首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nidogen-1 and nidogen-2 are major components of all basement membranes and are considered to function as link molecules between laminin and collagen type IV networks. Surprisingly, the knockout of one or both nidogens does not cause defects in all tissues or in all basement membranes. In this study, we have elucidated the appearance of the major basement membrane components in adult murine kidney lacking nidogen-1, nidogen-2, or both nidogens. To this end, we localized laminin-111, perlecan, and collagen type IV in knockout mice, heterozygous (+/-) or homozygous (-/-) for the nidogen-1 gene, the nidogen-2 gene, or both nidogen genes with the help of light microscopic immunostaining. We also performed immunogold histochemistry to determine the occurrence of these molecules in the murine kidney at the ultrastructural level. The renal basement membranes of single knockout mice contained a similar distribution of laminin-111, perlecan, and collagen type IV compared to heterozygous mice. In nidogen double-knockout animals, the basement membrane underlying the tubular epithelium was sometimes altered, giving a diffuse and thickened pattern, or was totally absent. The normal or thickened basement membrane of double-knockout mice also showed a similar distribution of laminin-111, perlecan, and collagen type IV. The results indicate that the lack of nidogen-1, nidogen-2, or both nidogens, plays no crucial role in the occurrence and localization of laminin-111, collagen type IV, and perlecan in murine tubular renal basement membranes.  相似文献   

2.
The recently identified nidogen-2 is a matrix protein showing homology to the well-known basement membrane molecule nidogen-1. Nidogen-1 might well serve as a link between laminin-1 and collagen type IV and thus stabilise certain basement membranes in vivo and play a major role in embryogenesis. However, the exact tissue distribution of nidogen-1 and nidogen-2 during human embryogenesis is still unclear. As a first step towards the elucidation of their possible cell biological functions during human development, we compared the distribution of both nidogens during human organogenesis at the light microscope level. Nidogen-2 and nidogen-1 were found to be ubiquitous components of basement membrane zones underneath developing epithelia of most of the major organ systems. However, in the developing intestine and the pancreas anlage, only nidogen-1 was present in the epithelial basement membrane zones of all developmental stages investigated. Our data suggest that nidogen-2 and nidogen-1, as is known for mouse development, could well participate in cell biological functions during human development. These two proteins might well be able to fulfil identical functions during human organogenesis.  相似文献   

3.
Nidogen-1, a key component of basement membranes, is considered to function as a link between laminin and collagen type IV networks. Recently a new member of the nidogen family, nidogen-2, has been characterized. Preliminary immunohistochemical data indicated that nidogen-1 and nidogen-2 show a similar tissue distribution at the light microscopic level. We have now localized nidogen-1 and nidogen-2, as well as their corresponding mRNAs, at the light and electron microscopic levels in adult mouse kidney, by in situ hybridization and immunogold histochemistry, as well as carrying out double labeling with laminin-1. Both nidogen-1 and nidogen-2 mRNAs are found not only in mesenchymal cells of embryonic tissues, but also in all epithelial and endothelial cells in adult mouse kidney. Both nidogens are ubiquitous basement membrane components in the mouse kidney, being found in glomerular, tubular, and capillary compartments and Bowman’s capsule. Furthermore, a substantial fraction of nidogen-1 and nidogen-2 colocalizes with laminin-1. The results indicate that nidogen-1 and nidogen-2 could well substitute for one another in some of their biological activities in kidney, for example, stabilizing basement membrane networks in vivo. Accepted: 8 December 1999  相似文献   

4.
Nidogen-1, a key component of basement membranes, is considered to function as a link between laminin and collagen Type IV networks and is expressed by mesenchymal cells during embryonic and fetal development. It is not clear which cells produce nidogen-1 in early developmental stages when no mesenchyme is present. We therefore localized nidogen-1 and its corresponding mRNA at the light and electron microscopic level in Day 7 mouse embryos during the onset of mesoderm formation by in situ hybridization, light microscopic immunostaining, and immunogold histochemistry. Nidogen-1 mRNA was found not only in the cells of the ectoderm-derived mesoderm but also in the cytoplasm of the endoderm and ectoderm, indicating that all three germ layers express it. Nidogen-1 was localized only in fully developed basement membranes of the ectoderm and was not seen in the developing endodermal basement membrane or in membranes disrupted during mesoderm formation. In contrast, laminin-1 and collagen Type IV were present in all basement membrane types at this developmental stage. The results indicate that, in the early embryo, nidogen-1 may be expressed by epithelial and mesenchymal cells, that both cell types contribute to embryonic basement membrane formation, and that nidogen-1 might serve to stabilize basement membranes in vivo. (J Histochem Cytochem 48:229-237, 2000)  相似文献   

