共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian cells obtain cholesterol via two pathways: endogenous synthesis in the endoplasmic reticulum and exogenous sources mainly through the low density lipoprotein (LDL) receptor pathway. We performed pulse-chase experiments to monitor the fate of endogenously synthesized cholesterol and showed that, after reaching the plasma membrane from the endoplasmic reticulum, the newly synthesized cholesterol eventually accumulates in an internal compartment in Niemann-Pick type C1 (NPC1) cells. Thus, the ultimate fate of endogenously synthesized cholesterol in NPC1 cells is the same as LDL-derived cholesterol. However, the time required for endogenous cholesterol to accumulate internally is much slower than LDL-derived cholesterol. Different pathways thus govern the post-plasma membrane trafficking of endogenous cholesterol and LDL-derived cholesterol to the internal compartment. Results using the inhibitor N-butyldeoxynojirimycin, which depletes cellular complex glycosphingolipids, demonstrates that the cholesterol trafficking defect in NPC1 cells is not caused by ganglioside accumulation. The ultimate cause of death in NPC disease is progressive neurological deterioration in the central nervous system, where the major source of cholesterol is derived from endogenous synthesis. Our current study provides a plausible link between defects in intracellular trafficking of endogenous cholesterol and the etiology of Niemann-Pick type C disease. 相似文献
2.
Ulatowski L Parker R Davidson C Yanjanin N Kelley TJ Corey D Atkinson J Porter F Arai H Walkley SU Manor D 《Journal of lipid research》2011,52(7):1400-1410
Vitamin E (α-tocopherol) is the major lipid-soluble antioxidant in many species. Niemann-Pick type C (NPC) disease is a lysosomal storage disorder caused by mutations in the NPC1 or NPC2 gene, which regulates lipid transport through the endocytic pathway. NPC disease is characterized by massive intracellular accumulation of unesterified cholesterol and other lipids in lysosomal vesicles. We examined the roles that NPC1/2 proteins play in the intracellular trafficking of tocopherol. Reduction of NPC1 or NPC2 expression or function in cultured cells caused a marked lysosomal accumulation of vitamin E in cultured cells. In vivo, tocopherol significantly accumulated in murine Npc1-null and Npc2-null livers, Npc2-null cerebella, and Npc1-null cerebral cortices. Plasma tocopherol levels were within the normal range in Npc1-null and Npc2-null mice, and in plasma samples from human NPC patients. The binding affinity of tocopherol to the purified sterol-binding domain of NPC1 and to purified NPC2 was significantly weaker than that of cholesterol (measurements kindly performed by R. Infante, University of Texas Southwestern Medical Center, Dallas, TX). Taken together, our observations indicate that functionality of NPC1/2 proteins is necessary for proper bioavailability of vitamin E and that the NPC pathology might involve tissue-specific perturbations of vitamin E status. 相似文献
3.
4.
Liao YJ Chen TL Lee TS Wang HA Wang CK Liao LY Liu RS Huang SF Chen YM 《Molecular medicine (Cambridge, Mass.)》2012,18(1):412-422
Nonalcoholic fatty liver disease (NAFLD) is associated with the development of metabolic syndromes and hepatocellular carcinoma (HCC). Cholesterol accumulation is related to NAFLD, whereas its detailed mechanism is not fully understood. Previously, we reported that glycine N-methyltransferase (GNMT) knockout (Gnmt(-/-)) mice develop chronic hepatitis and HCC. In this study, we showed that Gnmt(-/-) mice had hyperlipidemia and steatohepatitis. Single photon emission computed tomography images of mice injected with (131)I-labeled 6β-iodocholesterol demonstrated that Gnmt(-/-) mice had slower hepatic cholesterol uptake and excretion rates than wild-type mice. In addition, genes related to cholesterol uptake (scavenger receptor class B type 1 [SR-B1] and ATP-binding cassette A1 [ABCA1]), intracellular trafficking (Niemann-Pick type C1 protein [NPC1] and Niemann-Pick type C2 protein [NPC2]) and excretion (ATP-binding cassette G1 [ABCG1]) were downregulated in Gnmt(-/-) mice. Yeast two-hybrid screenings and coimmunoprecipitation assays elucidated that the C conserved region (81-105 amino acids) of NPC2 interacts with the carboxyl-terminal fragment (171-295 amino acids) of GNMT. Confocal microscopy demonstrated that when cells were treated with low-density lipoprotein, NPC2 was released from lysosomes and interacts with GNMT in the cytosol. Overexpression of GNMT doubled the half-lives of both NPC2 isoforms and reduced cholesterol accumulation in cells. Furthermore, GNMT was downregulated in the liver tissues from patients suffering with NAFLD as well as from mice fed a high-fat diet, high-cholesterol diet or methionine/choline-deficient diet. In conclusion, our study demonstrated that GNMT regulates the homeostasis of cholesterol metabolism, and hepatic cholesterol accumulation may result from downregulation of GNMT and instability of its interactive protein NPC2. Novel therapeutics for steatohepatitis and HCC may be developed by using this concept. 相似文献
5.
