首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preprotein translocation in E. coli requires ATP, the membrane electrochemical potential delta mu H+, and translocase, an enzyme with an ATPase domain (SecA) and the membrane-embedded SecY/E. Studies of translocase and proOmpA binds to the SecA domain. Second, SecA binds ATP. Third, ATP-binding energy permits translocation of approximately 20 residues of proOmpA. Fourth, ATP hydrolysis releases proOmpA. ProOmpA may then rebind to SecA and reenter this cycle, allowing progress through a series of transmembrane intermediates. In the absence of delta mu H+ or association with SecA, proOmpA passes backward through the membrane, but moves forward when either ATP and SecA or a membrane electrochemical potential is supplied. However, in the presence of delta mu H+ (fifth step), proOmpA rapidly completes translocation. delta mu H(+)-driven translocation is blocked by SecA plus nonhydrolyzable ATP analogs, indicating that delta mu H+ drives translocation when ATP and proOmpA are not bound to SecA.  相似文献   

2.
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5'-(beta,gamma-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.  相似文献   

3.
Translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds with high affinity to the membrane-embedded protein-conducting SecYEG complex and serves as both a receptor for secretory proteins and as an ATP-driven molecular motor. Cycles of ATP binding and hydrolysis by SecA drive the progressive movement of the preprotein across the membrane. Surface plasmon resonance allows an online monitoring of protein interactions. Here we report on the kinetic analysis of the interaction between SecA and the membrane-embedded SecYEG complex. Immobilization of membrane vesicles containing overproduced SecYEG on the Biacore Pioneer L1 chip allows the detection of high affinity SecA binding to the SecYEG complex and online monitoring of the translocation of the secretory protein proOmpA. SecA binds tightly to the SecYEG.proOmpA complex and is released only upon ATP hydrolysis. The results provide direct evidence for a model in which SecA cycles at the SecYEG complex during translocation.  相似文献   

4.
Bacterial protein export requires two forms of energy input, ATP and the membrane electrochemical potential. Using an in vitro reaction reconstituted with purified soluble and peripheral membrane components, we can now directly measure the translocation-coupled hydrolysis of ATP. This translocation ATPase requires inner membrane vesicles, SecA protein and translocation-competent proOmpA. The stimulatory activity of membrane vesicles can be blocked by either antibody to the SecY protein or by preparing the membranes from a secY-thermosensitive strain which had been incubated at the non-permissive temperature in vivo. The SecA protein itself has more than one ATP binding site. 8-azido-ATP inactivates SecA for proOmpA translocation and for translocation ATPase, yet does not inhibit a low level of ATP hydrolysis inherent in the isolated SecA protein. These data show that the SecA protein has a central role in coupling the hydrolysis of ATP to the transfer of pre-secretory proteins across the membrane.  相似文献   

5.
The electrochemical potential drives the translocation of the precursor form of outer membrane protein A (proOmpA) and other proteins across the plasma membrane of Escherichia coli. We have measured the electrical potential, delta psi, across inverted membrane vesicles during proOmpA translocation. delta psi, generated by the electron transport chain, is substantially dissipated by proOmpA translocation. delta psi dissipation requires SecA, ATP, and proOmpA. proOmpA which, due to the covalent addition of a folded protein to a cysteinyl side chain, is arrested during its translocation, can nevertheless cause the loss of delta psi. Thus the movement of charged amino acyl residues is not dissipating the potential. This translocation-specific reduction in delta psi is only seen in the presence of halide anions, although halide anions are not needed for proOmpA translocation per se. We therefore propose that translocation intermediates directly increase the membrane permeability to halide anions.  相似文献   