5.
Nidogens are highly conserved proteins in vertebrates and invertebrates and are found in almost all basement membranes. According to the classical hypothesis of basement membrane organization, nidogens connect the laminin and collagen IV networks, so stabilizing the basement membrane, and integrate other proteins. In mammals two nidogen proteins, nidogen-1 and nidogen-2, have been discovered. Nidogen-2 is typically enriched in endothelial basement membranes, whereas nidogen-1 shows broader localization in most basement membranes. Surprisingly, analysis of nidogen-1 gene knockout mice presented evidence that nidogen-1 is not essential for basement membrane formation and may be compensated for by nidogen-2. In order to assess the structure and in vivo function of the nidogen-2 gene in mice, we cloned the gene and determined its structure and chromosomal location. Next we analyzed mice carrying an insertional mutation in the nidogen-2 gene that was generated by the secretory gene trap approach. Our molecular and biochemical characterization identified the mutation as a phenotypic null allele. Nidogen-2-deficient mice show no overt abnormalities and are fertile, and basement membranes appear normal by ultrastructural analysis and immunostaining. Nidogen-2 deficiency does not lead to hemorrhages in mice as one may have expected. Our results show that nidogen-2 is not essential for basement membrane formation or maintenance.  相似文献   

6.
Nidogen-1 binds several basement membrane components by well-defined, domain-specific interactions. Organ culture and gene targeting approaches suggest that a high-affinity nidogen-binding site of the laminin gamma1 chain (gamma1III4) is important for kidney development and for nerve guidance. Other proteins may also bind gamma1III4, although human nidogen-2 binds poorly to the mouse laminin gamma1 chain. We therefore characterized recombinant mouse nidogen-2 and its binding to basement membrane proteins and cells. Mouse nidogen-1 and -2 interacted at comparable levels with collagen IV, perlecan, and fibulin-2 and, most notably, also with laminin-1 fragments P1 and gamma1III3-5, which both contain the gamma1III4 module. In embryos, nidogen-2 mRNA was produced by mesenchyme at sites of epithelial-mesenchymal interactions, but the protein was deposited on epithelial basement membranes, as previously shown for nidogen-1. Hence, binding of both nidogens to the epithelial laminin gamma1 chain is dependent on epithelial-mesenchymal interactions. Epidermal growth factor stimulated expression of both nidogens in embryonic submandibular glands. Both nidogens were found in all studied embryonic and adult basement membranes. Nidogen-2 was more adhesive than nidogen-1 for some cell lines and was mainly mediated by alpha3beta1 and alpha6beta1 integrins as shown by antibody inhibition. These findings revealed extensive coregulation of nidogen-1 and -2 expression and much more complementary functions of the two nidogens than previously recognized.  相似文献   

7.
Tissue function is regulated by the extracellular microenvironment including cell basement membranes, in which laminins are a major component. Previously, we found that laminin-1 promotes differentiation and survival of pancreatic islet cells. Here we characterize the expression pattern of laminins and their integrin receptors in adult pancreas. Although they are expressed in the basement membrane of acinar cells and duct epithelium, no laminin chains examined were detected extracellularly in the pancreatic islets. In contrast to laminin beta(1)- and gamma(1)-chains, the alpha(1)-chain, unique to laminin-1, was not detected. Laminin-10 (alpha(5)beta(1)gamma(1)) was expressed in acinar tissue, whereas laminins-2 (alpha(2)beta(1)gamma(1)) and -10 were expressed in the blood vessels. The laminin connector molecule, nidogen-1, had a distribution similar to that of laminin beta(1) and gamma(1), whereas fibulin-1 and -2, which compete with nidogen-1, were mostly confined to blood vessels. Integrin subunits alpha(6) and alpha(3) were detected in acinar cells and duct epithelial cells, but alpha(6) was absent in islet cells. Integrin alpha(6)beta(4) was detected only in duct cells, alpha(6)beta(1) in both acinar and ductal cells, and alpha(3)beta(1) in acinar, duct, and islet cells. These findings are a basis for further investigation of the role of extracellular matrix molecules and their receptors in pancreas function.  相似文献   

