首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypsin-induced ATPase Activity in Potato Mitochondria   总被引:4,自引:4,他引:0       下载免费PDF全文
Potato mitochondria (Solanum tuberosum var. Russet Burbank), which readily phosphorylate ADP in oxidative phosphorylation, show low levels of ATPase activity which is stimulated neither by Mg2+, 2,4-dinitrophenol, incubation with respiratory substrates, nor disruption by sonication or treatment with Triton X-100, individually or in concert. Treatment of disrupted potato mitochondria with trypsin stimulates Mg2+-dependent, oligomycin-sensitive ATPase activity 10- to 15-fold, suggesting the presence of an ATPase inhibitor protein. Trypsin-induced ATPase activity was unaffected by uncoupler. Oligomycin-sensitive ATPase activity decreases as exposure to trypsin is increased. Incubation at alkaline pH or heating at 60 C for 2 minutes also activates ATPase of sonicated potato mitochondria. Disruption of cauliflower (Brassica oleracea), red sweet potato (Ipomoea batatas), and carrot (Daucus carota) mitochondria increases ATPase activity, which is further enhanced by treatment with trypsin. The significance of the tight association of the inhibitor protein and ATPase in potato mitochondria is not clear.  相似文献   

2.
1. The oligomycin-sensitive ATPase activity of submitochondrial particles of the glycerol-grown "petite-negative" yeast: Schizosaccharomyces pombe is markedly stimulated by incubation at 40 degrees C and by trypsin activations are treatment. Both increased in Triton-X 100 extracts of the submitochondrial particles. 2. A trypsin-sensitive inhibitory factor of mitochondrial ATPase with properties similar to that of beef heart has been extracted and purified from glycerol-grown and glucose-grown S. pombe wild type, from the nuclear pleiotropic respiratory-deficient mutant S. pombe M126 and from Saccharomyces cerevisiae. 3. ATPase activation by heat is more pronounced in submitochondrial particles isolated from glycerol-grown than from glucose-grown S. pombe. An activation of lower extent is observed in rat liver mitochondrial particles but is barely detectable in the "petite-positive" yeast: S. cerevisiae. No activation but inhibition by heat is observed in the pleitotropic respiratory-deficient nuclear mutant S. pombe M126. 4. The inhibition of S. pombe ATPase activity by low concentrations of dicyclohexylcarbodiimide dissapears at inhibitor concentrations above 25 muM. In Triton-extract of submitochondrial particles net stimulation of ATPase activity is observed at 100 muM dicyclohexylcarbodiimide. The pattern of stimulation of ATPase activity by dicyclohexylcarbodiimide in different genetic and physiological conditions parallels that produced by heat and trypsin. A similar mode of action is therefore proposed for the three agents: dissociation or inactivation of an ATPase inhibitory factor. 5. We conclude that "petite-positive" and "petite-negative" yeasts contain an ATPase inhibitor factor with properties similar to those of the bovine mitochondrial ATPase inhibitor. The expression of the ATPase inhibitor, measured by ATPase activation by heat, trypsin or high concentrations of dicyclohexylcarbodiimide, is sensitive to alterations of the hydrophobic membrane environment and dependent on both physiological state and genetic conditions of the yeast cells.  相似文献   

3.
Y. Landry  A. Goffeau 《BBA》1975,376(3):470-484
1. The oligomycin-sensitive ATPase activity of submitochondrial particles of the glycerol-grown “petite-negative” yeast: Schizosaccharomyces pombe is markedly stimulated by incubation at 40°C and by trypsin activations are treatment. Both increased in Triton-X 100 extracts of the submitochondrial particles.

2. A trypsin-sensitive inhibitory factor of mitochondrial ATPase with properties similar to that of beef heart has been extracted and purified from glycerolgrown and glucose-grown S. pombe wild type, from the nuclear pleiotropic respiratory-deficient mutant S. pombe M126 and from Saccharomyces cerevisiae.

3. ATPase activation by heat is more pronounced in submitochondrial particles isolated from glycerol-grown than from glucose-grown S. pombe. An activation of lower extent is observed in rat liver mitochondrial particles but is barely detectable in the “petite-positive” yeast: S. cerevisiae. No activation but inhibition by heat is observed in the pleitotropic respiratory-deficient nuclear mutant S. pombe M126.

