首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
When L3T4+ cloned murine helper T lymphocytes (HTL) are stimulated with antigen or immobilized anti-T cell receptor (TCR) monoclonal antibodies (mAb) at concentrations which are optimal for proliferation, anti-L3T4 mAb inhibits activation as measured by proliferation and lymphokine production. Under similar conditions, IL 2-independent proliferation of Lyt-2+ cloned murine cytolytic T lymphocytes (CTL) stimulated by anti-TCR mAb is inhibited by anti-Lyt-2 antibodies. Proliferation of cloned HTL and CTL cells stimulated by IL 2 is not affected by the anti-L3T4 and anti-Lyt-2 mAb. The inhibition of TCR-induced activation of the T cell clones is not due to interference with the binding of the anti-TCR mAb. Stimulation of the TCR has been proposed to induce lymphokine secretion and proliferation by T cells through a pathway involving the activation of protein kinase C and the stimulation of an increase in the concentration of intracellular free calcium. However, proliferation of T cells stimulated by PMA (which activates protein kinase C) plus the calcium ionophore A23187 (which increases the concentration of intracellular free calcium) is not affected by mAb reactive with the Lyt-2 or L3T4 structures. If TCR stimulation does indeed activate T cells by activating protein kinase and increasing intracellular free calcium, then our data suggest that anti-L3T4 and anti-Lyt-2 mAb inhibit TCR-driven proliferation at some step before the activation of protein kinase C and the stimulation of a rise in intracellular free calcium concentration. Our results suggest that anti-L3T4 and anti-Lyt-2 mAb interfere with early biochemical processes induced by stimulation of the TCR. In HTL, which proliferate via an autocrine pathway, anti-L3T4 mAb appears to inhibit proliferation by interfering with signaling events involved in lymphokine production. Inhibition of IL 2-independent proliferation of Lyt-2+ cells by anti-Lyt-2 mAb appears to occur by a different mechanism. The precise molecular basis for the interference of each cell type has not yet been characterized.  相似文献   

2.
CTL/HTL hybrid clones provide a unique system that allows detailed analysis of the role of Lyt-2, L3T4, and other structures involved in T cell functions. We have demonstrated previously that the fusion of cloned murine CTL and helper T lymphocytes with defined specificity generated hybrid cells that expressed both Lyt-2 and L3T4 as well as two TCR. Data obtained with these hybrid clones demonstrated that cytolysis is closely linked to the CTL TCR. We have analyzed the effects of anti-Lyt-2 and anti-L3T4 as well as anti-TCR mAb on cytolysis, proliferation, and lymphokine release by a number of hybrid clones. We found that anti-Lyt-2 and anti-L3T4 mAb were able to inhibit both proliferation and lymphokine release by the hybrid clones in response to stimulation of either the CTL or helper T lymphocyte parent TCR. In contrast, only anti-Lyt-2 and anti-CTL TCR mAb were able to block cytolysis of target cells bearing the Ag recognized by the CTL TCR. These results provide further evidence that cytolysis is closely linked to the CTL TCR and that Lyt-2 and L3T4 have more than a passive role as accessory molecules on the surface of T lymphocytes.  相似文献   

3.
We have shown previously that stimulation of cloned murine T lymphocytes via the TCR inhibits their responsiveness to rIL-2. Signaling via the TCR is believed to result in a variety of biochemical events that include a rise in intracellular free calcium and activation (translocation) of protein kinase C. These two signals also can be generated by calcium ionophores, such as ionomycin, and by activators of protein kinase C, such as PMA. We report here that treatment of cloned murine T lymphocytes with PMA, ionomycin, or the combination led to a dose-dependent inhibition of IL-2-dependent proliferation but did not inhibit lymphokine secretion. Concentrations of PMA and ionomycin that maximally inhibited proliferation stimulated maximal lymphokine secretion and increased mitochondrial activity as assessed by measurement of cleavage of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium-bromide. Furthermore, PMA, ionomycin, the combination, or immobilized anti-CD3 mAb added after 12 to 16 h of culture with IL-2 could inhibit proliferation. These results demonstrate that PMA and ionomycin mimic stimulation of the TCR by high concentrations of immobilized anti-TCR mAb in that proliferation is inhibited and lymphokine secretion is induced. In addition, PMA or ionomycin could independently inhibit proliferation of some cells. These findings suggest that alternative mechanisms exist to regulate proliferation. Either increased levels of intracellular calcium or the physiologic events corresponding to those induced by PMA can inhibit IL-2-dependent replication of T lymphocytes.  相似文献   