8.
Biological function of laminin-5 and pathogenic impact of its deficiency   总被引:1,自引:0,他引:1  
The basement membrane glycoprotein laminin-5 is a key component of the anchoring complex connecting keratinocytes to the underlying dermis. It is secreted by keratinocytes as a cross-shaped heterotrimer of alpha3, beta3 and gamma2 chains and serves as a ligand of various transmembrane receptors, thereby regulating keratinocyte adhesion, motility and proliferation. In intact skin, laminin-5 provides essential links to both the hemidesmosomal alpha6beta4 integrin and the collagen type VII molecules which form the anchoring fibrils inserting into the dermis. If the basement membrane is injured, laminin-5 production increases rapidly. It then serves as a scaffold for cell migration, initiates the formation of hemidesmosomes and accelerates basement membrane restoration at the dermal-epidermal junction. Mutations of the laminin-5 genes or auto-antibodies against one of the subunits of laminin-5 may lead to a significant lack of this molecule in the epidermal basement membrane zone. The major contributions of laminin-5 to the resistance of the epidermis against frictional stress but also for basement membrane regeneration and repair of damaged skin are reflected by the phenotype of Herlitz junctional epidermolysis bullosa, which is caused by an inherited absence of functional laminin-5. This lethal disease becomes manifest in widespread blistering of skin and mucous membranes, impaired wound healing and chronic erosions containing exuberant granulation tissue. Here, we discuss current understanding of the biological functions of laminin-5, the pathogenic impact of its deficiency and implications on molecular approaches towards a therapy of junctional epidermolysis bullosa.  相似文献   

9.
10.
The expression of the constituent alpha 1 chain of laminin-1, a major component of basement membranes, is markedly regulated during development and differentiation. We have designed an antisense RNA strategy to analyze the direct involvement of the alpha 1 chain in laminin assembly, basement membrane formation, and cell differentiation. We report that the absence of alpha 1-chain expression, resulting from the stable transfection of the human colonic cancer Caco2 cells with an eukaryotic expression vector comprising a cDNA fragment of the alpha 1 chain inserted in an antisense orientation, led to (a) an incorrect secretion of the two other constituent chains of laminin-1, the beta 1/gamma 1 chains, (b) the lack of basement membrane assembly when Caco2-deficient cells were cultured on top of fibroblasts, assessed by the absence of collagen IV and nidogen deposition, and (c) changes in the structural polarity of cells accompanied by the inhibition of an apical digestive enzyme, sucrase-isomaltase. The results demonstrate that the alpha 1 chain is required for secretion of laminin-1 and for the assembly of basement membrane network. Furthermore, expression of the laminin alpha 1-chain gene may be a regulatory element in determining cell differentiation.  相似文献   

11.
Integrins alpha3beta1 and alpha6beta1 are two major laminin receptors expressed on the surface of mammalian cells. Interactions of cells with laminins through these integrins play important roles in cell adhesion, differentiation, motility, and matrix assembly. To determine the binding specificity and affinity of these integrins toward various types of laminins at the level of direct protein-protein interactions, we purified integrins alpha3beta1 and alpha6beta1 from human placenta, and examined their binding to a panel of laminin isoforms, each containing distinct alpha chains (i.e., laminin-1, laminin-2/4, laminin-5, laminin-8, and laminin-10/11). Integrin alpha3beta1 showed clear specificity for laminin-5 and laminin-10/11, with no significant binding to laminin-1, laminin-2/4, and laminin-8. In contrast, integrin alpha6beta1 showed a broad spectrum of specificity, with apparent binding affinity in the following order: laminin-10/11 > laminin-5 > laminin-1 > laminin-2/4 congruent with laminin-8. Integrin titration assays demonstrated that laminin-10/11 was the most preferred ligand among the five distinct laminin isoforms for both alpha3beta1 and alpha6beta1 integrins. Given that laminin-10/11 is the major basement membrane component of many adult tissues, the interaction of laminin-10/11 with these integrins should play a central role in the adhesive interactions of epithelial cells with underlying basement membranes.  相似文献   