The purpose of this study was to determine the capacity of Niemann-Pick type C (NPC) fibroblasts to transport cholesterol from the cell surface to intracellular membranes. This is relevant in light of the observations that NPC cells display a sluggish metabolism of LDL-derived cholesterol, a phenomenon which could be explained by a defective intracellular transport of cholesterol. Treatment of NPC cells for 4 h with 0.1 mg/ml of LDL failed to increase the incorporation of [14C]oleic acid into cholesterol [14C]oleate, an observation consistent with previous reports on this cell type (Pentchev et al. (1985) Proc. Natl. Acad. Sci. USA 82, 8247). Normal fibroblasts, however, displayed the classical upregulation (6-fold over control) of the endogenous esterification reaction in response to LDL exposure. Incubation of normal or NPC fibroblasts with sphingomyelinase (100 mU/ml; Staphylococcus aureus) led to a rapid and marked increase (9- and 10-fold for normal and NPC fibroblasts, respectively, after 4 h) in the esterification of plasma-membrane-derived [3H]cholesterol suggesting that sphingomyelin degradation forced a net transfer of cholesterol from the cell surface to the endoplasmic reticulum. The similar response in normal and mutant fibroblasts to the degradation of sphingomyelin suggests that plasma membrane cholesterol can be transported into the substrate pool of ACAT to about the same extent in these two cell types. Degradation of cell sphingomyelin in NPC fibroblasts also resulted in the movement of 20-25% of the cellular cholesterol from a cholesterol oxidase susceptible pool into oxidase-resistant pools, implying that a substantial amount of plasma membrane cholesterol was internalized after sphingomyelin degradation. This cholesterol internalization was not accompanied by an increased rate of membrane internalization, as measured by [3H]sucrose uptake. Although NPC cells showed a relative accumulation of unesterified cholesterol and a sluggish esterification of LDL-derived cholesterol when exposed to LDL, these cells responded like normal fibroblasts with regard to their capacity to transport cholesterol from the cell surface into intracellular sites in response to sphingomyelin degradation. It therefore appears that NPC cells, in contrast to the impaired intracellular movement of lipoprotein-derived cholesterol, do not display a general impairment of cholesterol transport between the cell surface and the intracellular regulatory pool of cholesterol. 相似文献
6.
Niemann-Pick C1-Like 1 (NPC1L1) is a polytopic transmembrane protein responsible for dietary cholesterol and biliary cholesterol absorption. Consistent with its functions, NPC1L1 distributes on the brush border membrane of enterocytes and the canalicular membrane of hepatocytes in humans. As the molecular target of ezetimibe, a hypocholesterolemic drug, its physiological and pathological significance has been recognized and intensively studied for years. Recently, plenty of new findings reveal the molecular mechanism of NPC1L1's role in cholesterol uptake, which may provide new insights on our understanding of cholesterol absorption. In this review, we summarized recent progress in these studies and proposed a working model, hoping to provide new perspectives on the regulation of cholesterol transport and metabolism. 相似文献
7.
