首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial impairment and the resulting generation of reactive oxygen species (ROS) have been associated with aging and its related pathological conditions. Recently, dietary antioxidants have gained significant attention as potential preventive and therapeutic agents against ROS-generated aging and pathological conditions. We previously demonstrated that food-derived antioxidants prevented intracellular oxidative stress under proteasome inhibition conditions, which was attributed to mitochondrial dysfunction and ROS generation, followed by cell death. Here, we further screened dietary antioxidants for their activity as redox modulators by visualization of the redox state using Redoxfluor, a fluorescent protein redox probe. Direct alleviation of ROS by antioxidants, but not induction of antioxidative enzymes, prevented mitochondria-mediated intracellular oxidation. The effective antioxidants scavenged mitochondrial ROS and suppressed cell death. Our study indicates that redox visualization under mitochondria-mediated oxidative stress is useful for screening potential antioxidants to counteract mitochondrial dysfunction, which has been implicated in aging and the pathogenesis of aging-related diseases.  相似文献   

2.
Mitochondrial production of peroxides is a critical event in both pathology and redox signaling. Consequently their selective degradation within mitochondria is of considerable interest. Here we have explored the interaction of the peroxidase mimetic ebselen with mitochondria. We were particularly interested in whether ebselen was activated by mitochondrial glutathione (GSH) and thioredoxin, in determining whether an ebselen moiety could be targeted to mitochondria by conjugating it to a lipophilic cation, and in exploring the nature of ebselen binding to mitochondrial proteins. To achieve these goals we synthesized 2-[4-(4-triphenylphosphoniobutoxy) phenyl]-1,2-benzisoselenazol)-3(2H)-one iodide (MitoPeroxidase), which contains an ebselen moiety covalently linked to a triphenylphosphonium (TPP) cation. The fixed positive charge of TPP facilitated mass spectrometric analysis, which showed that the ebselen moiety was reduced by GSH to the selenol form and that subsequent reaction with a peroxide reformed the ebselen moiety. MitoPeroxidase and ebselen were effective antioxidants that degraded phospholipid hydroperoxides, prevented lipid peroxidation, and protected mitochondria from oxidative damage. Both peroxidase mimetics required activation by mitochondrial GSH or thioredoxin to be effective antioxidants. Surprisingly, conjugation to the TPP cation led to only a slight increase in the uptake of ebselen by mitochondria due to covalent binding of the ebselen moiety to proteins. Using antiserum against the TPP moiety we visualized those proteins covalently attached to the ebselen moiety. This analysis indicated that much of the ebselen present within mitochondria is bound to protein thiols through reversible selenenylsulfide bonds. Both MitoPeroxidase and ebselen decreased apoptosis induced by oxidative stress, suggesting that they can decrease mitochondrial oxidative stress. This exploration has led to new insights into the behavior of peroxidase mimetics within mitochondria and to their use in investigating mitochondrial oxidative damage.  相似文献   

3.
Obesity and metabolic syndrome are associated with an increased risk for several diabetic complications, including diabetic nephropathy and chronic kidney diseases. Oxidative stress and mitochondrial dysfunction are often proposed mechanisms in various organs in obesity models, but limited data are available on the kidney. Here, we fed a lard-based high-fat diet to mice to investigate structural changes, cellular and subcellular oxidative stress and redox status, and mitochondrial biogenesis and function in the kidney. The diet induced characteristic changes, including glomerular hypertrophy, fibrosis, and interstitial scarring, which were accompanied by a proinflammatory transition. We demonstrate evidence for oxidative stress in the kidney through 3-nitrotyrosine and protein radical formation on high-fat diet with a contribution from iNOS and NOX-4 as well as increased generation of mitochondrial oxidants on carbohydrate- and lipid-based substrates. The increased H(2)O(2) emission in the mitochondria suggests altered redox balance and mitochondrial ROS generation, contributing to the overall oxidative stress. No major derailments were observed in respiratory function or biogenesis, indicating preserved and initially improved bioenergetic parameters and energy production. We suggest that, regardless of the oxidative stress events, the kidney developed an adaptation to maintain normal respiratory function as a possible response to an increased lipid overload. These findings provide new insights into the complex role of oxidative stress and mitochondrial redox status in the pathogenesis of the kidney in obesity and indicate that early oxidative stress-related changes, but not mitochondrial bioenergetic dysfunction, may contribute to the pathogenesis and development of obesity-linked chronic kidney diseases.  相似文献   