12.
Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are typical proinflammatory cytokines that influence various cellular functions, including metabolism of the extracellular matrix. We examined the roles of IL-1beta and TNF-alpha in basement membrane formation in an in vitro model of alveolar epithelial tissue composed of alveolar epithelial cells and pulmonary fibroblasts. Formation of the basement membrane by immortalized rat alveolar type II epithelial (SV40-T2) cells, which ordinarily do not form a continuous basement membrane, was dose-dependently upregulated in the presence of 2 ng/ml IL-1beta or 5 ng/ml TNF-alpha. IL-1beta or TNF-alpha alone induced increased secretion of type IV collagen, laminin-1, and nidogen-1/entactin, all of which contributed to this upregulation. In contrast, while SV40-T2 cells cultured with a fibroblasts-embedded type I collagen gel were able to form a continuous basement membrane, they failed to form a continuous basement membrane in the presence of IL-1beta or TNF-alpha. Fibroblasts treated with IL-1beta or TNF-alpha secreted matrix metalloproteinase (MMP)-9 and MMP-2, and these MMPs inhibited basement membrane formation and degraded the basement membrane architecture. Neither IL-1beta- nor TNF-alpha-treated SV40-T2 cells increased the secretion of MMP-9 and MMP-2. These results suggest that IL-1beta participates in basement membrane formation in two ways. One is the induction of MMP-2 and MMP-9 secretion by fibroblasts, which inhibits basement membrane formation, and the other is induction of basement membrane component secretion from alveolar epithelial cells to enhance basement membrane formation.  相似文献   

13.
Domain IV of mouse perlecan, which consists of 14 immunoglobulin superfamily (IG) modules, was prepared from recombinant human cell culture medium in the form of two fragments, IV-1 (IG2-9, 100 kDa) and IV-2 (IG10-15, 66 kDa). Both fragments bound to a heparin column, being eluted at ionic strengths either below (IV-2) or above (IV-1) physiological level, and could thus be readily purified. Electron microscopy demonstrated an elongated shape (20-25 nm), and folding into a native structure was indicated by immunological assay and CD spectroscopy. Solid-phase and surface plasmon resonance assays demonstrated strong binding of fragment IV-1 to fibronectin, nidogen-1, nidogen-2 and the laminin-1-nidogen-1 complex, with Kd values in the range 4-17 nM. The latter binding apparently occurs through nidogen-1, as shown by the formation of ternary complexes. Only moderate binding was observed for fibulin-2 and collagen IV and none for fibulin-1 and BM-40. Fragment IV-2 showed a more restricted pattern of binding, with only weaker binding to fibronectin and fibulin-2. None of these activities could be demonstrated for recombinant fragments corresponding to the N-terminal perlecan domains I to III. This indicates a special role for domain IV in the integration of perlecan into basement membranes and other extracellular structures via protein-protein interactions.  相似文献   

14.
Role of laminin terminal globular domains in basement membrane assembly   总被引:2,自引:0,他引:2  
Laminins contribute to basement membrane assembly through interactions of their N- and C-terminal globular domains. To further analyze this process, recombinant laminin-111 heterotrimers with deletions and point mutations were generated by recombinant expression and evaluated for their ability to self-assemble, interact with nidogen-1 and type IV collagen, and form extracellular matrices on cultured Schwann cells by immunofluorescence and electron microscopy. Wild-type laminin and laminin without LG domains polymerized in contrast to laminins with deleted alpha1-, beta1-, or gamma1-LN domains or with duplicated beta1- or alpha1-LN domains. Laminins with a full complement of LN and LG domains accumulated on cell surfaces substantially above those lacking either LN or LG domains and formed a lamina densa. Accumulation of type IV collagen onto the cell surface was found to require laminin with separate contributions arising from the presence of laminin LN domains, nidogen-1, and the nidogen-binding site in laminin. Collectively, the data support the hypothesis that basement membrane assembly depends on laminin self-assembly through formation of alpha-, beta-, and gamma-LN domain complexes and LG-mediated cell surface anchorage. Furthermore, type IV collagen recruitment into the laminin extracellular matrices appears to be mediated through a nidogen bridge with a lesser contribution arising from a direct interaction with laminin.  相似文献   