David M. Byers Jo-Anne Douglas Harold W. Cook Frederick B.St.C. Palmer Neale D. Ridgway 《生物化学与生物物理学报:疾病的分子基础》1994,1226(2):173-180
Regulation of intracellular cholesterol metabolism has been studied in Epstein-Barr virus-transformed lymphoblasts from patients with Niemann-Pick type C (NPC) and the Nova Scotia type D (NPD) disease. Addition of LDL to normal lymphoblasts cultured in lipoprotein-deficient medium increased cholesterol esterification 10-fold (to a maximum of 1.0 nmol/h/mg protein at 15 h), while little stimulation was seen in NPC cells. The response by NPD lymphoblasts was intermediate, reaching approximately half of normal values by 12–24 h. Lymphoblasts from both NPC and NPD obligate heterozygotes exhibited 50% of normal LDL-stimulated cholesterol esterification at 6 h, when activity was of normal values in patient cells. Fluorescence staining with filipin indicated excessive intracellular accumulation of LDL-derived cholesterol in both NPC and NPD lymphoblasts. Downregulation of LDL receptor mRNA levels by LDL, measured by S1 nuclease protection assay, was also impaired in NP lymphoblasts and fibroblasts (NPC > NPD), although a similar rate of receptor protein down-regulation by LDL () was observed in normal and NP lymphoblasts. In contrast, LDL down-regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA did not appear to be affected in NP cells: LDL produced a 3-fold (lymphoblasts) of > 10-fold (fibroblasts) decrease by 12 h in both normal and affected cells. Thus, NPC and NPD lymphoblasts exhibit distinct defects in cholesterol esterification and storage, similar to those observed in mutant fibroblasts. Other regulatory responses are also impaired in NPC lymphoblasts but appear to be less affected in NPD cells. Lymphoblasts should provide a valuable immortalized cell line model for study of defective regulation of cholesterol esterification and transfort in Niemann-Pick type II disease, and may also suitable for diagnosis and carrier detection. 相似文献
8.
Previous studies suggest the hypothesis that apoE produced by adrenocortical cells modulates cellular cholesterol metabolism to enhance the storage of esterified cholesterol (EC) at the expense of cholesterol delivery to the steroidogenic pathway. In the present study, parameters of adrenal cholesterol metabolism and corticosteroid production were examined in wild type and apoE-deficient (apoe(-/-)) mice. Adrenal gland EC content and the EC/free cholesterol (FC) ratio in mice stressed by adrenocorticotropin (ACTH) treatment or saline injection were reduced in apoe(-/-) compared to apoe(+/+) mice. Relative to apoe(+/+) mice, apoE deficiency also resulted in increased levels of plasma corticosterone in the basal state, in response to acute or long-term ACTH treatment, and after a swim-induced neuroendocrine-directed stress test. Measurements of adrenal gland scavenger receptor class B, type I (SR-BI), LDL receptor, and LDL receptor related protein (LRP) levels and the activities of ACAT or HMG-CoA reductase showed no difference between genotypes. Apoe(-/-) and apoe(+/+) mice showed similar quantitative increases in LDL receptors, SR-BI, adrenal weight gain, and ACAT activities in response to ACTH, and both genotypes had similar basal plasma ACTH concentrations. These results suggest that the effects of apoE deficiency reflect events at the level of the adrenal gland and are specific to changes in cholesterol accumulation and corticosterone production. Further, these findings support the hypothesis that apoE acts to enhance adrenocortical EC accumulation and diminish corticosterone production. 相似文献
9.
K Ohno E Nanba S Miyawaki T Sakiyama T Kitagawa K Takeshita 《Cell structure and function》1992,17(4):229-235
Cell lines derived from the sphingomyelinosis (gene symbol, spm) mouse were established from homozygous (spm/spm) and heterozygous (spm/+) embryos according to a rigid 3T3 transfer schedule. The SPM-3T3 cells derived from a homozygous embryo showed extensive accumulation of intracellular cholesterol, attenuated esterification of exogenously added cholesterol and increased de novo cholesterol synthesis, when compared to SPMH-3T3 cells derived from a heterozygous embryo. The phenotypic abnormalities were very similar to those observed in fibroblasts from patients with Niemann-Pick disease type C (NP-C), in which a defect in the intracellular transport of unesterified cholesterol is suggested. The genetic defect in SPM-3T3 cells should be closely related to that in NP-C. The SPM-3T3 cell line is useful for biochemical and genetic studies on the regulation of intracellular cholesterol metabolism. 相似文献
10.
11.
