首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+ sparks are the elementary release events in many types of cells. Here we present a morphometric analysis of Ca2+ sparks (i.e., amplitude and kinetic parameters) using an approach that minimizes the confounding factor of the detection of out-of-focus events. By activation and visualization of Ca2+ sparks from Ca2+ release units under loose-seal patch-clamp conditions, we found that the amplitude and rising rate of in-focus sparks exhibited a broad modal distribution, whereas spark rise time and spatial width appeared to be stereotyped. Spark morphometrics were constant irrespective of the latency of spark production and the time-dependent L-type Ca2+ channel activation. Polymorphism of Ca2+ sparks in terms of variable amplitude and rising rate was evident for events from the same release units, and intra- and interrelease unit variability contributed equally to the overall variability. The rising rate, a reporter of the underlying Ca2+ release flux, displayed a strong positive correlation with spark amplitude, but a negative correlation with spark rise time, an index of Ca2+ release duration. On the basis of Ca2+ spark morphometrics measured here, we suggested a model in which cohorts of variable number of ryanodine receptors are activated in the genesis of Ca2+ sparks, and the ensuing negative feedback overrides the regenerative Ca2+-induced Ca2+ release to extinguish the ongoing Ca2+ spark.  相似文献   

2.
Calcium can activate mitochondrial metabolism, and the possibility that mitochondrial Ca2+ uptake and extrusion modulate free cytosolic [Ca2+] (Cac) now has renewed interest. We use whole-cell and perforated patch clamp methods together with rapid local perfusion to introduce probes and inhibitors to rat chromaffin cells, to evoke Ca2+ entry, and to monitor Ca2+-activated currents that report near-surface [Ca2+]. We show that rapid recovery from elevations of Cac requires both the mitochondrial Ca2+ uniporter and the mitochondrial energization that drives Ca2+ uptake through it. Applying imaging and single-cell photometric methods, we find that the probe rhod-2 selectively localizes to mitochondria and uses its responses to quantify mitochondrial free [Ca2+] (Cam). The indicated resting Cam of 100–200 nM is similar to the resting Cac reported by the probes indo-1 and Calcium Green, or its dextran conjugate in the cytoplasm. Simultaneous monitoring of Cam and Cac at high temporal resolution shows that, although Cam increases less than Cac, mitochondrial sequestration of Ca2+ is fast and has high capacity. We find that mitochondrial Ca2+ uptake limits the rise and underlies the rapid decay of Cac excursions produced by Ca2+ entry or by mobilization of reticular stores. We also find that subsequent export of Ca2+ from mitochondria, seen as declining Cam, prolongs complete Cac recovery and that suppressing export of Ca2+, by inhibition of the mitochondrial Na+/ Ca2+ exchanger, reversibly hastens final recovery of Cac. We conclude that mitochondria are active participants in cellular Ca2+ signaling, whose unique role is determined by their ability to rapidly accumulate and then release large quantities of Ca2+.  相似文献   

3.
In Paramecium tetraurelia, polyamine-triggered exocytosis is accompanied by the activation of Ca2+-activated currents across the cell membrane (Erxleben, C., and H. Plattner. 1994. J. Cell Biol. 127:935– 945). We now show by voltage clamp and extracellular recordings that the product of current × time (As) closely parallels the number of exocytotic events. We suggest that Ca2+ mobilization from subplasmalemmal storage compartments, covering almost the entire cell surface, is a key event. In fact, after local stimulation, Ca2+ imaging with high time resolution reveals rapid, transient, local signals even when extracellular Ca2+ is quenched to or below resting intracellular Ca2+ concentration ([Ca2+]e [Ca2+]i). Under these conditions, quenched-flow/freeze-fracture analysis shows that membrane fusion is only partially inhibited. Increasing [Ca2+]e alone, i.e., without secretagogue, causes rapid, strong cortical increase of [Ca2+]i but no exocytosis. In various cells, the ratio of maximal vs. minimal currents registered during maximal stimulation or single exocytotic events, respectively, correlate nicely with the number of Ca stores available. Since no quantal current steps could be observed, this is again compatible with the combined occurrence of Ca2+ mobilization from stores (providing close to threshold Ca2+ levels) and Ca2+ influx from the medium (which per se does not cause exocytosis). This implies that only the combination of Ca2+ flushes, primarily from internal and secondarily from external sources, can produce a signal triggering rapid, local exocytotic responses, as requested for Paramecium defense.  相似文献   