4. The inhibition of S. pombe ATPase activity by low concentrations of dicyclohexylcarbodiimide dissapears at inhibitor concentrations above 25 μM. In Triton-extract of submitochondrial particles net stimulation of ATPase activity is observed at 100 μM dicyclohexylcarbodiimide. The pattern of stimulation of ATPase activity by dicyclohexylcarbodiimide in different genetic and physiological conditions parallels that produced by heat and trypsin. A similar mode of action is therefore proposed for the three agents: dissociation or inactivation of an ATPase inhibitory factor.

5. We conclude that “petite-positive” and “petite-negative” yeasts contain an ATPase inhibitor factor with properties similar to those of the bovine mitochondrial ATPase inhibitor. The expression of the ATPase inhibitor, measured by ATPase activation by heat, trypsin or high concentrations of dicyclohexylcarbodiimide, is sensitive to alterations of the hydrophobic membrane environment and dependent on both physiological state and genetic conditions of the yeast cells.  相似文献   


4.
A factor has been found in rat liver supernatant solution which inhibits acetyl-CoA carboxylase activity regardless of the presence or absence of Mg2+ and ATP. Inactivation of the enzyme has been demonstrated via radiochemical and spectrophotometric assay procedures. The inactivation of acetyl-CoA carboxylase is not attributable to either malonyl-CoA decarboxylase activity, to phosphorylation of the enzyme, or to action on substrates or cofactors of the reaction. The activity of the inhibitor is destroyed by heating to 70-80 degrees C for 5 min or by treatment with trypsin. Dialyzing the inhibitor for 24 h at 4 degrees C does not alter its activity in inhibiting acetyl-CoA carboxylase. Hence, it appears that the inhibitor is a regulatory protein that acts directly on acetyl-CoA carboxylase.  相似文献   

5.
A heat-stable protein has been detected in Saccharomyces cerevisiae which inhibits mitochondrial ATPase activity. The protein inhibitor has been isolated from extracts prepared by brief heat treatment of unbroken cell suspensions. The isolated inhibitor is a small basic protein (molecular weight close to 7000, isoelectric proint 9.05) devoid of tryptophan, tyrosine, and cysteine as well as proline. The NHP2-terminal amino acid is serine. The ultraviolet absorption spectrum shows the vibrational fine structure of the phenyl-alanine band. Like the ATPase inhibitor from bovine heart mitochondria the yeast inhibitor is rapidly destroyed by trypsin. It is also inactivated by the yeast proteinases A and B. Radioimmunological analysis indicates that the inhibitor is synthesized on cytoplasmic ribosomes. Its accumulation seems to be connected to the formation of the mitochondrial ATPase complex, since its specific activity is greatly reduced both in extracts obtained from the F1-ATPase-deficient nuclear mutant pet 936 and from the cytoplasmic petite mutant D 273-10B-1.  相似文献   

6.
1. Stimulation of the Escherichia coli ATPase activity by urea and trypsin shows that the ATPase activity both in the membrane-bound and the solubilized form is partly masked.2. A protein, inhibiting the ATPase activity of Escherichia coli, can be isolated by sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified ATPase. The inhibitor was identified with the smallest of the subunits of E. coli ATPase.3. The molecular weight of the ATPase inhibitor is about 10 000, as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis and deduced from the amino acid composition.4. The inhibitory action is independent of pH, ionic strength or the presence of Mg2+ or ATP.5. The ATPase inhibitor is heat-stable, insensitive to urea but very sensitive to trypsin degradation.6. The Escherichia coli ATPase inhibitor does not inhibit the mitochondrial or the chloroplast ATPase.  相似文献   

