic relationships. DANA sequences were identified, sequenced and then localized, by means of fluorescent in situ hybridization (FISH), in six Polypteridae species (Polypterus delhezi, P. ornatipinnis, P. palmas, P. buettikoferi P. senegalus and Erpetoichthys calabaricus) After cloning, the sequences obtained were aligned for phylogenetic analysis, comparing them with three Dipnoan lungfish species (Protopterus annectens, P. aethiopicus, Lepidosiren paradoxa), and Lethenteron reissneri (Petromyzontidae)was used as outgroup. The obtained overlapping MP, ML and NJ tree clustered together the species belonging to the two taxonomically different Osteichthyans groups: the Polypteridae, by one side, and the Protopteridae by the other, with the monotypic genus Erpetoichthys more distantly related to the Polypterus genus comprising three distinct groups: P. palmas and P. buettikoferi, P. delhezi and P. ornatipinnis and P. senegalus. In situ hybridization with DANA probes marked along the whole chromosome arms in the metaphases of all the Polypteridae species examined.  相似文献   

3.
The feeding and defecation behaviour of the surgeonfish Ctenochaetus striatus was investigated at Ras Mohammed National Park (South Sinai, Red Sea). The fish feed on coral rock mainly by sweeping loose sediment with their flexible broom like teeth into their mouths. Feeding occurred exclusively on coral rock, but defecation took place only outside the grazing area above sand in small, precisely defined areas.  相似文献   

4.
Channid fishes, commonly referred to as “snakeheads”, are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes.  相似文献   

5.
6.
7.
The infraclass Teleostei is a highly diversified group of bony fishes that encompasses 96% of all species of living fishes and almost half of extant vertebrates. Evolution of various morphological complexes in teleosts, particularly those involving soft anatomy, remains poorly understood. Notable among these problematic complexes is the adductor mandibulae, the muscle that provides the primary force for jaw adduction and mouth closure and whose architecture varies from a simple arrangement of two segments to an intricate complex of up to ten discrete subdivisions. The present study analyzed multiple morphological attributes of the adductor mandibulae in representatives of 53 of the 55 extant teleostean orders, as well as significant information from the literature in order to elucidate the homologies of the main subdivisions of this muscle. The traditional alphanumeric terminology applied to the four main divisions of the adductor mandibulae – A1, A2, A3, and Aω – patently fails to reflect homologous components of that muscle across the expanse of the Teleostei. Some features traditionally used as landmarks for identification of some divisions of the adductor mandibulae proved highly variable across the Teleostei; notably the insertion on the maxilla and the position of muscle components relative to the path of the ramus mandibularis trigeminus nerve. The evolutionary model of gain and loss of sections of the adductor mandibulae most commonly adopted under the alphanumeric system additionally proved ontogenetically incongruent and less parsimonious than a model of subdivision and coalescence of facial muscle sections. Results of the analysis demonstrate the impossibility of adapting the alphanumeric terminology so as to reflect homologous entities across the spectrum of teleosts. A new nomenclatural scheme is proposed in order to achieve congruence between homology and nomenclature of the adductor mandibulae components across the entire Teleostei.  相似文献   

8.
The family Ciehlidae is a large group of tropical fishes in the order Perciformes, with an estimated number of living species exceeding 1400. The modern distribution of the family Ciehlidae is predominantly in fresh waters of Central and South America, Africa, Madagascar, India and the Middle East, with fossil members known from Africa, Saudi Arabia, the Levant, Europe, South America and Haiti. Many authors have referred to the distribution as being Gondwanan and have postulated that cichlids originated over 130 million years ago, in the Early Cretaceous. However, the suggested evidence for an Early Cretaceous origin of cichlids is equally or more compatible with a much younger age of origin. Based on the biology and distribution of modern and fossil cichlids, it is more probable that they arose less than 65 million years ago, in the Early Tertiary, and crossed marine waters to attain their current distribution.  相似文献   

9.
Brain anatomy and structure, composition of the neurons, and cytoarchitectural maps were compared between five species of Acipenser, one species of Huso and two species of Scaphirhynchus. Morphological differences in the forebrain structure between species and genera were apparent. The evolutionary history of the Acipenseridae has been marked by an extensive mosaic radiation in the evolutionary development of the inner structure of their brains. Members of Scaphirhynchus have a very simple telencephalon structure differing significantly from that of Huso and Acipenser. It is clear that neuromorphological variation of sturgeon species will serve as an additional data useful in understanding the evolutionary processes and history associated with the speciation in Acipenseridae.  相似文献   