4.
5.
6.
Ca2+ release from the endoplasmic reticulum (ER) contributes to Ca2+ transients in frog sympathetic ganglion neurons. Here we use video-rate confocal fluo-4 fluorescence imaging to show that single action potentials reproducibly trigger rapidly rising Ca2+ transients at 1–3 local hot spots within the peripheral ER-rich layer in intact neurons in fresh ganglia and in the majority (74%) of cultured neurons. Hot spots were located near the nucleus or the axon hillock region. Other regions exhibited either slower and smaller signals or no response. Ca2+ signals spread into the cell at constant velocity across the ER in nonnuclear regions, indicating active propagation, but spread with a (time)1/2 dependence within the nucleus, consistent with diffusion. 26% of cultured cells exhibited uniform Ca2+ signals around the periphery, but hot spots were produced by loading the cytosol with EGTA or by bathing such cells in low-Ca2+ Ringer's solution. Peripheral hot spots for Ca2+ release within the perinuclear and axon hillock regions provide a mechanism for preferential initiation of nuclear and axonal Ca2+ signals by single action potentials in sympathetic ganglion neurons.  相似文献   

7.
In this and an accompanying report we describe two steps, single-channel imaging and channel immobilization, necessary for using optical imaging to analyze the function of ryanodine receptor (RyR) channels reconstituted in lipid bilayers. An optical bilayer system capable of laser scanning confocal imaging of fluo-3 fluorescence due to Ca2+ flux through single RyR2 channels and simultaneous recording of single channel currents was developed. A voltage command protocol was devised in which the amplitude, time course, shape, and hence the quantity of Ca2+ flux through a single RyR2 channel is controlled solely by the voltage imposed across the bilayer. Using this system, the voltage command protocol, and concentrations of Ca2+ (25–50 mM) that result in saturating RyR2 Ca2+ currents, proportional fluo-3 fluorescence was recorded simultaneously with Ca2+ currents having amplitudes of 0.25–14 pA. Ca2+ sparks, similar to those obtained with conventional microscope-based laser scanning confocal systems, were imaged in mouse ventricular cardiomyocytes using the optical bilayer system. The utility of the optical bilayer for systematic investigation of how cellular factors extrinsic to the RyR2 channel, such as Ca2+ buffers and diffusion, alter fluo-3 fluorescent responses to RyR2 Ca2+ currents, and for addressing other current research questions is discussed.  相似文献   

8.
9.
Of the many ongoing controversies regarding the workings of the sarcoplasmic reticulum (SR) in cardiac myocytes, two unresolved and interconnected topics are 1), mechanisms of calcium (Ca2+) wave propagation, and 2), speed of Ca2+ diffusion within the SR. Ca2+ waves are initiated when a spontaneous local SR Ca2+ release event triggers additional release from neighboring clusters of SR release channels (ryanodine receptors (RyRs)). A lack of consensus regarding the effective Ca2+ diffusion constant in the SR (DCa,SR) severely complicates our understanding of whether dynamic local changes in SR [Ca2+] can influence wave propagation. To address this problem, we have implemented a computational model of cytosolic and SR [Ca2+] during Ca2+ waves. Simulations have investigated how dynamic local changes in SR [Ca2+] are influenced by 1), DCa,SR; 2), the distance between RyR clusters; 3), partial inhibition or stimulation of SR Ca2+ pumps; 4), SR Ca2+ pump dependence on cytosolic [Ca2+]; and 5), the rate of transfer between network and junctional SR. Of these factors, DCa,SR is the primary determinant of how release from one RyR cluster alters SR [Ca2+] in nearby regions. Specifically, our results show that local increases in SR [Ca2+] ahead of the wave can potentially facilitate Ca2+ wave propagation, but only if SR diffusion is relatively slow. These simulations help to delineate what changes in [Ca2+] are possible during SR Ca2+release, and they broaden our understanding of the regulatory role played by dynamic changes in [Ca2+]SR.  相似文献   

