首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.

Background  

Curli, cellulose and the cell surface protein BapA are matrix components in Salmonella biofilms. In this study we have investigated the roles of these components for the morphology of bacteria grown as colonies on agar plates and within a biofilm on submerged mica surfaces by applying atomic force microscopy (AFM) and light microscopy.  相似文献   

2.
Environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) were compared as tools for the observation of bacterial biofilms developed on carbon steel and AISI 316 stainless steel surfaces under stagnant conditions. Biofilms were generated in batch cultures of two different isolates of marine sulphate reducing bacteria (SRB) and in cultures consisting of mixed populations of acidophilic bacteria, known as "acid streamers";. Imaging of single SRB cells on mica was also carried out to reveal the surface topography of individual bacterial cells at nanometre resolution. Following the removal of biofilms, the stainless steel surfaces were profiled using AFM to determine the degree of steel deterioration. ESEM and AFM studies of bacterial biofilms in-situ, gave both qualitative and quantitative information on biofilm structure at high resolution. The use of AFM image analysis software allowed estimation of the width and height of bacterial cells, the thickness and width of exopolymeric (EPS) capsule and bacterial flagella, as well as characterisation of the surface roughness of the steel, including measurements of depth and diameter of individual pits. Exposure of stainless steel specimens to acid streamers resulted in a significant increase in the surface roughness of the steel, compared to specimens placed in sterile medium.  相似文献   

3.
Whereas the transfer of Listeria from surfaces to foods and vice versa has been well documented, little is known about the mechanism of bacterial transfer. The objective of this work is to gain a better understanding of the forces involved in listerial biofilms adhesion using atomic force microscopy (AFM). L. monocytogenes Scott A was grown as biofilms on stainless steel surfaces by inoculating stainless steel coupons with Listeria and incubating the coupons for 48 h at 32 °C with a diluted 1:20 tryptic soy broth. After growth, biofilms were equilibrated over saturated salt solutions at a constant relative humidity (%RH) before measurement of adhesion forces using AFM. The effects of contact time, loading force, and biofilm relative humidity (%RH) suggested that neither contact time, loading force nor biofilm %RH had a significant effect on biofilm adhesiveness at a cellular level (P > 0.05). In a second set of experiments, the influence of material type on biofilm adhesiveness was evaluated using two different colloidal probes (SiO2 and polyethylene). Results showed that the maximum pull-off force and retraction work needed to retract the cantilever for glass (−85.42 nN and 1.610−15 J, respectively) were significantly lower than those of polyethylene (−113.38 nN and 2.7 × 10–15 J, respectively; P < 0.001). The results of this study suggest that Listeria biofilms adhere more strongly to hydrophobic surfaces than hydrophilic surfaces when measured at a cellular level. These results provide important insights that could lead to new ways to remediate and avoid listerial biofilm formation in the food industry.  相似文献   

4.
Bacterial biofilms impair the operation of many industrial processes. Deinococcus geothermalis is efficient primary biofilm former in paper machine water, functioning as an adhesion platform for secondary biofilm bacteria. It produces thick biofilms on various abiotic surfaces, but the mechanism of attachment is not known. High-resolution field-emission scanning electron microscopy and atomic force microscopy (AFM) showed peritrichous adhesion threads mediating the attachment of D. geothermalis E50051 to stainless steel and glass surfaces and cell-to-cell attachment, irrespective of the growth medium. Extensive slime matrix was absent from the D. geothermalis E50051 biofilms. AFM of the attached cells revealed regions on the cell surface with different topography, viscoelasticity, and adhesiveness, possibly representing different surface layers that were patchily exposed. We used oscillating probe techniques to keep the tip-biofilm interactions as small as possible. In spite of this, AFM imaging of living D. geothermalis E50051 biofilms in water resulted in repositioning but not in detachment of the surface-attached cells. The irreversibly attached cells did not detach when pushed with a glass capillary but escaped the mechanical force by sliding along the surface. Air drying eliminated the flexibility of attachment, but it resumed after reimmersion in water. Biofilms were evaluated for their strength of attachment. D. geothermalis E50051 persisted 1 h of washing with 0.2% NaOH or 0.5% sodium dodecyl sulfate, in contrast to biofilms of Burkholderia cepacia F28L1 or the well-characterized biofilm former Staphylococcus epidermidis O-47. Deinococcus radiodurans strain DSM 20539(T) also formed tenacious biofilms. This paper shows that D. geothermalis has firm but laterally slippery attachment not reported before for a nonmotile species.  相似文献   