Role of Niemann-Pick type C1 protein in intracellular trafficking of low density lipoprotein-derived cholesterol 总被引:9,自引:0,他引:9
Niemann-Pick type C (NPC) is a disease that affects intracellular cholesterol-trafficking pathways. By cloning the hamster ortholog of NPC1, we identified the molecular lesions in two independently isolated Chinese hamster ovary cell mutants, CT60 and CT43. Both mutants lead to premature translational terminations of the NPC1 protein. Transfecting hamster NPC1 cDNA complemented the defects of the mutants. Investigation of the CT mutants, their parental cells, and an NPC1-stable transfectant allow us to present evidence that NPC1 is involved in a post-plasma membrane cholesterol-trafficking pathway. We found that the initial movement of low density lipoprotein (LDL)-derived cholesterol to the plasma membrane (PM) did not require NPC1. After reaching the PM and subsequent internalization, however, cholesterol trafficking back to the PM did involve NPC1. Both LDL-derived cholesterol and cholesterol originating from the PM accumulated in a dense, intracellular compartment in the CT mutants. Cholesterol movement from this compartment to the PM or endoplasmic reticulum was defective in the CT mutants. Our results functionally distinguish the dense, intracellular compartment from the early endocytic hydrolytic organelle and imply that NPC1 is involved in sorting cholesterol from the intracellular compartment back to the PM or to the endoplasmic reticulum. 相似文献
12.
Niemann-Pick disease type C (NPC) is caused by mutations leading to loss of function of NPC1 or NPC2 proteins, resulting in accumulation of unesterified cholesterol in late endosomes and lysosomes. We previously reported that expression of the ATP-binding cassette transporter A1 (ABCA1) is impaired in human NPC1(-/-) fibroblasts, resulting in reduced HDL particle formation and providing a mechanism for the reduced plasma HDL cholesterol seen in the majority of NPC1 patients. We also found that treatment of NPC1(-/-) fibroblasts with an agonist of liver X-receptor corrects ABCA1 expression and HDL formation and reduces lysosomal cholesterol accumulation. We have confirmed that ABCA1 expression is also reduced in NPC2(-/-) cells, and found that α-HDL particle formation is impaired in these cells. To determine whether selective up-regulation of ABCA1 can correct lysosomal cholesterol accumulation in NPC disease cells and HDL particle formation, we produced and infected NPC1(-/-) and NPC2(-/-) fibroblasts with an adenovirus expressing full-length ABCA1 and enhanced green fluorescent protein (AdABCA1-EGFP). ABCA1-EGFP expression in NPC1(-/-) fibroblasts resulted in normalization of cholesterol efflux to apolipoprotein A-I (apoA-I) and α-HDL particle formation, plus a marked reduction in filipin staining of unesterified cholesterol in late endosomes/lysosomes. In contrast, AdABCA1-EGFP treatment of NPC2(-/-) fibroblasts to normalize ABCA1 expression had no effect on cholesterol efflux to apoA-I or accumulation of excess cholesterol in lysosomes, and only partially corrected α-HDL formation by these cells. These results suggest that correction of ABCA1 expression can bypass the mutation of NPC1 but not NPC2 to mobilize excess cholesterol from late endosomes and lysosomes in NPC disease cells. Expression of ABCA1-EGFP in NPC1(-/-) cells increased cholesterol available for esterification and reduced levels of HMG-CoA reductase protein, effects that were abrogated by co-incubation with apoA-I. A model can be generated in which ABCA1 is able to mobilize cholesterol, to join the intracellular regulatory pool or to be effluxed for HDL particle formation, either directly or indirectly from the lysosomal membrane, but not from the lysosomal lumen. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010). 相似文献
13.
Emmanuel BoaduRandy C. Nelson Gordon A. Francis 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(3):396-404
Niemann-Pick disease type C (NPC) is caused by mutations leading to loss of function of NPC1 or NPC2 proteins, resulting in accumulation of unesterified cholesterol in late endosomes and lysosomes. We previously reported that expression of the ATP-binding cassette transporter A1 (ABCA1) is impaired in human NPC1−/− fibroblasts, resulting in reduced HDL particle formation and providing a mechanism for the reduced plasma HDL cholesterol seen in the majority of NPC1 patients. We also found that treatment of NPC1−/− fibroblasts with an agonist of liver X-receptor corrects ABCA1 expression and HDL formation and reduces lysosomal cholesterol accumulation. We have confirmed that ABCA1 expression is also reduced in NPC2−/− cells, and found that α-HDL particle formation is impaired in these cells. To determine whether selective up-regulation of ABCA1 can correct lysosomal cholesterol accumulation in NPC disease cells and HDL particle formation, we produced and infected NPC1−/− and NPC2−/− fibroblasts with an adenovirus expressing full-length ABCA1 and enhanced green fluorescent protein (AdABCA1-EGFP). ABCA1-EGFP expression in NPC1−/− fibroblasts resulted in normalization of cholesterol efflux to apolipoprotein A-I (apoA-I) and α-HDL particle formation, plus a marked reduction in filipin staining of unesterified cholesterol in late endosomes/lysosomes. In contrast, AdABCA1-EGFP treatment of NPC2−/− fibroblasts to normalize ABCA1 expression had no effect on cholesterol efflux to apoA-I or accumulation of excess cholesterol in lysosomes, and only partially corrected α-HDL formation by these cells. These results suggest that correction of ABCA1 expression can bypass the mutation of NPC1 but not NPC2 to mobilize excess cholesterol from late endosomes and lysosomes in NPC disease cells. Expression of ABCA1-EGFP in NPC1−/− cells increased cholesterol available for esterification and reduced levels of HMG-CoA reductase protein, effects that were abrogated by co-incubation with apoA-I. A model can be generated in which ABCA1 is able to mobilize cholesterol, to join the intracellular regulatory pool or to be effluxed for HDL particle formation, either directly or indirectly from the lysosomal membrane, but not from the lysosomal lumen. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010). 相似文献
14.