7.
The inhibitors of protein synthesis, chloramphenicol and cycloheximide, were added to cultures of yeast undergoing glucose derepression at different times during the growth cycle. Both inhibitors blocked the increase in activity of coenzyme QH2-cytochrome c reductase, suggesting that the formation of complex III of the respiratory chain requires products of both mitochondrial and cytoplasmic protein synthesis.The possibility that precursor proteins synthesized by either cytoplasmic or mitochondrial ribosomes may accumulate was investigated by the sequential addition of cycloheximide and chloramphenicol (or the reverse order) to cultures of yeast undergoing glucose derepression. When yeast cells were grown for 3 hr in medium containing cycloheximide and then transferred to medium containing chloramphenicol, the activity of cytochrome oxidase increased at the same rate as the control during the first hour in chloramphenicol. These results suggest that some accumulation of precursor proteins synthesized in the mitochondria had occurred when cytoplasmic protein synthesis was blocked during the growth phase in cycloheximide. In contrast, essentially no products of mitochondrial protein synthesis accumulated as precursors for either oligomycin-sensitive ATPase or complex III of the respiratory chain during growth of the cells in cycloheximide.When yeast were grown for 3 hr in medium containing chloramphenicol followed by 1 hr in cycloheximide, the activities of cytochrome oxidase and succinate-cytochrome c reductase increased at the same rate as the control, while the activities of oligomycin-sensitive ATPase and NADH or coenzyme QH2-cytochrome c reductase were nearly double that of the control. These data suggest that a significant accumulation of mitochondrial proteins synthesized in the cytoplasm had occurred when the yeast cells were grown in medium containing sufficient chloramphenicol to block mitochondrial protein synthesis. The possibility that proteins synthesized in the cytoplasm may act to control the synthesis of mitochondrial proteins for both oligomycin-sensitive ATPase and complex III of the respiratory chain is discussed.  相似文献   

8.
Photophosphorylation by spinach chloroplasts is inhibited after they have been incubated in the dark with either phenylglyoxal or butanedione. Inhibition by phenylglyoxal is strongest when N-ethylmorpholine is the buffer used during the incubation; that by butanedione requires the presence of borate as buffer. The inhibitions are not reversed by simply washing out the inhibitor, suggesting that a covalent modification of one or more arginine residues is responsible. This is supported by the reversibility of the butanedione inhibition if both the inhibitor and borate buffer are removed. ATPase of the chloroplasts, and of extracted protein, is inhibited, whether activated by trypsin or by heating. This indicates that arginine residues of the coupling factor are the probable major site(s) for attack by these modifiers, leading to the observed inhibitions.  相似文献   

9.
ATPase (EC 3.6.1.3) of Escherichia coli has been solubilized from two morphologically distinct membranes (vesicles and “ghosts”). Maximum ATPase release is attained with 3 mM EDTA in NH4HCO3, pH 9.0, and depends on protein concentration. After solubilization, the total enzyme activity is increased by 300% with respect to the membrane-bound enzyme. The released soluble ATPase accounts for more than 90% of this activity. Its specific activity is at least 10 times higher than the original value. Membrane treatment with buffers of various ionic strengths without EDTA and detergents is less selective. The molecular sieving properties (gel electrophoresis and Sephadex G-200 filtration) confirm the soluble nature of the preparation. A molecular weight close to 300 000 has been estimated for it.The membrane-bound ATPase is stimulated by trypsin by 70–100%. Most of the soluble ATPase maintains a trypsin activation of the same order. Exceptions are the preparations obtained at high protein dilution and extracted with sodium dodecyl sulphate and deoxycholate. The soluble ATPase is more labile than the membrane-bound enzyme. Its sensitivity to different temperatures depends upon protein concentration and pH during storage. Inactivation seems to result from dissociation and/or proteolysis.We suggest an ATPase link to the membrane through ionic divalent cation bridges. We also suggest that the enzyme possesses self-regulatory properties which would account for trypsin stimulation.  相似文献   