10.
11.
The Ginglymodi is one of the most common, though poorly understood groups of neopterygians, which includes gars, macrosemiiforms, and “semionotiforms.” In particular, the phylogenetic relationships between the widely distributed “semionotiforms,” and between them and other ginglymodians have been enigmatic. Here, the phylogenetic relationships between eight of the 11 “semionotiform” genera, five genera of living and fossil gars and three macrosemiid genera, are analysed through cladistic analysis, based on 90 morphological characters and 37 taxa, including 7 out-group taxa. The results of the analysis show that the Ginglymodi includes two main lineages: Lepisosteiformes and †Semionotiformes. The genera †Pliodetes, †Araripelepidotes, †Lepidotes, †Scheenstia, and †Isanichthys are lepisosteiforms, and not semionotiforms, as previously thought, and these taxa extend the stratigraphic range of the lineage leading to gars back up to the Early Jurassic. A monophyletic †Lepidotes is restricted to the Early Jurassic species, whereas the strongly tritoral species previously referred to †Lepidotes are referred to †Scheenstia. Other species previously referred to †Lepidotes represent other genera or new taxa. The macrosemiids are well nested within semionotiforms, together with †Semionotidae, here restricted to †Semionotus, and a new family including †Callipurbeckia n. gen. minor (previously referred to †Lepidotes), †Macrosemimimus, †Tlayuamichin, †Paralepidotus, and †Semiolepis. Due to the numerous taxonomic changes needed according to the phylogenetic analysis, this article also includes formal taxonomic definitions and diagnoses for all generic and higher taxa, which are new or modified. The study of Mesozoic ginglymodians led to confirm Patterson’s observation that these fishes show morphological affinities with both halecomorphs and teleosts. Therefore, the compilation of large data sets including the Mesozoic ginglymodians and the re-evaluation of several hypotheses of homology are essential to test the hypotheses of the Halecostomi vs. the Holostei, which is one of the major topics in the evolution of Mesozoic vertebrates and the origin of modern fish faunas.  相似文献   

12.
13.
The experiments were carried out on hormonal stimulation of oocyte maturation in Zebrasoma scopas from the South China Sea, Vietnam. Three variants of surfagon injections were studied: 1—double injections (5 + 20 μg/kg of fish body weight); 2—double injections (2 + 8 μg/kg); and 3—single injections (20 μg/kg). The time interval between two injections comprised 15–24 h. Ovulation of oocytes in variants 1 and 2 was observed in most (67%) females 33–47 h after the first injection. The increase of the time interval between injections I and II was followed by the decrease of the interval between injection II and ovulation. In variant 3, oocytes ripened but ovulation was absent. The oocytes possessed with the competence for maturation are always present in the ovaries because of a continuous type of oogenesis. The morphological changes in oocytes in the process of maturation were observed. Ovulated oocytes could be stored in the ovary cavity no more than 4 h; the number of embryos with normal cleavage decreased during this time from 90 to 53%.  相似文献   

14.
A new species of amiid fish, Calamopleurus africanus sp. nov., is described on the basis of fragmentary material from ?Albian Kem Kem beds of southern Morocco. The new species shows several derived characters of the genus Calamopleurus such as ossified dermopterotic ribs, an inferred loose association between the dermosphenotic and the skull roof, a gular plate with a scalloped posterior margin, and a hyomandibular with a very long posterior (opercular) process. It differs from the type species in the proportions of the frontals, supramaxilla and gular. The distribution of Calamopleurus and some other Lower Cretaceous fishes is discussed in the context of the presumed adjacency of west Africa and eastern Brazil during much of the Mesozoic.  相似文献   

15.
Many parasitic angiosperms have a broad host range and are therefore considered to be host generalists. Orobanche minor is a nonphotosynthetic root parasite that attacks a range of hosts from taxonomically disparate families. In the present study, we show that O. minor sensu lato may comprise distinct, genetically divergent races isolated by the different ecologies of their hosts. Using a three‐pronged approach, we tested the hypothesis that intraspecific taxa O. minor var. minor and O. minor ssp. maritima parasitizing either clover (Trifolium pratense) or sea carrot (Daucus carota ssp. gummifer), respectively, are in allopatric isolation. Morphometric analysis revealed evidence of divergence but this was insufficient to define discrete, host‐specific taxa. Intersimple sequence repeat (ISSR) marker‐based data provided stronger evidence of divergence, suggesting that populations were isolated from gene flow. Phylogenetic analysis, using sequence‐characterized amplified region (SCAR) markers derived from ISSR loci, provided strong evidence for divergence by clearly differentiating sea carrot‐specific clades and mixed‐host clades. Low levels of intrapopulation SCAR marker sequence variation and floral morphology suggest that populations on different hosts are probably selfing and inbreeding. Morphologically cryptic Orobanche taxa may therefore be isolated from gene flow by host ecology. Together, these data suggest that host specificity may be an important driver of allopatric speciation in parasitic plants.  相似文献   