4.
mAb directed against the TCR/CD3 complex activate resting T cells. However, TCR/CD3 signaling induces death by apoptosis in immature (CD4+CD8+) murine thymocytes and certain transformed leukemic T cell lines. Here we show that anti-TCR and anti-CD3 mAb induce growth arrest of cloned TCR-gamma delta + T cells in the presence of IL-2. In the absence of exogenous IL-2, however, the very same anti-TCR/CD3 mAb stimulated gamma delta (+)-clones to proliferation and IL-2 production. In the presence of exogenous IL-2, anti-TCR/CD3 mAb induced the degradation of DNA into oligosomal bands of approximately 200 bp length in cloned gamma delta + T cells. This pattern of DNA fragmentation is characteristic for the programmed cell death termed apoptosis. These results demonstrate that TCR/CD3 signaling can induce cell death in cloned gamma delta + T cells. In addition, this report is the first to show that apoptosis triggered by TCR/CD3 signaling is not restricted to CD4+CD8+ immature thymocytes and transformed leukemic T cell lines but can be also observed with IL-2-dependent normal (i.e., TCR-gamma delta +) T cells.  相似文献   

5.
Both cloned murine helper T lymphocytes (HTL) and cytolytic T lymphocytes (CTL) proliferated and secreted lymphokines when stimulated with immobilized anti-T cell receptor monoclonal antibody (anti-TCR mAb). However, although proliferation of CTL increased and reached plateau levels as concentrations of anti-TCR mAb were increased, the proliferation of HTL decreased with high concentrations of anti-TCR mAb. A reduction of IL 2-dependent proliferation by CTL was observed when IL 2 was added to cultures of CTL in the presence of high concentrations of anti-TCR mAb, whereas IL 2-independent proliferation appeared to be unaffected by these concentrations of anti-TCR mAb. Inhibition of IL 2-driven proliferation caused by high concentrations of immobilized anti-TCR mAb did not seem to be mediated by soluble factors. Cells continued to express cell surface receptors for IL 2 and transferrin after treatment with immobilized anti-TCR mAb. Inhibition of IL 2-driven proliferation by high concentrations of immobilized anti-TCR mAb may represent a mechanism for regulating the proliferation of T lymphocytes. This inhibitory mechanism is initiated by stimulation of the T cell receptor, in this case by immobilized anti-TCR mAb, and is independent of other cells and factors.  相似文献   

6.
Down-regulation of IL-2 production by activation of T cells through Ly-6A/E   总被引:4,自引:0,他引:4  
Ly-6A/E molecules are expressed on the surface of T cells and have been shown to function in activation by the capacity of anti-Ly-6A/E mAb to induce T cell hybridomas or normal T cells to produce IL-2. Recent evidence suggests that activation through Ly-6A/E may be linked to the TCR signaling pathway. To further investigate the relationship between Ly-6- and TCR-induced T cell activation, we have examined whether an anti-Ly-6A/E mAb (D7) modulates TCR signaling in vitro. We now report that mAb D7 specifically inhibited IL-2 production by T cells also activated through TCR. Such inhibition was noted for normal T cells stimulated by soluble anti-CD3 or alloantigen and for T hybridomas stimulated by soluble anti-CD3. The ability of D7 to inhibit IL-2 production by T hybridomas was dependent on the nature of the TCR activating signal because IL-2 production was not inhibited when T hybridomas were stimulated with Ag or immobilized anti-CD3. Inhibition of IL-2 production by D7 apparently required cross-linking of the mAb because D7 F(ab')2 fragments were not effective for inhibition of IL-2 production. Similar to its ability to enhance anti-Ly-6A/E-induced activation of T and B cells, IFN-gamma enhanced the D7-induced inhibition of IL-2 production by alloantigen-activated normal T cells. These data further support the notion that Ly-6 and TCR signaling pathways are interrelated.  相似文献   