10.
The adenosinetriphosphatase (ATPase) (EC 3.6.1.3) activity in Azotobacter vinelandii concentrates in the membranous R3 fraction that is directly associated with Azotobacter electron transport function. Sonically disrupted Azotobacter cells were examined for distribution of ATPase activity and the highest specific activity (and activity units) was consistently found in the particulate R3 membranous fraction which sediments on ultracentrifugation at 144 000 X g for 2 h. When the sonication time interval was increased, the membrane-bound ATPase activity could neither be solubilized nor released into the supernatant fraction. Optimal ATPase activty occurred at pH 8.0; Mg2+ ion when added to the assay was stimulatory. Maximal activity always occurred when the Mg2+:ATP stoichiometry was 1:1 on a molar ratio at the 5 mM concentration level. Sodium and potassium ions had no stimulatory effect. The reaction kinetics were linear for the time intervals studied (0-60 min). The membrane-bound ATPase in the R3 fraction was stimulated 12-fold by treatment wiTH TRypsin, and fractionation studies showed that trypsin treatment did not solubilize ATPase activity off the membranous R3 electron transport fraction. The ATPase was not cold labile and the temperature during the preparation of the R3 fraction had no effect on activity; overnight refrigeration at 4 degrees C, however, resulted in a 25% loss of activity as compared with a 14% loss when the R3 fraction was stored overnight at 25 degrees C. A marked inactivation (although variable, usually about 60%) did occur by overnight freezing (-20 degrees C), and subsequent sonication failed to restore ATPase activity. This indicates that membrane reaggregation (by freezing) was not responsible for ATPase inactivation. The addition of azide, ouabain, 2,4-dinitrophenol, or oligomycin to the assay system resulted in neither inhibition nor stimulation of the ATPase activity. The property of trypsin activation and that ATPase activity is highest in the R3 electron transport fraction suggests that its probable functional role is in coupling of electron transport to oxidative phosphorylation.  相似文献   

11.
1. It has been shown that the activity of solutions of twice recrystallized urease is reversibly increased by moderate heating and reversibly decreased by storage in the cold, even in the frozen state. 2. Crude extracts of jack bean meal containing potent urease undergo this same type of reversible activation by heating and inactivation by cooling. Dilution has the same potentiating effect on the activity as moderate heating. As much as a fivefold increase in activity can be obtained when a sample previously inactivated by storage for 24 hours at -10 degrees C. is heated for 5 minutes at 60 degrees C. 3. Solutions of crystalline urease protected by serum albumin and preserved in the cold give a constant "potential" activity over a period of more than 30 days if heated 5 minutes at 60 degrees C. before assay. 4. The data presented have been interpreted to mean that an association between urease molecules (or between urease and other proteins) might occur, resulting in inactivation of the enzyme which would be reversed on dissociation. 5. It has been postulated that the same forces are responsible for the reversible inactivation brought about by standing at temperatures above or below the freezing point.  相似文献   

12.
The extent of the negative cooperativity with MgATP of the Ca2+-stimulated ATPase activity of sarcoplasmic reticulum has been studied with various membrane preparations and under various conditions. Preparations studied were fragmented sarcoplasmic reticulum vesicles, deoxycholate-solubilized and fractionated ATPase, triton extracted reticulum, vesicles reconstituted from either detergent, and limited trypsin digests of the reticulum. Conditions studied were suboptimal, optimal, and inhibitory Ca2+ concentrations; temperatures from 13 to 46 °C; 1 or 5 mm MgCl2; 0.1 m KCl, 0.1 m NaCl, or no added salt; and Triton or deoxycholate present in the assay. With preparations in which vesicles could accumulate Ca2+ ion, the ionophore A23187 was added to prevent inhibition by internal Ca2+ ions. Under all circumstances, the negative cooperativity of MgATP was present (Hill coefficient of 0.2 to 0.8), indicating the persistence of the properties of the enzyme molecule and its lipid environment giving rise to kinetic negative cooperativity. Attempts to measure the number of ATP sites by protection against N-ethylmaleimide inactivation and by binding of an analog suggested, but did not prove, that there was only one specific, active ATP binding site below 0.5 mm. These results are interpreted to be consistent with either of two mechanisms for ATP cooperativity of the Ca2+-stimulated ATPase activity of sarcoplasmic reticulum: (a) a single, high affinity ATP active site and a second, lower affinity “allosteric” activator site; or (b) a single ATP site which demonstrates two affinities through some kinetic mechanism such as a substrate-induced, slow transition.  相似文献   