5.
The susceptibility of Candida albicans biofilms to a non-thermal plasma treatment has been investigated in terms of growth, survival and cell viability by a series of in vitro experiments. For different time periods, the C. albicans strain SC5314 was treated with a microwave-induced plasma torch (MiniMIP). The MiniMIP treatment had a strong effect (reduction factor (RF) = 2.97 after 50 s treatment) at a distance of 3 cm between the nozzle and the superior regions of the biofilms. In addition, a viability reduction of 77% after a 20 s plasma treatment and a metabolism reduction of 90% after a 40 s plasma treatment time were observed for C. albicans. After such a treatment, the biofilms revealed an altered morphology of their cells by atomic force microscopy (AFM). Additionally, fluorescence microscopy and confocal laser scanning microscopy (CLSM) analyses of plasma-treated biofilms showed that an inactivation of cells mainly appeared on the bottom side of the biofilms. Thus, the plasma inactivation of the overgrown surface reveals a new possibility to combat biofilms.  相似文献   

6.
原子力显微镜(AFM)作为一项重要的表面可视化技术,以其独特的优势(纳米级的空间分辨率、皮牛级力灵敏度、免标记、可在溶液环境下工作)被广泛应用于生物被膜的研究。AFM不仅可以在近生理环境下对生物被膜表面超微形貌进行可视化表征,同时还可以通过纳米压痕对生物被膜的机械特性(弹性和粘性)进行定量测量,利用AFM单细胞和单分子力谱技术可以获得生物被膜形成过程中细胞-基底以及细胞-细胞之间的相互作用力,为生物被膜的实时原位系统研究提供了可行性。本文简述了AFM的基本操作原理,综述了近年来AFM用于生物被膜表面超微结构成像、机械特性测量以及相互作用力研究方面的进展,并对AFM在生物被膜研究中面临的问题和未来的发展方向进行了讨论。  相似文献   

7.
Bioleaching of metal sulfides is an interfacial process comprising the interactions of attached bacterial cells and bacterial extracellular polymeric substances with the surface of a mineral sulfide. Such processes and the associated biofilms can be investigated at high spatial resolution using atomic force microscopy (AFM). Therefore, we visualized biofilms of the meso-acidophilic leaching bacterium Acidithiobacillus ferrooxidans strain A2 on the metal sulfide pyrite with a newly developed combination of AFM with epifluorescence microscopy (EFM). This novel system allowed the imaging of the same sample location with both instruments. The pyrite sample, as fixed on a shuttle stage, was transferred between AFM and EFM devices. By staining the bacterial DNA with a specific fluorescence dye, bacterial cells were labeled and could easily be distinguished from other topographic features occurring in the AFM image. AFM scanning in liquid caused deformation and detachment of cells, but scanning in air had no effect on cell integrity. In summary, we successfully demonstrate that the new microscopic system was applicable for visualizing bioleaching samples. Moreover, the combination of AFM and EFM in general seems to be a powerful tool for investigations of biofilms on opaque materials and will help to advance our knowledge of biological interfacial processes. In principle, the shuttle stage can be transferred to additional instruments, and combinations of AFM and EFM with other surface-analyzing devices can be proposed.  相似文献   