7.
We have analyzed activation of resting human T cells by anti-T cell receptor (TCR) monoclonal antibody (mAb) BMA031, a murine mAb of the G2b isotype. Human peripheral blood lymphocytes (PBL) respond to anti-TCR mAb by short-term proliferation in vitro and by acquisition of responsiveness to interleukin 2 (rIL-2) in the absence of detectable IL-2 production. Cell depletion and limiting dilution experiments indicate that anti-TCR mAb +/- rIL-2 stimulation covers a substantial portion of human T cells, including CD4+ and CD8+ cells. Enhancement by rIL-2 of anti-TCR mAb-induced proliferation is blocked by anti-IL-2 receptor (IL-2R, p55) mAb, while anti-TCR mAb-induced proliferation is not. In contrast, anti-TCR mAb-induced proliferation is blocked by anti-lymphocyte function antigen 1 (LFA-1, CD11a) mAb and is not demonstrable in PBL from two patients with severe congenital LFA-1 deficiency, not even in the presence of irradiated LFA-1+ PBL. We conclude that stimulation of resting human T cells by anti-TCR mAb BMA031 enables dissociation of distinct steps in T cell activation that specifically require participation of IL-2R (p55) and LFA-1 cell surface molecules in a mutually exclusive way.  相似文献   

8.
Induction of peripheral T cell anergy associated with stimulation through the TCR complex in vivo has been described in mice using chemically modified APC, staphylococcal enterotoxin B, and intact anti-CD3 mAb. In the latter two models, T cell proliferation, IL-2R expression, and lymphokine production have been demonstrated before subsequent induction of hyporesponsiveness, whereas in the former model, these events have not been observed. To further investigate the relationship between mitogenicity and induction of peripheral hyporesponsiveness, mice were treated with either mitogenic intact anti-CD3 mAb or nonmitogenic F(ab')2 fragments of anti-CD3 mAb. T cells from F(ab')2-treated mice demonstrated a selective decrease in helper functions, with minimal effect on CTL function. Specifically, a marked reduction in ability of Th cells to secrete IL-2 when challenged in vitro with mitogen or alloantigen was observed, which persisted for at least 2 mo after mAb administration and which was independent of T cell depletion. Proliferative function was decreased in CD4+ T cells and could not be fully restored with addition of exogenous IL-2. A helper defect was also evident in vivo, in that F(ab')2-treated mice were deficient in their ability to reject MHC-disparate skin grafts, and in vivo administration of IL-2 reconstituted their ability to reject skin grafts normally. In contrast, T cells from mice treated with intact mAb demonstrated a significant decrease in both CTL and helper functions. A long term reduction in TCR expression on CD4+ cells from F(ab')2-treated mice, and on both CD4+ and CD8+ cells from intact mAb-treated mice was observed. These findings demonstrate that peripheral T cell hyporesponsiveness can be induced in vivo by binding an identical epitope on the TCR complex in the presence or absence of initial proliferation, lymphokine secretion, or IL-2R expression, and that binding to the same epitope can result in varying long term effects on T cell function.  相似文献   

9.
IL-4-supported induction of cytolytic T lymphocytes requires IL-2 and IL-6   总被引:1,自引:0,他引:1  
Previous work indicated that a CTL response can be generated by the combination of IL-2 plus IL-6 or IL-4 alone. Because of the ubiquitous production of IL-6 and its apparent ability to induce IL-2, we explored the interdependence of these lymphokines in supporting a CTL response from murine thymocytes. For thymocytes cultured in IL-4, further addition of IL-6 enhanced thymocyte proliferation. In addition, a role for IL-6 in thymocyte activation was indicated by the ability of anti-IL-6 mAb to block both IL-4-directed proliferation and the cytotoxic response found in the presence of IL-4. The addition of IL-2 to limiting doses of IL-4 augmented the CTL response; however, the response to high levels of IL-4 was not augmented by addition of IL-2. Consistent with this apparent involvement of IL-2 in the IL-4-mediated response we found: (a) that mAb to IL-2 significantly reduced the CTL response generated in the presence of IL-4; (b) that IL-2 activity was present in culture supernatant following incubation of thymocytes with high levels of IL-4; and (c) that enhanced IL-2 receptor expression found in the presence of IL-4 was blocked with the addition of anti-IL-2 antibody to the thymocyte culture. In contrast to the data for proliferation, anti-IL-4 mAb had no effect on the generation of CTL in the presence of IL-2 + IL-6 but readily blocked the CTL response to IL-4. These results indicate that, for thymocyte responders, the CD8+ CTL generated in the presence of IL-4 require both IL-2 and IL-6.  相似文献   