13.
1. The rate of inactivation of crystalline trypsin solutions and the nature of the products formed during the inactivation at various pH at temperatures below 37°C. have been studied. 2. The inactivation may be reversible or irreversible. Reversible inactivation is accompanied by the formation of reversibly denatured protein. This denatured protein exists in equilibrium with the native active protein and the equilibrium is shifted towards the denatured form by raising the temperature or by increasing the alkalinity. The decrease in the fraction of active enzyme present (due to the formation of this reversibly denatured protein) as the pH is increased from 8.0 to 12.0 accounts for the decrease in the rate of digestion of proteins by trypsin in this range of pH. 3. The loss of activity at high temperatures or in alkaline solutions, just described, is very rapid and is completely reversible for a short time only. If the solutions are allowed to stand the loss in activity becomes gradually irreversible and is accompanied by the appearance of various reaction products the nature of which depends upon the temperature and pH of the solution. 4. On the acid side of pH 2.0 the trypsin protein is changed to an inactive form which is irreversibly denatured by heat. The course of the reaction in this range is monomolecular and its velocity increases as the acidity increases. 5. From pH 2.0 to 9.0 trypsin protein is slowly hydrolyzed. The course of the inactivation in this range of pH is bimolecular and its velocity increases as the alkalinity increases to pH 10.0 and then decreases. As a result of these two reactions there is a point of maximum stability at about pH 2.3. 6. On the alkaline side of pH 13.0 the reaction is similar to that in strong acid solution and consists in the formation of inactive protein. The course of the reaction is monomolecular and the velocity increases with increasing alkalinity. From pH 9.0 to 12.0 some hydrolysis takes place and some inactive protein is formed and the course of the reaction is represented by the sum of a bi- and monomolecular reaction. The rate of hydrolysis decreases as the solution becomes more alkaline than pH 10.0 while the rate of formation of inactive protein increases so that there is a second point at about pH 13.0 at which the rate of inactivation is a minimum. In general the decrease in activity under all these conditions is proportional to the decrease in the concentration of the trypsin protein. Equations have been derived which agree quantitatively with the various inactivation experiments.  相似文献   

14.
(i) The method of preparing the oligomycin-insensitive F1-ATPase by chloroform treatment of mitochondrial membranes (Beechey et al., 1975, Biochem. J.148, 533–537) has been modified such that a five-subunit protein is obtained from yeast with an activity of 140 μmol of ATP hydrolyzed/min/mg of protein. Repetition of this procedure in the presence of protease inhibitors (in particular, p-aminobenzamidine) allows isolation of a four-subunit protein with an activity of 243 μmol of ATP hydrolyzed/min/ mg of protein, (ii) A modified procedure is described for the preparation of the yeast oligomycin-sensitive F1-F0 ATPase complex, making use of protease inhibitors throughout and solubilization of the ATPase from mitochondrial membranes using Triton X-100 and sodium deoxycholate simultaneously. Two polypeptides Of 42,000 and 29,000 molecular weight are eliminated, the largest corresponding to the missing band of the F1 sector. The complex retains oligomycin- and uncoupler-sensitive ATP-32Pi exchange and ATP-driven proton uptake, indicating the retention of a complete coupling mechanism. (iii) F1-ATPase is released from the F1-F0 complex by brief heating at 50 °C in the presence of ATP. The remaining hydrophobic polypeptides aggregate and are isolated by centrifugation. The F1 sector can be isolated containing either four or five subunits depending on whether the starting F1-F0 complex contained the 42,000 and 29,000 molecular weight polypeptides. (iv) Sensitivity of the F1-F0 ATPase complex to oligomycin and dicyclohexylcarbodiimide varies considerably depending on the activity measured and whether the complex was first reconstituted with phospholipids. The degree of inhibitor sensitivity is considered a poor guide to intactness of the complex.  相似文献   

15.
Volloch V  Gabai VL  Rits S  Sherman MY 《FEBS letters》1999,461(1-2):73-76
A major inducible heat shock protein, Hsp72, has previously been found to stimulate dephosphorylation (inactivation) of stress kinase JNK in heat-shocked cells and protect them from apoptosis. Using Rat-1 fibroblasts with constitutive expression of a human Hsp72 or its deletion mutant lacking an ATPase domain (C-terminal fragment (CTF)), we tested whether ATPase activity of Hsp72 is necessary for these effects. We found that expression of CTF markedly increased, similarly to the intact protein, JNK dephosphorylation in heat-shocked cells. As a result, JNK inactivation following heat shock occurred much faster in cells expressing either full-length or mutant Hsp72 than in parental cells and this was accompanied by suppression of heat-induced apoptosis. Thus, protein refolding activity of Hsp72 appears to be dispensable for its effect on JNK inactivation and apoptosis.  相似文献   