8.
This study explored an antifouling (AF) concept based on deployment of microfabricated polydimethyl siloxane (PDMS) surfaces with 1–10?μm periodicity corrugated topographies in temperate marine waters. The effect of the surfaces on the development of microbial biofilms over 28?days and during different seasons, including both summer and winter, was examined using confocal laser scanning microscopy (CLSM) as well as terminal restriction fragment (T-RF) analysis for phylogenetic fingerprinting. The microscale topography significantly impacted biofilm development by altering the attachment pattern and reducing microcolony formation on the 1, 2 and 4?μm PDMS surfaces. Also, field deployments over 28?days showed a significant reduction in biovolume on the 4 and 10?μm PDMS surfaces despite altered environmental conditions. The microfabricated PDMS surfaces further significantly impacted on the community composition of the biofilms, as revealed by changes in T-RF profiles, at different stages of development. Moreover, altered biofilm resistance was demonstrated by exposing pre-established biofilms on 10?μm micro-fabricated surfaces to enhanced flagellate predation by a heterotrophic protist, Rhynchomonas nasuta. Pronounced changes in the overall marine microbial biofilm development as well as community composition warrant exploring substratum modification for marine AF applications.  相似文献   

9.
Bacterial adhesion on biomaterial surfaces is the initial step in establishing infections and leads to the formation of biofilms. In this study, silicone was modified with different biopolymers and silanes, including: heparin, hyaluronan, and self-assembled octadecyltrichlorosilane (OTS), and fluoroalkylsilane (FAS). The aim was to provide a stable and bacteria-resistant surface by varying the degree of hydrophobicity and the surface structure. The adhesion of Escherichia coli (JM 109) on different modified silicone surfaces was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Mica, an ideal hydrophilic and smooth surface, was employed as a control specimen to study the effect of hydrophobicity and surfaces roughness on bacterial adhesion. AFM probes were coated with E. coli and the force measurements between the bacteria-immobilized tip and various materials surfaces were obtained while approaching to and retracting from the surfaces. A short-range repulsive force was observed between the FAS coated silicone and bacteria. The pull-off force of bacteria to FAS was the smallest among coated surfaces. On the other hand, heparin exhibited a long-range attractive force during approach and required a higher pull-off force in retraction. Both AFM and SEM results indicated that FAS reduced bacterial adhesion whereas heparin enhanced the adhesion compared to pure silicone. The work demonstrates that hydrophobicity cannot be used as a criterion to predict bacterial adhesion. Rather, both the native properties of the individual strain of bacteria and the specific functional structure of the surfaces determine the strength of force interaction, and thus the extent of adhesion.  相似文献   

10.
Microbial biofilms and their components present a major obstacle for ensuring the long-term effectiveness of membrane processes. Graft polymerization on membrane surfaces, in general, and grafting with oppositely charged monomers, have been shown to reduce biofouling significantly. In this study, surface forces and macromolecular properties of graft copolymers that possess oppositely charged groups were related to their potent antibiofouling behavior. Graft polymerization was performed using the negatively charged 3-sulphopropyl methacrylate (SPM) and positively charged [2-(methacryloyloxy)ethyl]-trimethylammonium (MOETMA) monomers to yield a copolymer layer on polyvinylidene fluoride (PVDF) surface. Quartz crystal microbalance with dissipation monitoring (QCM-D) technology was used to monitor the reduced adsorption of extracellular polymeric substances (EPS) extracted from a membrane bioreactor (MBR) wastewater treatment facility. Complemented measurements of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy provided evaluation of the antifouling properties of the surface. Increase in water content in grafted layer exposed to 100 mM aqueous NaCl solution was observed by QCM-D. Therefore, the grafted copolymer layer is swelled in the presence of 100 mM NaCl because of reversing of polymer self-association by counterions. Force measurements by atomic force microscopy (AFM) showed an increased repulsion between a carboxylate-modified latex (CML) particle probe and a modified PVDF surface, especially in the presence of 100 mM NaCl. The hydration and swelling of the grafted polymer layer are shown to repel EPS and reduce their adsorption. Delineating the surface properties of antifouling grafted layers may lead to the design of novel antifouling surfaces.  相似文献   