10.
11.
ICRAC (the best characterized Ca2+ current activated by store depletion) was monitored concurrently for the first time with [Ca2+] changes in internal stores. To establish the quantitative and kinetic relationship between these two parameters, we have developed a novel means to clamp [Ca2+] within stores of intact cells at any level. The advantage of this approach, which is based on the membrane-permeant low-affinity Ca2+ chelator N,N,N′,N′-tetrakis (2-pyridylmethyl)ethylene diamine (TPEN), is that [Ca2+] within the ER can be lowered and restored to its original level within 10–15 s without modifications of Ca2+ pumps or release channels. Using these new tools, we demonstrate here that Ca2+ release–activated Ca2+ current (ICRAC) is activated (a) solely by reduction of free [Ca2+] within the ER and (b) by any measurable decrease in [Ca2+]ER. We also demonstrate that the intrinsic kinetics of inactivation are relatively slow and possibly dependent on soluble factors that are lost during the whole-cell recording.  相似文献   

12.
Two recombinant aequorin isoforms with different Ca2+ affinities, specifically targeted to the endoplasmic reticulum (ER), were used in parallel to investigate free Ca2+ homeostasis in the lumen of this organelle. Here we show that, although identically and homogeneously distributed in the ER system, as revealed by both immunocytochemical and functional evidence, the two aequorins measured apparently very different concentrations of divalent cations ([Ca2+]er or [Sr2+]er). Our data demonstrate that this contradiction is due to the heterogeneity of the [Ca2+] of the aequorin-enclosing endomembrane system. Because of the characteristics of the calibration procedure used to convert aequorin luminescence into Ca2+ concentration, the [Ca2+]er values obtained at steady state tend, in fact, to reflect not the average ER values, but those of one or more subcompartments with lower [Ca2+]. These subcompartments are not generated artefactually during the experiments, as revealed by the dynamic analysis of the ER structure in living cells carried out by means of an ER-targeted green fluorescent protein. When the problem of ER heterogeneity was taken into account (and when Sr2+ was used as a Ca2+ surrogate), the bulk of the organelle was shown to accumulate free [cation2+]er up to a steady state in the millimolar range. A theoretical model, based on the existence of multiple ER subcompartments of high and low [Ca2+], that closely mimics the experimental data obtained in HeLa cells during accumulation of either Ca2+ or Sr2+, is presented. Moreover, a few other key problems concerning the ER Ca2+ homeostasis have been addressed with the following conclusions: (a) the changes induced in the ER subcompartments by receptor generation of InsP3 vary depending on their initial [Ca2+]. In the bulk of the system there is a rapid release whereas in the small subcompartments with low [Ca2+] the cation is simultaneously accumulated; (b) stimulation of Ca2+ release by receptor-generated InsP3 is inhibited when the lumenal level is below a threshold, suggesting a regulation by [cation2+]er of the InsP3 receptor activity (such a phenomenon had already been reported, however, but only in subcellular fractions analyzed in vitro); and (c) the maintenance of a relatively constant level of cytosolic [Ca2+], observed when the cells are incubated in Ca2+-free medium, depends on the continuous release of the cation from the ER, with ensuing activation in the plasma membrane of the channels thereby regulated (capacitative influx).  相似文献   

13.
The possible contribution of Na+-Ca2+ exchange to the triggering of Ca2+ release from the sarcoplasmic reticulum in ventricular cells remains unresolved. To gain insight into this issue, we measured the “trigger flux” of Ca2+ crossing the cell membrane in rabbit ventricular myocytes with Ca2+ release disabled pharmacologically. Under conditions that promote Ca2+ entry via Na+-Ca2+ exchange, internal [Na+] (10 mM), and positive membrane potential, the Ca2+ trigger flux (measured using a fluorescent Ca2+ indicator) was much greater than the Ca2+ flux through the L-type Ca2+ channel, indicating a significant contribution from Na+-Ca2+ exchange to the trigger flux. The difference between total trigger flux and flux through L-type Ca2+ channels was assessed by whole-cell patch-clamp recordings of Ca2+ current and complementary experiments in which internal [Na+] was reduced. However, Ca2+ entry via Na+-Ca2+ exchange measured in the absence of L-type Ca2+ current was considerably smaller than the amount inferred from the trigger flux measurements. From these results, we surmise that openings of L-type Ca2+ channels increase [Ca2+] near Na+-Ca2+ exchanger molecules and activate this protein. These results help to resolve seemingly contradictory results obtained previously and have implications for our understanding of the triggering of Ca2+ release in heart cells under various conditions.  相似文献   