6.
The secY205 mutant is cold-sensitive for protein export, with an in vitro defect in supporting ATP- and preprotein-dependent insertion of SecA into the membrane. We characterized SecA81 with a Gly516 to Asp substitution near the minor ATP-binding region, which suppresses the secY205 defect at low temperature and exhibits an allele-specific synthetic defect with the same SecY alteration at 42 degrees C. The overproduced SecA81 aggregated in vivo at temperatures above 37 degrees C. Purified SecA81 exhibited markedly enhanced intrinsic and membrane ATPase activities at 30 degrees C, while it was totally inactive at 42 degrees C. The trypsin digestion patterns indicated that SecA81 has some disorder in the central region of SecA, which encompasses residues 421-575. This conformational abnormality may result in unregulated ATPase at low temperature as well as the thermosensitivity of the mutant protein. In the presence of both proOmpA and the wild-type membrane vesicles, however, the thermosensitivity was alleviated, and SecA81 was able to catalyze significant levels of proOmpA-stimulated ATP hydrolysis as well as proOmpA translocation at 42 degrees C. While SecA81 was able to overcome the SecY205 defect at low temperature, the SecY205 membrane vesicles could not significantly support the translocation ATPase or the proOmpA translocation activity of SecA81 at 42 degrees C. The inactivated SecA81 molecules seemed to jam the translocase since it interfered with translocase functions at 42 degrees C. Based on these results, we propose that under preprotein-translocating conditions, the SecYEG channel can stabilize and activate SecA, and that this aspect is defective for the SecA81-SecY205 combination. The data also suggest that the conformation of the central region of SecA is important for the regulation of ATP hydrolysis and for the productive interaction of SecA with SecY.  相似文献   

7.
We have reconstituted protein translocation across plasma membrane vesicles of Escherichia coli using purified proOmpA and trigger factor, a 63 kd soluble protein. Treatment of membrane vesicles with urea inactivates them for translocation unless a factor present in cytoplasmic extracts is added during the translocation reaction. Sedimentation analysis showed that the stimulatory activity is of distinctly higher mol. wt than trigger factor. Cytoplasmic extracts from a strain that greatly overproduces the SecA protein are highly enriched in the stimulatory activity for untreated membranes and restore translocation to urea-treated membranes, suggesting that this protein is the stimulatory factor. This assay was used to monitor the isolation of SecA protein from the overproducing strain. The purified protein is soluble, yet binds peripherally to membranes with high affinity and supports translocation. Using pure proOmpA, SecA protein, trigger factor and urea-treated membranes, the protein export process was resolved into binding and translocation steps. We find that proOmpA binds to membrane vesicles with or without SecA protein, but that translocation only occurs when SecA was bound prior to proOmpA.  相似文献   

8.
Preprotein translocase catalyzes membrane protein integration as well as complete translocation. Membrane proteins must interrupt their translocation and be laterally released from the translocase into the lipid bilayer. We have analyzed the translocation arrest and lateral release activities of Escherichia coli preprotein translocase with an in vitro reaction and the preprotein proOmpA carrying a synthetic stop-transfer sequence. Membrane protein integration is catalytic, occurs with kinetics similar to those of proOmpA itself and only requires the functions of SecYEG and SecA. Though a strongly hydrophobic segment will direct the protein to leave the translocase and enter the lipid bilayer, a protein with a segment of intermediate hydrophobicity partitions equally between the translocated and membrane-integrated states. Analysis of the effects of PMF, varied ATP concentrations or synthetic translocation arrest show that the stop-translocation efficiency of a mildly hydrophobic segment depends on the translocation kinetics. In contrast, the lateral partitioning from translocase to lipids depends solely on temperature and does not require SecA ATP hydrolysis or SecA membrane cycling. Thus translocation arrest is controlled by the SecYEG translocase activity while lateral release and membrane integration are directed by the hydrophobicity of the segment itself. Our results suggest that a greater hydrophobicity is required for efficient translocation arrest than for lateral release into the membrane.  相似文献   

9.
Efficient translocation of pure precursor of PhoE protein (prePhoE) could be accomplished in an in vitro system consisting of only inverted Escherichia coli inner membrane vesicles, ATP, and SecA and SecB protein. In this in vitro system SecB and not trigger factor could stabilize a translocation-competent state of prePhoE. In contrast, translocation competency of proOmpA could be induced by both trigger factor and SecB protein, suggesting specificity in interactions between cytosolic factors and precursors in outer membrane protein translocation.  相似文献   