11.
Electrochemical impedance spectroscopy was tested to monitor the cell attachment and the biofilm proliferation in order to identify characteristic events induced on the metal surface by Gram-negative (Pseudomonas aeruginosa PAO1) and Gram-positive (Bacillus subtilis) bacteria strains. Electrochemical impedance spectra of AISI 304 electrodes during cell attachment and initial biofilm growth for both strains were obtained. It can be observed that the resistance increases gradually with the culture time and decreases with the biofilm detachment. So, the applicability of electric cell-substrate impedance sensing (ECIS) for studying the attachment and spreading of cells on a metal surface has been demonstrated. The biofilm formation was also characterized by the use of scanning electron microscopy and confocal laser scanning microscopy and COMSTAT image analysis. The electrochemical results roughly agree with the microscope image observations. The ECIS technique used in this study was used for continuous real-time monitoring of the initial bacterial adhesion and the biofilm growth. It provides a simple and non-expensive electrochemical method for in vitro assessment of the presence of biofilms on metal surfaces.  相似文献   

12.
Attachment tendencies of Escherichia coli K12, Pseudomonas aeruginosa ATCC 9027, and Staphylococcus aureus CIP 68.5 onto glass surfaces of different degrees of nanometer-scale roughness have been studied. Contact-angle and surface-charge measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM) were employed to characterize substrata and bacterial surfaces. Modification of the glass surface resulted in nanometer-scale changes in the surface topography, whereas the physicochemical characteristics of the surfaces remained almost constant. AFM analysis indicated that the overall surface roughness parameters were reduced by 60–70%. SEM, CLSM, and AFM analysis clearly demonstrates that although E. coli, P. aeruginosa and S. aureus present significantly different patterns of attachment, all of the species exhibited a greater propensity for adhesion to the “nano-smooth” surface. The bacteria responded to the surface modification with a remarkable change in cellular metabolic activity, as shown by the characteristic cell morphologies, production of extracellular polymeric substances, and an increase in the number of bacterial cells undergoing attachment.  相似文献   

13.
P.A.GUNNING, A.R.KIRBY, M.L.PARKER, A.P.GUNNING AND V.J.MORRIS. 1996. Both Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) have been used to visualize the morphology of Pseudomonas putida bacterial colonies isolated from model oil-in-water emulsions. A new method has been developed for growing flat homogeneous bacterial biofilms at planar oil-water interfaces. A marked increase in resolution has been achieved when these flat bacterial biofilms are imaged by both SEM and AFM methods. On flat bacterial biofilms AFM offers superior resolution with minimal sample preparation. High resolution DC contact mode AFM studies of the bacterial surfaces have revealed surface features comparable in size to large proteins. AC non-contact AFM methods have been used to image bacterial flagella trapped in the biofilm.  相似文献   

14.
Phototrophic Biofilms on Ancient Mayan Buildings in Yucatan, Mexico   总被引:6,自引:0,他引:6  
Buildings at the important archaeological sites of Uxmal and Kabah, Mexico, are being degraded by microbial biofilms. Phospholipid fatty acid (PLFA) and chlorophyll a analyses indicated that phototrophs were the major epilithic microorganisms and were more prevalent on interior walls than exterior walls. Culture and microscopical techniques showed that Xenococcus formed the major biomass on interior surfaces, but the stone-degrading genera Gloeocapsa and Synechocystis were also present in high numbers. Relatively few filamentous algae and cyanobacteria were detected. The fatty acid analysis also showed that complex biofilms colonize these buildings. Circular depressions observed by scanning electron microscopy (SEM) on stone and stucco surfaces beneath the biofilm corresponded in shape and size to coccoid cyanobacteria. SEM images also demonstrated the presence of calcareous deposits on some coccoid cells in the biofilm. Phototrophic biofilms may contribute to biodegradation by (1) providing nutrients that support growth of acid-producing fungi and bacteria and (2) active “boring” behavior, the solubilized calcium being reprecipitated as calcium carbonate. Received: 15 March 1999 / Accepted: 24 June 1999  相似文献   