10.
Ly-6A is a glycosyl-phosphatidylinositol (GPI)-anchored molecule that participates in murine T cell activation. Activation of T cell hybridomas with anti-Ly-6A monoclonal antibody (mAb) leads to production of interleukin-2 (IL-2), but also to a paradoxical growth inhibition, which was used to select for signaling mutants. Fifteen subclones derived from two independent mutageneses and anti-Ly-6A selection were characterized. Thirteen subclones responded poorly or not at all to soluble anti-Ly-6A mAb. Although the selective pressure was exerted through Ly-6A, only one mutant did not express the Ly-6A antigen. Interestingly, 10 of the 15 subclones expressed either nondetectable or a very low level of T cell receptor/CD3 complex (TCR/CD3). Preferential expansion of TCR/CD3 expression mutants following anti-Ly-6A selection further established functional linkage between Ly-6A and TCR/CD3 complex. The mechanism of the functional coupling was investigated by analyzing the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), one of the early events in T cell activation. We showed that PIP2 was not hydrolyzed in response to anti-Ly-6A in TCR/CD3-negative mutants. Aluminum fluoride, which activates G protein directly, did induce PIP2 hydrolysis in these cells. These data suggest that activation signals originated from Ly-6A must be transmitted first to TCR/CD3 complex, which then couples to the G protein/phospholipase C system. A similar requirement also applies to the Thy-1 protein and lectin receptors. Thus, the TCR/CD3 complex plays a central role in the integration and transmission of activation signals that originated from several T cell surface molecules.  相似文献   

11.
The Ly-6 alloantigens have been shown to participate in the process of T cell activation based on the ability of anti-Ly-6 mAb to induce IL-2 production and proliferation of T lymphocytes. In the present investigation we have demonstrated that peripheral T lymphocytes from A strain mice exhibited abnormally low proliferative responses after stimulation through Ly-6A/E and Ly-6C molecules when compared to responses of T cells from numerous other mouse strains. The abnormal activation of the Ly-6 pathway of A strain T cells was not due to ineffective FcR cross-linking of the anti-Ly-6 mAb, to inappropriate cellular expression of the Ly-6A/E alloantigen in A strain T cells, or to an active suppressive phenomenon. T lymphocytes from A strain mice proliferated normally when the cells were activated by mAb to Thy-1 or the CD3/TCR complex suggesting that A strain mice did not exhibit a generalized T cell activation defect. Cell separation studies of T cells and accessory cells demonstrated that this defect was quantitative, rather than qualitative, and that it was complex, residing at both the T cell and accessory cell levels. These results suggest that activation of T lymphocytes via the Ly-6 molecule may involve a signaling pathway and/or cell-cell interactions distinct from those required for optimal activation via CD3/TCR.  相似文献   

12.
CTL lyse their target cells in discrete phases. First, the CTL bind to the target cell in a Mg2+-dependent manner followed by a Ca2+-dependent cytolytic phase. In the present study, we investigated the role of CD4 in the different phases of the cytolytic reaction mediated by human CD4+ class II MHC-specific CTL clones by using a single cell assay. It was found that the anti-CD4+ mAb OKT4A, which blocks cytotoxic reactions by CD4+ CTL clones as measured with a 51Cr release assay, only marginally affects the formation of conjugates. It appeared that OKT4A more strongly blocked the post-binding phase of the cytolytic reaction. In contrast, anti-leukocyte function-associated mAb strongly blocked the formation of conjugates but not the subsequent lytic phase. As was found previously with CD8+ CTL clones, anti-TCR mAb generally did not affect the formation of conjugates. One exception was noted. The activity of a CD4+ CTL clone, HY-640, could not be blocked by OKT4A, but was affected by an anti-TCR mAb. This anti-TCR mAb could partly reduce the formation of conjugates between HY-640 cells and their specific target cells. These results suggest that this clone has a high affinity TCR, which can contribute to the formation of conjugates. Although preincubation of the CTL clones with OKT4A only marginally affects the number of conjugates upon subsequent mixture with target cells, it was observed that incubation at 37 degrees C of preformed conjugates with OKT4A markedly reduced the number of conjugates. This dissociation of preformed conjugates was optimal only after 2 h of incubation. In contrast, an anti-leukocyte function-associated mAb induced a much more rapid dissociation of preformed conjugates.  相似文献   