Manson ME Corey DA White NM Kelley TJ 《American journal of physiology. Lung cellular and molecular physiology》2008,295(5):L809-L819
The goal of this study was to identify a mechanism regulating cholesterol accumulation in cystic fibrosis (CF) cells. Both CFTR activation and expression are regulated by the cAMP pathway, and it is hypothesized that a feedback response involving this pathway may be involved in the phenotype of cholesterol accumulation. To examine the role of the cAMP pathway in cholesterol accumulation, we treated two CF model cell lines with the Rp diastereomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS) and visualized by filipin staining. Rp-cAMPS treatment eliminated cholesterol accumulation in CF cells, whereas 8-bromo-cAMP treatment led to cholesterol accumulation in wild-type cells. To confirm these findings in an independent model system, we also examined the role of cAMP in modulating cholesterol accumulation in Niemann-Pick type C (NPC) fibroblasts. Expression of the protein related to NPC, NPC1, is also directly regulated by cAMP; therefore, it is postulated that NPC cells exhibit the same cAMP-mediated control of cholesterol accumulation. Cholesterol accumulation in NPC cells also was reduced by the presence of Rp-cAMPS. Expression of beta-arrestin-2 (betaarr2), a marker of cellular response to cAMP signaling, was significantly elevated in CF model cells, Cftr(-/-) MNE, primary tissue obtained by nasal scrapes from CF subjects, and in NPC fibroblasts compared with respective controls. 相似文献
15.
Fatty acid esterification of dolichol and cholesterol in Niemann-Pick type C1 mouse (Balb/c NIH npc1(-/-)) livers was investigated in response to treatment with peroxisomal proliferators. These inducers have hypolipidemic properties and influence the mevalonate pathway and the intracellular transport of the final products of this biosynthetic route. Such inducers are consequently interesting to use in a disease model with defective intracellular transport of lipids. In wild-type mice, the levels of dolichol and cholesterol found as free alcohols were not changed to any great extent upon treatment with the peroxisomal inducers dehydroepiandrosterone, clofibrate and diethylhexylphtalate. In contrast, the amounts of dolichyl esters increased whereas cholesteryl esters decreased by the same treatments. The rate of enzymatic esterification of dolichol in isolated microsomes was accordingly elevated after 5- to 7-day treatments with the efficient peroxisomal proliferators DEHP and PFOA, while the corresponding esterification of cholesterol was decreased. Upon peroxisomal induction in npc1(-/-) mice, the enzymatic dolichol esterification in vitro increased whereas the low concentration of dolichyl esters remained unchanged. The results thus demonstrate that the induction of fatty acid esterification of dolichol in vivo is impaired in npc1(-/-) mouse liver. It is therefore proposed that the intracellular lipid transport defect in npc1(-/-) mouse liver disables either dolichol and/or the fatty acid from reaching the site of esterification in vivo. This proposal was strengthened by the finding that the amount of dolichol was decreased in an isolated Golgi fraction from npc1(-/-) mice. 相似文献
16.