15.
Supported lipid bilayers (SLBs) are widely used as a model for studying membrane properties (phase separation, clustering, dynamics) and its interaction with other compounds, such as drugs or peptides. However SLB characteristics differ depending on the support used. Commonly used techniques for SLB imaging and measurements are single molecule fluorescence microscopy, FCS and atomic force microscopy (AFM). Because most optical imaging studies are carried out on a glass support, while AFM requires an extremely flat surface (generally mica), results from these techniques cannot be compared directly, since the charge and smoothness properties of these materials strongly influence diffusion. Unfortunately, the high level of manual dexterity required for the cutting and gluing thin slices of mica to the glass slide presents a hurdle to routine use of mica for SLB preparation. Although this would be the method of choice, such prepared mica surfaces often end up being uneven (wavy) and difficult to image, especially with small working distance, high numerical aperture lenses. Here we present a simple and reproducible method for preparing thin, flat mica surfaces for lipid vesicle deposition and SLB preparation. Additionally, our custom made chamber requires only very small volumes of vesicles for SLB formation. The overall procedure results in the efficient, simple and inexpensive production of high quality lipid bilayer surfaces that are directly comparable to those used in AFM studies.  相似文献   

16.
This study evaluated predation with Bdellovibrio bacteriovorous and CO2 aerosol spraying to remove fluorescent Escherichia coli biofilms from silicon chips. Initial tests found that 7.5×105 viable E. coli cells were dispersed into the surrounding environment during aerosol treatment. The total number dispersed per test decreased to only 16 for predated biofilms. This is nearly 50,000-fold lower compared to untreated chips and 1000-fold lower compared to chips soaked in HEPES buffer only. Both scanning electron microscopy (SEM) and fluorescent microscopy analyses confirmed that predation alone did not completely eradicate the biofilm population. When used in conjunction with CO2 aerosols, however, no fluorescent signals remained and the SEM pictures showed a pristine surface devoid of bacteria. Consequently, this study demonstrates these two methods can be used with each other to significantly remove biofilms from surfaces while also significantly reducing the likelihood of human exposure to potential pathogens during their removal.  相似文献   

17.
Biofilms can cause numerous problems, hence it is important to understand their formation on surfaces in order to develop resistant materials and avoidance strategies. Therefore, information is required regarding adhesion processes on surfaces generally and innovative anti‐adhesive coatings in particular. Our flow cell system allows biofilms to be monitored in continuous flow conditions, without removing material for postflow imaging. The shown laminar flow ensures the maintenance of highly controlled conditions for biofilm growth. However, carried simulations of the oxygen demands of Escherichia coli cultivated as biofilms under the chosen regime indicate that conditions may become anaerobic, at least at the outlet of the flow cell, after a certain period of time. We report data on the biofouling tendencies on coatings generated with the help of direct laser interference patterning on stainless steel surfaces. Data were estimated from images acquired by fluorescence microscopy. Differences between patterned and unpatterned surfaces were not found, which is in accordance with the attachment point theory. Nevertheless, it is particularly important to elucidate in future studies the behavior of microorganisms during their attachment and the effects of variables of potentially sensitive surfaces (such as hydrophobicity, nanotopography, and charge) on their adhesion.  相似文献   