13.
Short-term treatment of cloned mouse cytotoxic T lymphocytes (CTL) with interferon (IFN) induces lytic activity for natural killer- (NK) sensitive targets. Extended culture of CTL in high concentrations of interleukin 2 induces promiscuous lytic activity in which state both NK-sensitive and NK-resistant target cells are lysed. Cold-target competition analysis showed that the development of NK activity was associated with the acquisition of binding activity for NK-sensitive but not for NK-resistant targets, whereas the development of promiscuous lytic activity was associated with the acquisition of binding activity for both types of target. Antigen-specific cytolysis was inhibited by antibodies to Ly-2, Ly-5, LFA-1 and to the V region of the T cell antigen receptor (TCR), whereas NK and promiscuous lytic activity in the same cells was resistant to inhibition by anti-Ly-2 and anti-TCR. NK activity was expressed normally against a variant NK-sensitive cell line lacking all MHC antigens. These results show that, in contrast to antigen-specific recognition, the NK and promiscuous lytic activities of CTL are expressed without participation of effector cell Ly-2 and TCR molecules or target cell MHC molecules, and are most likely mediated through novel and distinct receptor systems.  相似文献   

14.
Previous analyses of the inhibitory effects of anti-Lyt-2 monoclonal antibodies (mAb) on cytolytic activity suggested that Lyt-2/3 antigens expressed on the surface of murine cytolytic T lymphocytes (CTL) are involved in antigen recognition. In the present study, we investigated the effects of anti-Lyt-2 mAb (in the absence of complement) on the functional activities of H-2K/D-specific Lyt-2+ CTL clones that proliferate to antigenic stimulation in the absence of helper T cells or added interleukin 2 (IL 2) and secrete lymphokines. For those clones that were inhibited in cytolysis by anti-Lyt-2 mAb, a parallel inhibition of antigen-dependent proliferation and lymphokine secretion (interferon, macrophage-activating factor) was observed. Inhibition of proliferation or lymphokine secretion could be overcome by the addition of IL 2 or lectin, respectively. Collectively, these results would strongly suggest that anti-Lyt-2 mAb were inhibiting CTL antigen recognition. Not all CTL clones, however, were inhibited in cytolysis by anti-Lyt-2 mAb, in which case proliferation and lymphokine secretion were similarly unaffected. This heterogeneity of Lyt-2+ CTL clones in their susceptibility to inhibition of cytolytic activity, proliferation, and lymphokine secretion by anti-Lyt-2 mAb is discussed in the context of a model proposing that Lyt-2/3 molecules function to stabilize the interaction between CTL receptors and the corresponding target/stimulating cell antigens. Such a stabilization may be required by CTL possessing few and/or low affinity receptors.  相似文献   

15.
The mAb F23.1, specific for V beta 8-related determinants on the TCR, was used to study the requirements for TCR cross-linking and for accessory cells (AC) in the induction of proliferation or IL-2 responsiveness in L3T4+ (CD4+) and Lyt-2+ (CD8+) T cells. T cells were exposed in vitro to soluble native F23.1 antibody, to heteroconjugates composed of the Fab fragments of F23.1 linked to Fab fragments of antibodies specific for Ia determinants on AC, or to F23.1 immobilized on an insoluble matrix. Soluble F23.1 antibody-induced proliferation in naive T cells only in the presence of both AC and exogenous IL-2, and these responses were confined to Lyt-2+ T cells. In contrast, heteroconjugates capable of crosslinking F23.1+ TCR to AC surface Ia determinants were capable of inducing proliferation in both L3T4+ and Lyt-2+ T cells in the absence of added lymphokine. Moreover, binding to and presumably multi-valent crosslinking of the TCR by immobilized F23.1 was sufficient to induce proliferation in both Lyt-2+ and L3T4+ T cells in the absence of AC or exogenous IL-2. Further, it was found that the conditions necessary for T cell growth factor secretion paralleled closely those required for induction of T cell proliferation in the absence of added lymphokine, suggesting that production of endogenous lymphokine might be the limiting process for triggering of T cell proliferation. Taken together, these findings suggest that under optimal conditions of TCR cross-linking, TCR occupancy and cross-linking is sufficient to deliver all of the signals necessary to initiate proliferation in naive populations of both L3T4+ and Lyt-2+ T cells. However, when conditions for TCR signaling are suboptimal, as may be the case for normal Ag-mediated stimulation, a role for second signals delivered by AC or exogenous lymphokines can become critical for T cell activation.  相似文献   