15.
Frem1 belongs to a family of structurally related extracellular matrix proteins of which Fras1 is the founding member. Mutations in Fras1 and Frem1 have been identified in mouse models for Fraser syndrome, which display a strikingly similar embryonic skin blistering phenotype due to impaired dermal-epidermal adhesion. Here we show that Frem1 originates from both epithelial and mesenchymal cells, in contrast to Fras1 that is exclusively derived from epithelia. However, both proteins are localized in an absolutely overlapping fashion in diverse epithelial basement membranes. At the ultrastructural level, Frem1 exhibits a clustered arrangement in the sublamina densa coinciding with fibrillar structures reminiscent of anchoring fibrils. Furthermore, in addition to its extracellular deposition, around E16, Frem1 displays an intracellular distribution in distinct epidermal cell types such as the periderm layer and basal keratinocytes. Since periderm cells are known to participate in temporary epithelial fusions like embryonic eyelid closure, defective function of Frem1 in these cells could provide a molecular explanation for the "eyes open at birth" phenotype, a feature unique for Frem1 deficient mouse mutants. Finally, we demonstrate loss of Frem1 localization in the basement membrane but not in periderm cells in the skin of Fras1(-/-) embryos. Taken together, our findings indicate that besides a cooperative function with Fras1 in embryonic basement membranes, Frem1 can also act independently in processes related to epidermal differentiation.  相似文献   

16.
Laminin-5 (previously known as kalinin, epiligrin, and nicein) is an adhesive protein localized to the anchoring filaments within the lamina lucida space of the basement membrane zone lying between the epidermis and dermis of human skin. Anchoring filaments are structures within the lamina lucida and lie immediately beneath the hemidesmosomes of the overlying basal keratinocytes apposed to the basement membrane zone. Human keratinocytes synthesize and deposit laminin-5. Laminin-5 is present at the wound edge during reepithelialization. In this study, we demonstrate that laminin-5, a powerful matrix attachment factor for keratinocytes, inhibits human keratinocyte migration. We found that the inhibitory effect of laminin-5 on keratinocyte motility can be reversed by blocking the α3 integrin receptor. Laminin-5 inhibits keratinocyte motility driven by a collagen matrix in a concentration-dependent fashion. Using antisense oligonucleotides to the α3 chain of laminin-5 and an antibody that inhibits the cell binding function of secreted laminin-5, we demonstrated that the endogenous laminin-5 secreted by the keratinocyte also inhibits the keratinocyte's own migration on matrix. These findings explain the hypermotility that characterizes keratinocytes from patients who have forms of junctional epidermolysis bullosa associated with defects in one of the genes encoding for laminin-5 chains, resulting in low expression and/or functional inadequacy of laminin-5 in these patients. These studies also suggest that during reepithelialization of human skin wounds, the secreted laminin-5 stabilizes the migrating keratinocyte to establish the new basement membrane zone.  相似文献   