18.
Aim: The ability of enzymatically synthesized lauroyl glucose to disrupt fungal (Candida albicans, Candida lipolytica) and bacterial (Pseudomonas aeruginosa PAO1, Pseudomonas aureofaciens) biofilms was investigated. Methods and Results: Preformed biofilms of C. albicans and C. lipolytica in polystyrene microtitre plates were disrupted upto 45% and 65%, respectively, while P. aeruginosa and P. aureofaciens biofilms were disrupted by 51% and 57%. Precoating of the microtitre wells with lauroyl glucose affected cell attachment and biofilm growth of all the cultures to a lesser extent. With C. albicans and C. lipolytica, there was 11% and 32% decrease in the development of biofilms, respectively. With P. aeruginosa and P. aureofaciens, the reduction was 21% and 12% after 48 h. Lauroyl glucose effectively inhibited the formation of biofilms on glass slide surfaces when added along with the inoculum. Analysis by confocal laser scanning microscopy showed that the growth of the biofilms was lesser as compared with the control experiments. Lauroyl glucose displayed minimum inhibitory concentration values >500 μg ml?1 for the test cultures and was comparable to that obtained with acetyl salicylate. Conclusion: Lauroyl glucose reduces biofilm growth of all the four test cultures on polystyrene and glass surfaces. Significance and Impact of the Study: This report is a novel application of the enzymatically synthesized, environmental‐friendly nonionic surfactant.  相似文献   

19.
Shewanella oneidensis respires a variety of terminal electron acceptors, including solid phase Fe(III) oxides. S. oneidensis transfers electrons to Fe(III) oxides via direct (outer membrane- or nanowire-localized c-type cytochromes) and indirect (electron shuttling and Fe(III) solubilization) pathways. In the present study, the influence of anaerobic biofilm formation on Fe(III) oxide reduction by S. oneidensis was determined. The gene encoding the activated methyl cycle (AMC) enzyme S-ribosylhomocysteine lyase (LuxS) was deleted in-frame to generate the corresponding mutant ΔluxS. Conventional biofilm assays and visual inspection via confocal laser scanning microscopy indicated that the wild-type strain formed anaerobic biofilms on Fe(III) oxide-coated silica surfaces, while the ΔluxS mutant was severely impaired in anaerobic biofilm formation on such surfaces. Cell-hematite attachment isotherms demonstrated that the ΔluxS mutant was also severely impaired in attachment to hematite surfaces under anaerobic conditions. The S. oneidensis ΔluxS mutant, however, reduced Fe(III) at wild-type rates during anaerobic incubation with Fe(III) oxide-coated silica surfaces or in batch cultures with Fe(III) oxide or hematite as a terminal electron acceptor. Anaerobic biofilm formation by the ΔluxS mutant was restored to wild-type rates by providing a wild-type copy of luxS in trans or by the addition of AMC or transsulfurylation pathway metabolites involved in organic sulfur metabolism. LuxS is thus required for wild-type anaerobic biofilm formation on Fe(III) oxide surfaces, yet the inability to form wild-type anaerobic biofilms on Fe(III) oxide surfaces does not alter Fe(III) oxide reduction activity.  相似文献   

20.
The emergence of biocide-adapted Campylobacter jejuni strains that developed into biofilms and their potential to develop clinical resistance to antimicrobial compounds was studied. C. jejuni was grown in sub-lethal concentrations of five biocides used in the food industry. C. jejuni exhibited adaptation to these biocides with increased minimum inhibitory concentrations. The 3-D structures of the biofilms produced by the biocide-adapted cells were investigated by atomic force microscopy (AFM). The results revealed marked variability in biofilm architecture, including ice-crystal-like structures. Adaptation to the biocides enhanced biofilm formation, with significant increases in biovolume, surface coverage, roughness, and the surface adhesion force of the biofilms. Adaptation to commercial biocides induced resistance to kanamycin and streptomycin. This study suggests that the inappropriate use of biocides may lead to cells being exposed to them at sub-lethal concentrations, which can result in adaptation of the pathogens to the biocides and a subsequent risk to public health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号