16.
1. A factor found in rabbit serum inhibits globin mRNA translation in vitro. 2. Inhibition of globin mRNA translation has been demonstrated in a cell-free rabbit reticulocyte lysate. 3. The inactivation of globin mRNA translation is not attributed to either serum albumin or ribonuclease activities. 4. Dialyzing the inhibitor for 24 hr at 4 degrees C does not result in the diminution of the inhibiting activity. However, the activity of the inhibitor is destroyed by heating to 70-80 degrees C for 5 min or by treatment with trypsin for 2 hr. 5. Ion exchange chromatography points to the inhibitor being a neutral protein, whereas, polyacrylamide gel electrophoresis reveals one major band with mol. wt 43 kDa. 6. The activity of the inhibiting material 3-fold greater in anemic serum than in normal serum. 7. These studies suggest that rabbit serum contains a protein inhibitor that may play a physiological role in regulating protein synthesis in red cells.  相似文献   

17.
Isolated yeast mitochondria incubated with a protein-synthesizing mixture containing excess oxidizable substrate, amino acids, MgCl2, an ATP-regenerating system, and optimal levels of [3H]leucine cease protein synthesis after 30 min. Postpolysomal supernatants from either yeast, rat liver, or Escherichia coli can restore protein synthetic activity to depleted yeast mitochondria; however the addition of bovine serum albumin to the incubation mixture did not restore activity. The restored incorporation activity was sensitive to chloramphenicol, insensitive to cycloheximide, and proportional to the protein concentration of the supernatants. Furthermore, addition of all three high-speed supernatants to isolated mitochondria at time zero stimulated the rate of protein synthesis to a greater extent than when these fractions were added to depleted mitochondria. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed that the translation products obtained from mitochondria labeled in vitro in the presence of supernatant fractions were identical to the proteins labeled by mitochondria in vivo; however, the synthesis of the bands corresponding to subunit III of cytochrome oxidase, cytochrome b, and VAR-3 was stimulated to the greatest extent. The stimulatory activity in the supernatants was non-dialyzable, insensitive to treatment with ribonuclease A, but completely abolished by pretreatment with trypsin suggesting that the stimulatory factor(s) is of a protein nature. The postpolysomal supernatants did not incorporate amino acids into protein when incubated without mitochondria. These results suggest that the protein synthetic capacity of mitochondria is apparently limited by extramitochondrial proteins which are present in either yeast, rat liver, or E. coli.  相似文献   