14.
15.
The survival of a eukaryotic protozoan as an obligate parasite in the interior of a eukaryotic host cell implies its adaptation to an environment with a very different ionic composition from that of its extracellular habitat. This is particularly important in the case of Ca2+, the intracellular concentration of which is 3 orders of magnitude lower than the extracellular value. Ca2+ entry across the plasma membrane is a widely recognized mechanism for Ca2+ signaling, needed for a number of intracellular processes, and obviously, it would be restricted in the case of intracellular parasites. Here we show that Trypanosoma cruzi amastigotes possess a higher Ca2+ content than the extracellular stages of the parasite. This correlates with the higher expression of a calcium pump, the gene for which was cloned and sequenced. The deduced protein product (Tca1) of this gene has a calculated molecular mass of 121,141 Da and exhibits 34 to 38% identity with vacuolar Ca2+-ATPases of Saccharomyces cerevisiae and Dictyostelium discoideum, respectively. The tca1 gene suppresses the Ca2+ hypersensitivity of a mutant of S. cerevisiae that has a defect in vacuolar Ca2+ accumulation. Indirect immunofluorescence and immunoelectron microscopy analysis indicate that Tca1 colocalizes with the vacuolar H+-ATPase to the plasma membrane and to intracellular vacuoles of T. cruzi. These vacuoles were shown to have the same size and distribution as the calcium-containing vacuoles identified by the potassium pyroantimoniate-osmium technique and as the electron-dense vacuoles observed in whole unfixed parasites by transmission electron microscopy and identified in a previous work (D. A. Scott, R. Docampo, J. A. Dvorak, S. Shi, and R. D. Leapman, J. Biol. Chem. 272:28020–28029, 1997) as being acidic and possessing a high calcium content (i.e., acidocalcisomes). Together, these results suggest that acidocalcisomes are distinct from other previously recognized organelles present in these parasites and underscore the ability of intracellular parasites to adapt to the hostile environment of their hosts.  相似文献   

16.
17.
Ca(2+)/calmodulin-dependent protein kinase IV-deficient (CaMKIV(-/-)) mice have been used to investigate the role of this enzyme in CD4(+) T cells. We identify a functional defect in a subpopulation of CD4(+) T cells, characterized by a cell surface marker profile usually found on memory phenotype CD4(+) T cells. Upon T-cell receptor engagement, the mutant cells produce diminished levels of interleukin-2 (IL-2), IL-4, and gamma interferon protein and mRNA. The defect is secondary to an inability to phosphorylate CREB and to induce CREB-dependent immediate-early genes, including c-jun, fosB, fra2, and junB, which are required for cytokine gene induction. In contrast, stimulated naive CD4(+) T cells from CaMKIV(-/-) mice show normal CREB phosphorylation, induction of immediate-early genes, and cytokine production. Thus, in addition to defining an important signaling role for CaMKIV in a subpopulation of T cells, we identify differential signaling requirements for cytokine production between naive T cells and T cells that express cell surface markers characteristic of the memory phenotype.  相似文献   

18.
19.
20.
Magnesium ions (Mg2+) play a fundamental role in cellular function, but the cellular dynamic changes of intracellular Mg2+ remain poorly delineated. The present study aims to clarify whether the concentration of intracellular Mg2+ possibly changes cyclically in association with rhythmic contraction and intracellular Ca2+ oscillation in cultured cardiac myocytes from neonatal rats. To do this, we performed a noise analysis of fluctuations in the concentration of intracellular Mg2+ in cardiac myocytes. The concentration was estimated by loading cells with either Mg‐fluo4/AM or KMG‐20/AM. Results revealed that the intensity of Mg‐fluo‐4 or KMG‐20 fluorescence fluctuated cyclically in association with the rhythmic contraction of cardiac myocytes. In addition, the simultaneous measurement of Fura2 and Mg‐fluo‐4 fluorescence revealed phase differences between the dynamics of the two signals, suggesting that the cyclic changes in the Mg‐fluo‐4 or KMG‐20 fluorescent intensity actually reflected the changes in intracellular Mg2+. The complete termination of spontaneous rhythmic contractions did not abolish Mg2+ oscillations, suggesting that the rhythmic fluctuations in intracellular Mg2+ did not result from mechanical movements. We suggest that the concentration of intracellular Mg2+ changes cyclically in association with spontaneous, cyclic changes in the concentration of intracellular Ca2+ of cardiac myocytes. A noise analysis of the fluctuation of subtle changes in fluorescence intensity could contribute to the elucidation of novel functional roles of Mg2+ in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号