16.
Purified T cells can be induced to proliferate and to produce the autocrine growth factor IL-2 with mAb to the TCR and costimulatory cytokines. In a previous report we demonstrated that human IL-6 stimulates IL-2 production and proliferation of purified T cells, in conjunction with the insolubilized anti-TCR V beta 8 mAb, F23.1. Here we show that when CD4+ T cells are rigorously purified to greater than 99% CD4+CD8-, they respond only weakly to F23.1 and IL-6. Instead, there is an additional requirement for IL-1, which dramatically synergizes with IL-6 to induce prolonged (greater than 7 days) proliferative responses and IL-2 production. Similar results were observed when the highly mitogenic anti-CD3 mAb 145-2C11 was substituted for F23.1. The proliferation induced by F23.1, IL-1, and IL-6 was substantially (greater than 80%) inhibited by a mAb to mouse IL-2, and was not inhibited by an anti-IL-4-mAb. In accordance with this finding, medium conditioned by the activated CD4+ cells contained large amounts of IL-2, which increased over a 7-day culture period. These results demonstrate that IL-6 and IL-1 stimulate T cell proliferation by inducing production of the autocrine growth factor IL-2. In addition, the two lymphokines must be present simultaneously for activation to occur. The possible roles of IL-6 and IL-1 in IL-2 gene regulation and in Ag-induced T cell activation are discussed.  相似文献   

17.
TCR-mediated granule exocytosis, as measured by the release of serine esterase activity, has been implicated in the lytic process of Ag-specific CTL. Exocytosis appears to be the mechanism of release of other lysis-relevant molecules including cytotoxic lymphokines and proteins that have the capacity to induce membrane lesions as measured by the hemolysis of non-nucleated SRBC. In the studies presented here, we assessed the contribution of exocytosis and lymphokine production in CTL lysis of nucleated and non-nucleated target cells by using a panel of murine CTL clones. Ag-mediated activation of cytolysis, lymphokine production, and exocytosis could be mimicked by mAb against the TCR/CD3 complex, or by stimulation with the combination of PMA + calcium ionophore, which appear to bypass the TCR (neither PMA nor calcium ionophore alone induced these functions efficiently in our CD8+ CTL clones). Although lysis, IFN-gamma production and exocytosis of N-alpha-benzyloxycarbonyl-L-lysin esterase (BLTE) activity were induced by either stimulus, we were able to identify distinct activation requirements for each of these functions. We found that lymphokine production, exocytosis, and cytolysis could be selectively inhibited. Cycloheximide inhibited IFN-gamma production, but did not inhibit exocytosis of BLTE activity or cytolysis. In addition we showed that cyclosporine A (CsA) profoundly inhibited IFN-gamma production as well as exocytosis induced by stimulation through the Ag receptor or by PMA + calcium ionophore. In contrast, CsA had little or no effect on lysis of nucleated target cells that bear the relevant Ag. These findings indicate that our CTL clones can lyse target cells by a mechanism independent of exocytosis or (de novo) lymphokine production. To directly assess the capacity of our CTL clones to lyse target cells without inducing nuclear damage we developed a system of coating non-nucleated SRBC with anti-CD3 mAb for use as stimuli and as targets for lysis. We found that our cloned CTL were indeed activated to produce IFN-gamma by SRBC that were coated with anti-CD3 mAb, and, furthermore, they were able to lyse the SRBC in a short term cytolytic assay. Thus our CD8+ CTL are capable of lysing certain target cells by a mechanism independent of DNA degradation, presumably by inducing a membrane lesion. In addition, CsA did inhibit lysis of the non-nucleated SRBC targets as well as exocytosis of BLTE activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
MHC-restricted, viral Ag-specific "memory" CTL are thought to play a decisive role in the defense against pathogenic viruses. However, the requirements for activating such CTL remain controversial. In particular, the role of CD4+ helper cells and their soluble products (e.g., IL-2) are uncertain. To approach these questions as they relate to EBV-specific CTL, highly purified CD8+ T cells from healthy EBV-seropositive individuals were cultured with autologous irradiated EBV-transformed B lymphoblastoid cell lines (LCL), in the presence or absence of autologous CD4+ cells or 1 to 10 U/ml purified rIL-2. The results indicate that the induction of CTL requires neither Th cells nor exogenous IL-2. The CTL generated from isolated CD8+ cells were HLA class I restricted as demonstrated by their ability to lyse targets sharing at least one HLA-A or -B Ag with the stimulating autologous LCL. Furthermore, a mAb (W6/32) to a common determinant on HLA class I Ag blocked both the generation and effector phases of killing, whereas an HLA class II directed mAb had no effect. Addition of an IL-2R-specific antibody (anti-Tac) to the culture medium blocked induction of CTL, suggesting that endogenously produced IL-2 plays an obligatory role in this system. Paraformaldehyde fixation of LCL abrogated their ability to function as stimulator cells; however, addition of 2 U/ml exogenous IL-2 to fixed LCL cultured with CD8+ cells allowed for the induction of highly specific CTL. These results indicate that EBV-specific memory CTL can be activated in the absence of CD4+ helper cells or their soluble products, but nonetheless require Ag and IL-2.  相似文献   