17.
An active involvement of blood-brain barrier endothelial cell basement membranes in development of inflammatory lesions in the central nervous system (CNS) has not been considered to date. Here we investigated the molecular composition and possible function of the extracellular matrix encountered by extravasating T lymphocytes during experimental autoimmune encephalomyelitis (EAE).Endothelial basement membranes contained laminin 8 (alpha4beta1gamma1) and/or 10 (alpha5beta1gamma1) and their expression was influenced by proinflammatory cytokines or angiostatic agents. T cells emigrating into the CNS during EAE encountered two biochemically distinct basement membranes, the endothelial (containing laminins 8 and 10) and the parenchymal (containing laminins 1 and 2) basement membranes. However, inflammatory cuffs occurred exclusively around endothelial basement membranes containing laminin 8, whereas in the presence of laminin 10 no infiltration was detectable. In vitro assays using encephalitogenic T cell lines revealed adhesion to laminins 8 and 10, whereas binding to laminins 1 and 2 could not be induced. Downregulation of integrin alpha6 on cerebral endothelium at sites of T cell infiltration, plus a high turnover of laminin 8 at these sites, suggested two possible roles for laminin 8 in the endothelial basement membrane: one at the level of the endothelial cells resulting in reduced adhesion and, thereby, increased penetrability of the monolayer; and secondly at the level of the T cells providing direct signals to the transmigrating cells.  相似文献   

18.
Laminin-11.     
Laminins are a family of glycoproteins which are ubiquitous components of basement membranes and play key structural and functional roles. Eleven isoforms have been identified to date; each is an alpha beta gamma heterotrimer assembled from a repertoire of five alpha, three beta and two gamma chains. Studies of laminin-11 (alpha 5 beta 2 gamma 1) illustrate the unique expression patterns and distinct functions that can be displayed by laminin isoforms. Laminin-11 is found in the glomerular basement membrane in kidney, in the neuromuscular synaptic cleft in skeletal muscle and in other tissues such as placenta and lung. Mice lacking laminin-11 exhibit defective glomerular filtration and developmental defects in neuromuscular synapse formation, with Schwann cells invading the synaptic cleft. Consistent with these observations, both motoneurons and Schwann cells distinguish laminin-11 from other isoforms in vitro. These results suggest that laminin-11 is a structural component of the basement membrane which influences cell behavior in physiologically relevant ways. A greater understanding of laminin-11 assembly and basement membrane incorporation could provide a logical basis for therapy in merosin-deficient congenital muscular dystrophy.  相似文献   

19.
To identify the laminin isoforms of the basement membranes that could be implicated in the extravasation process of neoplastic lymphocytes, a number of purified laminins and one native renal laminin complex were comparatively investigated for their ability to promote migration of neoplastic lymphocytes in vitro. The identity/composition of a human placental laminin complex was asserted by combining immunochemical assays, sequence determination of tryptic peptides, and ultrastructural analysis to be composed predominantly of laminin-10 in which the coiled-coil C-terminal regions and the G globular domain of the alpha5 chain were preserved intact despite the enzymatic treatment used for its isolation. Lymphoma and leukemic cell lines failed to migrate towards laminin-4, -9, -11, moved poorly in response to laminin-1, -2/4, -5 and the renal laminin complex, but markedly locomoted towards the subendothelial laminin-8 and -10. The motility-promoting interaction with these latter laminins was interchangeably mediated by the alpha3beta1 and alpha6beta1 integrins. Lymphocyte locomotion on laminins assayed in the presence of cytokines was either reduced or enhanced suggesting that local cytokine milieu could further influence motility response.  相似文献   

20.
Agrin is a large, multidomain heparan sulfate proteoglycan that is associated with basement membranes of several tissues. Particular splice variants of agrin are essential for the formation of synaptic structures at the neuromuscular junction. The binding of agrin to laminin appears to be required for its localization to synaptic basal lamina and other basement membranes. Here, electron microscopy was used to determine the structure of agrin and to localize its binding site in laminin-1. Agrin appears as an approximately 95 nm long particle that consists of a globular, N-terminal laminin-binding domain, a central rod predominantly formed by the follistatin-like domains and three globular, C-terminal laminin G-like domains. In a few cases, heparan sulfate glycosaminoglycan chains were seen emerging from the central portion of the core protein. Moreover, we show that agrin binds to the central region of the three-stranded, coiled-coil oligomerization domain in the long arm of laminin-1, which mediates subunit assembly of the native laminin molecule. In summary, our data show for the first time a protein-protein interaction of the extracellular matrix that involves a coiled-coil domain, and they assign a novel role to this domain of laminin-1. Based on this, we propose that agrin associates with basal lamina in a polarized way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号