18.
D-beta-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme which is localized on the inner face of the mitochondrial inner membrane. The apodehydrogenase, i.e. the purified enzyme devoid of lipid, has been purified from beef heart mitochondria and as such is inactive. It can be reactivated by insertion into phospholipid vesicles containing lecithin. Proteolytic digestion with different proteases has been carried out to obtain insight into the orientation of the enzyme in the membrane and to assess the extent of immersion of the protein into the phospholipid bilayer. Digestion of the apodehydrogenase with either trypsin, chymotrypsin, Staphylococcus aureus protease, thermolysin, carboxypeptidases A and Y, or Pronase (from Streptomyces griseus) leads to loss of activity, as assayed with phospholipid. Limited digestion with carboxypeptidase results in complete inactivation. Of the proteases tested, only Pronase and chymotrypsin cleave and inactivate the enzyme inserted into phospholipid vesicles (enzyme-phospholipid complex). For the enzyme-phospholipid complex, the loss of activity with Pronase digestion follows a single exponential decay to less than 10% of the initial activity. With chymotrypsin digestion, the staining intensity of the original approximately 31,500-dalton polypeptide decreases more rapidly than the loss of enzymic activity. The enzyme-phospholipid complex, after limited cleavage with chymotrypsin, retains enzymic activity and resonance energy transfer from protein to bound NADH and an approximately 26,000-dalton polypeptide is observed. Phospholipid alters the cleavage pattern with both chymotrypsin and Pronase, and the rate of inactivation of the enzyme-phospholipid complex is slowed in the presence of NAD(H). Moreover, the rate of inactivation of the apodehydrogenase with chymotrypsin is diminished approximately 3-fold in the presence of NAD+. Digestion of submitochondrial vesicles with either trypsin, chymotrypsin, or Pronase rapidly inactivates D-beta-hydroxybutyrate dehydrogenase; the addition of NAD+ or NADH, together with dithiothreitol and increased salt (to 50 mM), decreases the rate of inactivation, and with trypsin, virtually eliminates inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Upon incubation with trypsin, the adenosine-5'-triphosphatase (ATPase) activity of the nucleotide-depleted F1 is first rapidly and slightly activated and then slowly inactivated. The first phase is simultaneous with the conversion of the alpha subunit into an alpha' fragment which migrates between alpha and beta on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The second phase is related to the proteolysis of the three main subunits, alpha', beta, and gamma. Preincubation of the enzyme with low concentrations of adenosine 5'-diphosphate (ADP) or adenosine 5'-triphosphate (ATP) does not modify the slight increase of activity but efficiently prevents the inactivation induced by trypsin. The alpha leads to alpha' conversion is not affected whereas the further proteolysis of alpha', beta, and gamma does not occur. On the contrary, even high concentrations of GDP only slightly lower the trypsin-induced inactivation. The presence of endogenous tightly bound nucleotides also partially lowers the sensitivity to trypsin since F1 is less rapidly inactivated and proteolyzed than the nucleotide-depleted F1. Phosphate, at high concentrations, both slows down the first phase of activation and simultaneous alpha leads to alpha' conversion and prevents the second phase of inactivation and proteolysis of the main subunits. Pretreatment of the nucleotide-depleted F1 with trypsin under conditions where the ATPase activity is largely inhibited only slightly modifies, however, the hysteretic behavior of the enzyme: the ADP binding and the concomitant hysteretic inhibition of the residual activity are not markedly diminished. The purified ATPase-ATP synthase complex binds very few ADP's and is not hysteretically inhibited. Its ATPase activity is rapidly activated but not further inhibited by trypsin. Preincubation of the complex with ADP does not modify the effects of trypsin.  相似文献   

20.
Polar membrane in Campylobacter jejuni has been visualized on membrane vesicles. It was composed of doughnut-shaped particles 5-6 nm in diameter, with stalks, arranged in a hexagonal array. This structure was stabilized on the membrane by a high ionic strength buffer in the presence of 2-mercaptoethanol. Histochemical staining indicated localized ATPase activity at the poles of the cells. An ATPase with distinctive properties has been isolated and purified from this organism; it gives a specific activity of approximately 0.3 units/mg of protein. Electron microscopy showed doughnut-shaped particles 5-6 nm in diameter. Nondissociating and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed, respectively, a single band with ATPase activity and a molecular weight of ca. 75,000 Da. The enzyme was cold labile and activity was abolished by trypsin. Dicyclohexylcarbodiimide inhibited the membrane-bound form of the enzyme, but did not inhibit the soluble form. Oligomycin had no inhibitory activity on either form of the enzyme. The enzyme specifically hydrolysed ATP, but other nucleotide substrates were not degraded. The enzyme was activated by Mg2+ and inhibited by Ca2+, whereas other ions had no effect on activity. Antibodies prepared to this enzyme bound to the polar regions of whole cells as shown by protein A - colloidal gold immunoelectron microscopy. The antibodies to this ATPase cross reacted (shown by Western blotting) with four proteins from a whole-cell extract of this organism, two proteins in Aquaspirillum serpens MW5, and three proteins from Escherichia coli K12. They did not cross-react with any proteins from Spirillum volutans, Methanococcus voltae, Vibrio cholerae, or rat liver mitochondria. Antibodies raised against the F1-ATPase of E. coli K12 cross reacted with six proteins in a whole-cell extract of this organism, and one protein species in each of the whole-cell extracts of V. cholera, A. serpens MW5, S. volutans, and rat liver mitochondria. These antibodies did not recognize any whole cell proteins from either C. jejuni or M. voltae. These results along with the ATPase activity localized by histochemical staining suggest that polar membrane is an assembly of ATPase molecules at the poles of the cell and that the ATPase isolated from C. jejuni is serologically and structurally unusual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号