16.
The Iranian cave barb (Iranocypris typhlops Bruun & Kaiser, 1944) is a rare and endemic species of the family Cyprinidae known from a single locality in the Zagros Mountains, western Iran. This species is “Vulnerable” according to the IUCN Red List and is one of the top four threatened freshwater fish species in Iran. Yet, the taxonomic position of I. typhlops is uncertain. We examined phylogenetic relationships of this species with other species of the family Cyprinidae based on the mitochondrial cytochrome b gene. Our results show that I. typhlops is monophyletic and is sister taxon of a cluster formed by Garra rufa (Heckel, 1843) and Garra barreimiae (Fowler & Steinitz, 1956) within a clade that includes other species of the genus Garra. Based on previous molecular and morphological studies, as well as our new results, we recommend that I. typhlops should be transferred to the genus Garra Hamilton, 1822.  相似文献   

17.
We herein evaluate several reproductive metrics of Hawaiian Archipelagic populations of the bluespine unicornfish (Naso unicornis), an economically and ecologically important, broadly distributed tropical Pacific reef fish, based on multi-year, fishery-dependent and fishery-independent collections. Sex-specific spawning seasonality was characterized for fish collected mostly from Oahu (Main Hawaiian Islands, MHI) using a gonadosomatic index. Histological slides preparations were used to score gonad developmental phase and to classify individuals of either sex as immature or mature. Sex-specific median body lengths at maturity (L50) were estimated by logistic fits of proportion mature versus length class. Spawning was highly seasonal in Hawaii, with a single brief (May–June) peak spawning period. Proportionate gonad-to-body weight values were relatively low, averaging only about 0.1 % and 0.6 % across all months of year and 0.16 % and 1.03 % during May–June for males and females, respectively. Median lengths at sexual maturity differed between the sexes. L50 values for fish collected throughout all months of year were 30.1 ± 0.5 (standard error) cm Fork Length (FL) for males and 35.5 ± 0.7 cm FL for females. Spawning seasonality and L50 estimates for bluespine unicornfish in Hawaii suggest that the species spawns several months earlier in the calendar year and matures at larger body lengths in Hawaii versus Guam, the Northern Mariana Islands, and Pohnpei in the Federated States of Micronesia. Estimated lengths at sexual maturity are compared to the minimum length (14 inches or 35.6 cm FL) mandated for this species in Hawaii: median size at maturity occurs at a length appreciably less than (males) or approximately equal to (females) minimum legal size. A likely disproportionately large contribution of old females to population replenishment is discussed relative to the minimum size limit.  相似文献   

18.
19.
20.
Liao, T.Y. & Kullander, S.O. (2012). Phylogenetic significance of the kinethmoid‐associated Y‐shaped ligament and long intercostal ligaments in the Cypriniformes (Actinopterygii: Ostariophysi). —Zoologica Scripta, 42, 71–87. The phylogenetic significance of the Y‐shaped and long intercostal ligaments in the Cypriniformes is examined using character optimization in 184 species representing 20 non‐ostariophysan teleost species, five ostariophysan orders, seven cypriniform families and 14 cyprinid subfamilies. Character states were optimized on the phylogenetic trees of previous studies. Given the topology of Saitoh et al. (2011) , the Y‐shaped ligament, connecting the kinethmoid to the ethmoid complex, is shown to be a synapomorphy for the Cyprinidae, with reversals observed in the Cyprininae, Danioninae, Gobioninae and Psilorhynchinae. The condition of the Y‐shaped ligament is consistent within most subfamilies with a few exceptions. Despite the exceptions, the Y‐shaped ligament may be considered as a diagnostic character distinguishing cyprinid subfamilies with otherwise similar morphology, that is, the Danioninae and Opsariichthyinae. The long intercostal ligament, connecting five to eight ribs and ascending from the subdistal end of the fifth rib, is present in the Catostomidae and all cyprinid subfamilies, except for the Psilorhynchinae and two developmentally truncated genera, Danionella and Paedocypris. In addition to these two cypriniforme families, the long intercostal ligament is homoplastically present in some catfishes. Given the topology of Saitoh et al. (2011) , presence of the long intercostal ligament is a synapomorphy of Cyprinidae+Catostomidae. Some shorter ligaments are also present in the Cypriniformes and Chilodus gracilis (Characiformes), near the base of the anterior ribs and only occurring anterodorsally to the putative line of the long intercostal ligament even when it is absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号