The voltage dependent anion channel affects mitochondrial cholesterol distribution and function 总被引:2,自引:0,他引:2
We have observed abnormally high membrane cholesterol levels and a subsequent deficiency of oxidative energy production in mitochondria from cultured Morris hepatoma cells (MH7777). Using cholesterol affinity chromatography and MALDI-TOF Mass Spectrometry, we have identified the voltage dependent anion channel (VDAC) as a necessary component of a protein complex involved in mitochondrial membrane cholesterol distribution. VDAC is known to associate strongly with hexokinase, particularly in glycolytic cancers. By constructing an E72Q mutant form of VDAC that inhibits its binding of hexokinase, we report an increase in oxidative phosphorylation activity of MH7777 cells, as well as reduced membrane cholesterol ratios to levels near that of normal liver mitochondria. This paper demonstrates that the ability of VDAC to influence mitochondrial membrane cholesterol distribution may have implications on mitochondrial characteristics such as oxidative phosphorylation and induction of apoptosis, as well as the propensity of cancer cells to exhibit a glycolytic phenotype. 相似文献
17.
18.
Buszewska ME Strzelecka-Kiliszek A Tylki-Szymańska A Bandorowicz-Pikuła J 《Postepy biochemii》2007,53(2):169-173
Niemann-Pick disease is a genetic disorder, affecting approximately 1 to 150,000 living births per year; in Poland 1-5 cases. Usually diagnosed in the childhood, Niemann-Pick disease results in death in the teenage years. Niemann-Pick disease is defined as a lysosomal storage disorder and is related to impaired transport and/or accumulation of specific lipids inside the cell. In this report, we provide evidence about potential role of annexins, calcium- and membrane-binding proteins, in the formation and stabilization of cholesterol-rich microdomains and their possible function in organizing the membranes of early and late endosomes, organelles affected in the type C Niemann-Pick disease characterized by abnormal accumulation of cholesterol and glycosphingolipids in lysosomal like organelles. 相似文献
19.
Salvioli R Scarpa S Ciaffoni F Tatti M Ramoni C Vanier MT Vaccaro AM 《The Journal of biological chemistry》2004,279(17):17674-17680
Niemann-Pick disease type C (NPC) is characterized by the accumulation of cholesterol and sphingolipids in the late endosomal/lysosomal compartment. The mechanism by which the concentration of sphingolipids such as glucosylceramide is increased in this disease is poorly understood. We have found that, in NPC fibroblasts, the cholesterol storage affects the stability of glucosylceramidase (GCase), decreasing its mass and activity; a reduction of cholesterol raises the level of GCase to nearly normal values. GCase is activated and stabilized by saposin C (Sap C) and anionic phospholipids. Here we show by immunofluorescence microscopy that in normal fibroblasts, GCase, Sap C, and lysobisphosphatidic acid (LBPA), the most abundant anionic phospholipid in the endolysosomal system, reside in the same intracellular vesicular structures. In contrast, the colocalization of GCase, Sap C, and LBPA is markedly impaired in NPC fibroblasts but can be re-established by cholesterol depletion. These data show for the first time that the level of cholesterol modulates the interaction of GCase with its protein and lipid activators, namely Sap C and LBPA, regulating the GCase activity and stability. 相似文献
20.
Niemann-Pick type C disease (NPC) is a rare neurodegenerative disorder characterised by lysosomal/late endosomal accumulation of endocytosed unesterified cholesterol and delayed induction of cholesterol homeostatic reactions. The large majority of mutations in the NPC1 gene described thus far have been associated with severe cellular cholesterol trafficking impairment (classic biochemical phenotype, present in about 85% of NPC patients). In our population of 13 unrelated NP-C1 patients, among which 12 were of Portuguese extraction, we observed an unusually large proportion of families presenting mild alterations of intracellular cholesterol transport (variant biochemical phenotype), without strict correlation between the biochemical phenotype and the clinical expression of the disease. Mutational studies were carried out to compare molecular lesions associated with severe and mild cholesterol traffic impairment. Levels of NPC1 protein were studied by Western blot in cultured fibroblasts of four patients with homozygous mutant alleles. Ten novel mutations were identified (Q92R, C177Y, R518W, W942C, R978C, A1035V, 2129delA, 3662delT, IVS23+1 G>A and IVS16-82 G>A). The mutational profile appeared to be correlated with the biochemical phenotype. Splicing mutations, I1061T and A1035V, corresponded to "classic" alleles, while three missense mutations, C177Y, R978C and P1007A, could be defined as "variant" alleles. All "variant" mutations described so far appear to be clustered within the cysteine-rich luminal loop between TM 8 and 9, with the remarkable exception of C177Y. The latter mutant allele, at variance with P1007A, was correlated to a decreased level of NPC1 protein and a severe course of the disease, and disclosed a new location for "variant" mutations, the luminal loop located at the N-terminal end of the protein. 相似文献