4.
Neurodegenerative diseases, a subset of age-driven diseases, have been known to exhibit increased oxidative stress. The resultant increase in reactive oxygen species (ROS) has long been viewed as a detrimental byproduct of many cellular processes. Despite this, therapeutic approaches using antioxidants were deemed unsuccessful in circumventing neurodegenerative diseases. In recent times, it is widely accepted that these toxic by-products could act as secondary messengers, such as hydrogen peroxide (H2O2), to drive important signaling pathways. Notably, mitochondria are considered one of the major producers of ROS, especially in the production of mitochondrial H2O2. As a secondary messenger, cellular H2O2 can initiate redox signaling through oxidative post-translational modifications (oxPTMs) on the thiol group of the amino acid cysteine. With the current consensus that cellular ROS could drive important biological signaling pathways through redox signaling, researchers have started to investigate the role of cellular ROS in the pathogenesis of neurodegenerative diseases. Moreover, mitochondrial dysfunction has been linked to various neurodegenerative diseases, and recent studies have started to focus on the implications of mitochondrial ROS from dysfunctional mitochondria on the dysregulation of redox signaling. Henceforth, in this review, we will focus our attention on the redox signaling of mitochondrial ROS, particularly on mitochondrial H2O2, and its potential implications with neurodegenerative diseases.Subject terms: Post-translational modifications, Neurodegenerative diseases  相似文献   

5.
A common feature in the early stages of many neurodegenerative diseases lies in mitochondrial dysfunction, oxidative stress, and reduced levels of synaptic transmission. Many genes associated with neurodegenerative diseases are now known to regulate either mitochondrial function, redox state, or the exocytosis of neurotransmitters. Mitochondria are the primary source of reactive oxygen species and ATP and control apoptosis. Mitochondria are concentrated in synapses and significant alterations to synaptic mitochondrial localization, number, morphology, or function can be detrimental to synaptic transmission. Mitochondrial by-products are capable of regulating various steps of neurotransmission and mitochondrial dysfunction and oxidative stress occur in the early stages of many neurodegenerative diseases. This mini-review will highlight the prospect that mitochondria regulates synaptic exocytosis by controlling synaptic ATP and reactive oxygen species levels and that dysfunctional exocytosis caused by mitochondrial abnormalities may be a common underlying phenomenon in the initial stages of some human neurodegenerative diseases.  相似文献   

6.
BackgroundOxidative stress is involved in the progression of diabetes and its associated complications. However, it is unclear whether increased oxidative stress plays a primary role in the onset of diabetes or is a secondary indicator caused by tissue damage. Previous methods of analyzing oxidative stress have involved measuring the changes in oxidative stress biomarkers. Our aim is to identify a novel approach to clarify whether oxidative stress plays a primary role in the onset of diabetes.MethodsWe constructed transgenic type 2 diabetes mouse models expressing redox-sensitive green fluorescent proteins (roGFPs) that distinguished between mitochondria and whole cells. Pancreas, liver, skeletal muscle, and kidney redox states were measured in vivo.ResultsHepatic mitochondrial oxidation increased when the mice were 4 weeks old and continued to increase in an age-dependent manner. The increase in hepatic mitochondrial oxidation occurred simultaneously with weight gain and increased blood insulin levels before the blood glucose levels increased. Administering the oxidative stress inducer acetaminophen increased the vulnerability of the liver mitochondria to oxidative stress.ConclusionsThis study demonstrates that oxidative stress in liver mitochondria in mice begins at the onset of diabetes rather than after the disease has progressed.General significanceRoGFP-expressing transgenic type 2 diabetes mouse models are effective and convenient tools for measuring hepatic mitochondrial redox statuses in vivo. These models may be used to assess mitochondria-targeting antioxidants and establish the role of oxidative stress in type 2 diabetes.  相似文献   