10.
We have previously reconstituted the soluble phase of precursor protein translocation in vitro using purified proteins (the precursor proOmpA, the chaperone SecB, and the ATPase SecA) in addition to isolated inner membrane vesicles. We now report the isolation of the SecY/E protein, the integral membrane protein component of the E. coli preprotein translocase. The SecY/E protein, reconstituted into proteoliposomes, acts together with SecA protein to support translocation of proOmpA, the precursor form of outer membrane protein A. This translocation requires ATP and is strongly stimulated by the protonmotive force. The initial rates and the extents of translocation into either native membrane vesicles or proteoliposomes with pure SecY/E are comparable. The SecY/E protein consists of SecY, SecE, and an additional polypeptide. Antiserum against SecY immunoprecipitates all three components of the SecY/E protein.  相似文献   

11.
The export of proOmpA, the precursor of outer membrane protein A from Escherichia coli, requires preprotein translocase, which is comprised of SecA, SecY/E, and acidic phospholipids. Previous studies of proOmpA translocation intermediates (Schiebel, E., Driessen, A. J. M., Hartl, F.-U., and Wickner, W. (1991) Cell 64, 927-939) suggested that the "slippage" of the translocating polypeptide chain and the high level of ATP hydrolysis, characteristic of the "translocation ATPase," were part of a futile cycle. To examine the role of the mature domain of proOmpA in its translocation-dependent ATP hydrolysis, we used chemical cleavage to generate NH2-terminal fragments of this preprotein. Each fragment contained the 21-residue leader region and either 53 or 228 residues of the mature domain (preproteins P74 and P249, respectively). As observed with full-length proOmpA, the translocation of each fragment requires ATP and both the SecA and SecY/E domains of translocase and is stimulated by the transmembrane proton electrochemical gradient. The apparent maximal velocities of P74 and proOmpA translocation are similar. While the translocation of P74 and of proOmpA show the same apparent Km for ATP, far less ATP is hydrolyzed during the translocation of P74. Thus, the mature carboxyl-terminal domain of proOmpA has a major role in supporting the translocation ATPase.  相似文献   

12.
In Escherichia coli, secretory proteins (preproteins) are translocated across the cytoplasmic membrane by the Sec system composed of a protein-conducting channel, SecYEG, and an ATP-dependent motor protein, SecA. After binding of the preprotein to SecYEG-bound SecA, cycles of ATP binding and hydrolysis by SecA are thought to drive the stepwise translocation of the preprotein across the membrane. To address how the length of a preprotein substrate affects the SecA-driven translocation process, we constructed derivatives of the precursor of the outer membrane protein A (proOmpA) with 2, 4, 6, and 8 in-tandem repeats of the periplasmic domain. With increasing polypeptide length, an increasing delay in the time before full-length translocation was observed, but the translocation rate expressed as amino acid translocation per minute remained constant. These data indicate that in the ATP-dependent reaction, SecA drives a constant rate of preprotein translocation consistent with a stepping mechanism of translocation.  相似文献   

13.
The SecY/E protein of Escherichia coli was coreconstituted with the proton pump bacteriorhodopsin and cytochrome c oxidase yielding proteoliposomes capable of sustaining a protonmotive force (delta p) of defined polarity and composition. Proteoliposomes support the ATP- and SecA-dependent translocation of proOmpA which is stimulated by a delta p, inside acid and positive. delta p of opposite polarity, inside alkaline and negative, suppresses translocation while SecA-mediated ATP hydrolysis continues unabated. delta psi and delta pH are equally effective in promoting or inhibiting translocation. Membrane-spanning translocation intermediates move backwards in the presence of a reversed delta p. These results support a model [Schiebel, E., Driessen, A.J.M., Hartl, F.-U. and Wickner, W. (1991) Cell, 64, 927-939] in which the delta p defines the direction of translocation after ATP hydrolysis has released proOmpA from its association with SecA. The polarity effect of the delta p challenges models involving delta p-dependent membrane destabilization and provides further evidence for a role of the delta p as driving force in precursor protein translocation.  相似文献   