19.
PMA can induce the proliferation of several CTL clones but not of several Th clones derived and tested in our laboratory. The PMA-stimulated proliferation of our CTL clones (which do not make IL-2 mRNA or protein) occurs independently of IL-2 and is not accompanied by lymphokine release. We now report, however, that protein kinase C (PKC) translocation is induced by PMA in CTL clones as well as in Th clones, which lack a proliferative response to PMA. These results suggest that PKC translocation itself is not a sufficient regulatory mechanism to account for cloned T cell proliferation. Moreover, IL-2 did not induce PKC translocation in a CTL clone, which proliferates when stimulated with IL-2. Thus, PKC translocation may not be necessary for activation of CTL proliferation. Nonetheless, cellular PKC activity appears to be required for the proliferative response of T cell clones after stimulation by PMA/PMA + calcium ionophore (A23187) or by triggering through the TCR: chronic PMA treatment, which depletes intracellular PKC activity, abrogates the proliferative response of T cell clones stimulated by PMA/PMA + A23187 or triggered through the TCR. T cell clones depleted of PKC activity, however, retain the ability to proliferate when challenged with IL-2. Murine T cell clones, therefore, possess PKC-dependent and PKC-independent pathways of proliferation that are not regulated by PKC translocation alone.  相似文献   

20.
Murine T cell lines and hybridomas derived from the epidermis that express the V gamma 1.1C gamma 4V delta 6C delta TCR and may, therefore, recognize an autoantigen, secrete cytokines spontaneously in culture. In addition, activation of these cells requires engagement of the vitronectin receptor (VNR) by extracellular matrix proteins. To further evaluate the role of the TCR, the VNR, and the putative autoantigen in the activation of this T cell subset, we cloned complete cDNA encoding the V gamma 1.1C gamma 4 and V delta 6C delta TCR and transfected the cDNA constructs into a TCR- murine hybridoma and into a TCR- variant of the human Jurkat line. The murine transfectant spontaneously produced IL-2 in culture and IL-2 production could be inhibited by anti-CD3, anticlonotypic mAb to the transfected TCR, and anti-VNR mAb, as well as by RGDS. These results demonstrate that transfection of the gamma delta TCR confers to recipient T cells the phenotype of constitutive activation, as well as dependence on engagement of the VNR as an accessory molecule. In contrast, the Jurkat gamma delta transfectant failed to produce cytokines spontaneously, although the transfected TCR was capable of signal transduction after stimulation by anti-TCR mAb. Surprisingly, neither the murine transfectant nor the human transfectant could be induced to respond to autoantigen bearing cells in coculture assays. One interpretation of these results is that coexpression on the surface of the same cell of the V gamma 1.1 V delta 6 TCR, the VNR, and a putative autoantigen are necessary for T cell activation in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号