7.
Cisplatin is a highly effective chemotherapeutic agent which causes severe nephrotoxicity. Studies have suggested that reactive oxygen species, mainly generated in mitochondria, play a central role in cisplatin-induced renal damage. A wide range of antioxidants have been evaluated as possible protective agents against cisplatin-induced nephrotoxicity; however a safe and efficacious compound has not yet been found. The present study is the first to evaluate the protective potential of carvedilol, a beta-blocker with strong antioxidant properties, against the mitochondrial oxidative stress and apoptosis in kidney of rats treated with cisplatin. The following cisplatin-induced toxic effects were prevented by carvedilol: increased plasmatic levels of creatinine and blood urea nitrogen (BUN); lipid peroxidation, oxidation of cardiolipin; oxidation of protein sulfhydryls; depletion of the non-enzymatic antioxidant defense and increased activity of caspase-3. Carvedilol per se did not present any effect on renal mitochondria. It was concluded that carvedilol prevents mitochondrial dysfunction and renal cell death through the protection against the oxidative stress and redox state unbalance induced by cisplatin. The association of carvedilol to cisplatin chemotherapy was suggested as a possible strategy to minimize the nephrotoxicity induced by this antitumor agent.  相似文献   

8.
Oxidative stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin) is poorly understood. Following one dose of TCDD (5 microg/kg body weight), mitochondrial succinate-dependent production of superoxide and H2O2 in mouse liver doubled at 7-28 days, then subsided by day 56; concomitantly, levels of GSH and GSSG increased in both cytosol and mitochondria. Cytosol displayed a typical oxidative stress response, consisting of diminished GSH relative to GSSG, decreased potential to reduce protein-SSG mixed disulfide bonds (type 1 thiol redox switch) or protein-SS-protein disulfide bonds (type 2 thiol redox switch), and a +10 mV change in GSSG/2GSH reduction potential. In contrast, mitochondria showed a rise in reduction state, consisting of increased GSH relative to GSSG, increases in type 1 and type 2 thiol redox switches, and a -25 mV change in GSSG/2GSH reduction potential. Comparing Ahr(-/-) knock-out and wild-type mice, we found that TCDD-induced thiol changes in both cytosol and mitochondria were dependent on the aromatic hydrocarbon receptor (AHR). GSH was rapidly taken up by mitochondria and stimulated succinate-dependent H2O2 production. A linear dependence of H2O2 production on the reduction potential for GSSG/2GSH exists between -150 and -300 mV. The TCDD-stimulated increase in succinate-dependent and thiol-stimulated production of reactive oxygen paralleled a four-fold increase in formamidopyrimidine DNA N-glycosylase (FPG)-sensitive cleavage sites in mitochondrial DNA, compared with a two-fold increase in nuclear DNA. These results suggest that TCDD produces an AHR-dependent oxidative stress in mitochondria, with concomitant mitochondrial DNA damage mediated, at least in part, by an increase in the mitochondrial thiol reduction state.  相似文献   