14.
Translocation can drive the unfolding of a preprotein domain.   总被引:8,自引:3,他引:5       下载免费PDF全文
Precursor proteins are believed to have secondary and tertiary structure prior to translocation across the Escherichia coli plasma membrane. We now find that preprotein unfolding during translocation can be driven by the translocation event itself. At certain stages, translocation and unfolding can occur without exogenous energy input. To examine this unfolding reaction, we have prepared proOmpA-Dhfr, a fusion protein of the well studied cytosolic enzyme dihydrofolate reductase (Dhfr) connected to the C-terminus of proOmpA, the precursor form of outer membrane protein A. At an intermediate stage of its in vitro translocation, the N-terminal proOmpA domain has crossed the membrane while the folded Dhfr portion, stabilized by its ligands NADPH and methotrexate, has not. When the ligands are removed from this intermediate, translocation occurs by a two-step process. First, 20-30 amino acid residues of the fusion protein translocate concomitant with unfolding of the Dhfr domain. This reaction requires neither ATP, delta mu H+ nor the SecA subunit of translocase. Strikingly, this translocation accelerates the net unfolding of the Dhfr domain. In a second step, SecA and ATP hydrolysis drive the rapid completion of translocation. Thus energy derived from translocation can drive the unfolding of a substantial protein domain.  相似文献   

15.
SecA is the ATP-dependent force generator in the Escherichia coli precursor protein translocation cascade, and is bound at the membrane surface to the integral membrane domain of the preprotein translocase. Preproteins are thought to be translocated in a stepwise manner by nucleotide-dependent cycles of SecA membrane insertion and de-insertion, or as large polypeptide segments by the protonmotive force (Deltap) in the absence of SecA. To determine the step size of a complete ATP- and SecA-dependent catalytic cycle, translocation intermediates of the preprotein proOmpA were generated at limiting SecA translocation ATPase activity. Distinct intermediates were formed, spaced by intervals of approximately 5 kDa. Inhibition of the SecA ATPase by azide trapped SecA in a membrane-inserted state and shifted the step size to 2-2.5 kDa. The latter corresponds to the translocation elicited by binding of non-hydrolysable ATP analogues to SecA, or by the re-binding of partially translocated polypeptide chains by SecA. Therefore, a complete catalytic cycle of the preprotein translocase permits the stepwise translocation of 5 kDa polypeptide segments by two consecutive events, i.e. approximately 2.5 kDa upon binding of the polypeptide by SecA, and another 2.5 kDa upon binding of ATP to SecA.  相似文献   

16.
Tang Y  Pan X  Chen Y  Tai PC  Sui SF 《PloS one》2011,6(1):e16498
The Sec translocase mediates the post-translational translocation of a number of preproteins through the inner membrane in bacteria. In the initiatory translocation step, SecB targets the preprotein to the translocase by specific interaction with its receptor SecA. The latter is the ATPase of Sec translocase which mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. We examined the structures of Escherichia coli Sec intermediates in solution as visualized by negatively stained electron microscopy in order to probe the oligomeric states of SecA during this process. The symmetric interaction pattern between the SecA dimer and SecB becomes asymmetric in the presence of proOmpA, and one of the SecA protomers predominantly binds to SecB/proOmpA. Our results suggest that during preprotein translocation, the two SecA protomers are different in structure and may play different roles.  相似文献   

17.
E Crooke  L Brundage  M Rice    W Wickner 《The EMBO journal》1988,7(6):1831-1835
The precursor protein proOmpA can translocate across purified Escherichia coli inner membrane vesicles in the absence of any other soluble proteins. ProOmpA, purified 2000-fold in the presence of 8 M urea, is competent for translocation following rapid renaturation via dilution. ATP, the transmembrane electrochemical potential, and functional secY protein are essential for the translocation of proOmpA renatured by dilution. The kinetics of its translocation and the level of translocation at each concentration of ATP are indistinguishable from that of proOmpA renatured by dialysis with trigger factor. After dilution, the proOmpA rapidly loses its competence for membrane assembly. However, this competence is stabilized by trigger factor. Assembly-competent proOmpA is in a protease-sensitive conformation, whereas proOmpA which has lost this competence is more resistant to degradation. This suggests that the primary role for trigger factor in in vitro protein translocation is to maintain precursor proteins in a translocation-competent conformation. We propose that a properly folded precursor protein and ATP are the only soluble components which are essential for bacterial protein translocation.  相似文献   