9.
Exposure of mitochondria to oxidative stress and elevated Ca2+ promotes opening of the mitochondrial permeability transition pore (PTP), resulting in membrane depolarization, uncoupling of oxidative phosphorylation, and potentially cell death. This study tested the hypothesis that treatment of rats with sulforaphane (SFP), an activator of the Nrf2 pathway of antioxidant gene expression, increases the resistance of liver mitochondria to redox-regulated PTP opening and elevates mitochondrial levels of antioxidants. Rats were injected with SFP or drug vehicle and liver mitochondria were isolated 40 h later. Respiring mitochondria actively accumulated added Ca2+, which was then released through PTP opening induced by agents that either cause an oxidized shift in the mitochondrial redox state or directly oxidize protein thiol groups. SFP treatment of rats inhibited the rate of pro-oxidant-induced mitochondrial Ca2+ release and increased expression of the glutathione peroxidase/reductase system, thioredoxin, and malic enzyme. These results are the first to demonstrate that SFP treatment of animals increases liver mitochondrial antioxidant defenses and inhibits redox-sensitive PTP opening. This novel form of preconditioning could protect against a variety of pathologies that include oxidative stress and mitochondrial dysfunction in their etiologies.  相似文献   

10.
Reactive oxygen species (ROS) play a key role in promoting mitochondrial cytochrome c release and induction of apoptosis. ROS induce dissociation of cytochrome c from cardiolipin on the inner mitochondrial membrane (IMM), and cytochrome c may then be released via mitochondrial permeability transition (MPT)-dependent or MPT-independent mechanisms. We have developed peptide antioxidants that target the IMM, and we used them to investigate the role of ROS and MPT in cell death caused by t-butylhydroperoxide (tBHP) and 3-nitropropionic acid (3NP). The structural motif of these peptides centers on alternating aromatic and basic amino acid residues, with dimethyltyrosine providing scavenging properties. These peptide antioxidants are cell-permeable and concentrate 1000-fold in the IMM. They potently reduced intracellular ROS and cell death caused by tBHP in neuronal N(2)A cells (EC(50) in nm range). They also decreased mitochondrial ROS production, inhibited MPT and swelling, and prevented cytochrome c release induced by Ca(2+) in isolated mitochondria. In addition, they inhibited 3NP-induced MPT in isolated mitochondria and prevented mitochondrial depolarization in cells treated with 3NP. ROS and MPT have been implicated in myocardial stunning associated with reperfusion in ischemic hearts, and these peptide antioxidants potently improved contractile force in an ex vivo heart model. It is noteworthy that peptide analogs without dimethyltyrosine did not inhibit mitochondrial ROS generation or swelling and failed to prevent myocardial stunning. These results clearly demonstrate that overproduction of ROS underlies the cellular toxicity of tBHP and 3NP, and ROS mediate cytochrome c release via MPT. These IMM-targeted antioxidants may be very beneficial in the treatment of aging and diseases associated with oxidative stress.  相似文献   

11.
《BBA》2020,1861(8):148210
An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK3) was synthesized. However, MitoK3 did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action. Here we synthesized 1,4-naphthoquinone conjugated with alkyltriphenylphosphonium (SkQN) as a prototype of mitochondria-targeted prooxidant, and its redox properties, interactions with isolated mitochondria, yeast cells and various human cell lines were investigated. According to electrochemical measurements, SkQN was more active redox agent and, due to the absence of methyl group in the naphthoquinone ring, more reactive as electrophile than MitoK3. SkQN (but not MitoK3) stimulated hydrogen peroxide production in isolated mitochondria. At low concentrations, SkQN stimulated state 4 respiration in mitochondria, decreased membrane potential, and blocked ATP synthesis, being more efficient uncoupler of oxidative phosphorylation than MitoK3. In yeast cells, SkQN decreased cell viability and induced oxidative stress and mitochondrial fragmentation. SkQN killed various tumor cells much more efficiently than MitoK3. Since many tumors are characterized by increased oxidative stress, the use of new mitochondria-targeted prooxidants may be a promising strategy for anticancer therapy.  相似文献   