18.
In Escherichia coli , precursor proteins are targeted to the membrane-bound translocase by the cytosolic chaperone SecB. SecB binds to the extreme carboxy-terminus of the SecA ATPase translocase subunit, and this interaction is promoted by preproteins. The mutant SecB proteins, L75Q and E77K, which interfere with preprotein translocation in vivo , are unable to stimulate in vitro translocation. Both mutants bind proOmpA but fail to support the SecA-dependent membrane binding of proOmpA because of a marked reduction in their binding affinities for SecA. The stimulatory effect of preproteins on the interaction between SecB and SecA exclusively involves the signal sequence domain of the preprotein, as it can be mimicked by a synthetic signal peptide and is not observed with a mutant preprotein (Δ8proOmpA) bearing a non-functional signal sequence. Δ8proOmpA is not translocated across wild-type membranes, but the translocation defect is suppressed in inner membrane vesicles derived from a prlA4 strain. SecB reduces the translocation of Δ8proOmpA into these vesicles and almost completely prevents translocation when, in addition, the SecB binding site on SecA is removed. These data demonstrate that efficient targeting of preproteins by SecB requires both a functional signal sequence and a SecB binding domain on SecA. It is concluded that the SecB–SecA interaction is needed to dissociate the mature preprotein domain from SecB and that binding of the signal sequence domain to SecA is required to ensure efficient transfer of the preprotein to the translocase.  相似文献   

19.
In Escherichia coli, precursor proteins are translocated across the cytoplasmic membrane by translocase. This multisubunit enzyme consists of a preprotein-binding and ATPase domain, SecA, and the SecYEG complex as the integral membrane domain. PrlA4 is a mutant of SecY that enables the translocation of preproteins with a defective, or missing, signal sequence. Inner membranes of the prlA4 strain efficiently translocate Delta8proOmpA, a proOmpA derivative with a non-functional signal sequence. Owing to the signal sequence mutation, Delta8proOmpA binds to the translocase with a lowered affinity and the recognition is not restored by the prlA4 SecY. At the ATP-dependent initiation of translocation, the binding affinity of SecA for SecYEG is lowered causing the premature loss of bound preproteins from the translocase. The prlA4 membranes, however, bind SecA with a much higher affinity than the wild-type, and during initiation, the SecA and preprotein remain bound at the translocation site allowing an improved efficiency of translocation. It is concluded that the prlA4 strain prevents the rejection of defective preproteins from the export pathway by stabilizing SecA at the SecYEG complex.  相似文献   

20.
Protein secretion in Escherichia coli is mediated by translocase, a multi-subunit membrane protein complex with SecA as ATP-driven motor protein and the SecYEG complex as translocation pore. A fluorescent assay was developed to facilitate kinetic studies of protein translocation. Single cysteine mutants of proOmpA were site-specific labeled with fluorescent dyes, and the SecA and ATP-dependent translocation into inner membrane vesicles and SecYEG proteoliposomes was monitored by means of protease accessibility and in gel fluorescent imaging. The translocation of fluorescently labeled proOmpA was largely independent on the position and the size of the fluorescent label (up to a size of 13-16 A). A fluorophore at the +4 position blocked translocation, but inhibition was completely relieved in the PrlA4 mutant. The kinetics of translocation of the fluorescently labeled proOmpA could be directly monitored by means of fluorescence quenching. Inner membrane vesicles containing wild-type SecYEG were found to translocate proOmpA with a turnover of 4.5 molecules proOmpA/SecYEG complex/min and an apparent K(m) of 180 nm, whereas the PrlA4 mutant showed an almost 10-fold increase in turnover rate and a 3-fold increase of the apparent K(m) for proOmpA translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号