12.
Thioredoxins are small, highly conserved oxidoreductases which are required to maintain the redox homeostasis of the cell. Saccharomyces cerevisiae contains a cytoplasmic thioredoxin system (TRX1, TRX2, and TRR1) as well as a complete mitochondrial thioredoxin system, comprising a thioredoxin (TRX3) and a thioredoxin reductase (TRR2). In the present study we have analyzed the functional overlap between the two systems. By constructing mutant strains with deletions of both the mitochondrial and cytoplasmic systems (trr1 trr2 and trx1 trx2 trx3), we show that cells can survive in the absence of both systems. Analysis of the redox state of the cytoplasmic thioredoxins reveals that they are maintained independently of the mitochondrial system. Similarly, analysis of the redox state of Trx3 reveals that it is maintained in the reduced form in wild-type cells and in mutants lacking components of the cytoplasmic thioredoxin system (trx1 trx2 or trr1). Surprisingly, the redox state of Trx3 is also unaffected by the loss of the mitochondrial thioredoxin reductase (trr2) and is largely maintained in the reduced form unless cells are exposed to an oxidative stress. Since glutathione reductase (Glr1) has been shown to colocalize to the cytoplasm and mitochondria, we examined whether loss of GLR1 influences the redox state of Trx3. During normal growth conditions, deletion of TRR2 and GLR1 was found to result in partial oxidation of Trx3, indicating that both Trr2 and Glr1 are required to maintain the redox state of Trx3. The oxidation of Trx3 in this double mutant is even more pronounced during oxidative stress or respiratory growth conditions. Taken together, these data indicate that Glr1 and Trr2 have an overlapping function in the mitochondria.  相似文献   

13.
Mitochondria play a central and multifaceted role in the mammalian egg and early embryo, contributing to many different aspects of early development. While the contribution of mitochondria to energy production is fundamental, other roles for mitochondria are starting to emerge. Mitochondria are central to intracellular redox metabolism as they produce reactive oxygen species (ROS, the mediators of oxidative stress) and they can generate TCA cycle intermediates and reducing equivalents that are used in antioxidant defence. A high cytosolic lactate dehydrogenase activity coupled with dynamic levels of cytosolic pyruvate is responsible for a very dynamic intracellular redox state in the oocyte and embryo. Mammalian embryos have a low glucose metabolism during the earliest stages of development, as both glycolysis and the pentose phosphate pathway are suppressed. The mitochondrial TCA cycle is therefore the major source of reducing equivalents in the cytosol so that any change in mitochondrial function in the embryo will be reflected in changes in the intracellular redox state. In the mouse, the metabolic substrates used by the oocyte and early embryo each have a different impact on the intracellular redox state. Pyruvate which oxidises the cytosolic redox state, acts as an energetic and redox substrate whereas lactate, which reduces the cytosolic redox state, acts only as a redox substrate. Mammalian early embryos are very sensitive to oxidative stress which can cause permanent developmental arrest before zygotic genome activation and apoptosis in the blastocyst. The oocyte stockpiles antioxidant defence for the early embryo to cope with exogenous and endogenous oxidant insults arising during early development. Mitochondria provide ATP for glutathione (GSH) production during oocyte maturation and also participate in the regeneration of NADPH and GSH during early development. Finally, a number of pathological conditions or environmental insults impair early development by altering mitochondrial function, illustrating the centrality of mitochondrial function in embryo development.  相似文献   

14.
The present investigation was designed to determine the efficacy of Bacopa monnieri (Brahmi; BM) to offset 3-nitropropionic acid (3-NPA) induced oxidative stress and mitochondrial dysfunction in dopaminergic (N27) cells and prepubertal mouse brain. Pretreatment of N27 cells with BM ethanolic extract (BME) significantly attenuated 3-NPA-induced cytotoxicity. Further, we determined the degree of oxidative stress induction, redox status, enzymic antioxidants, and protein oxidation in the striatal mitochondria of mice given BME prophylaxis followed by 3-NPA challenge. While 3-NPA-induced marked oxidative stress in the mitochondria of the striatum, BME prophylaxis markedly prevented 3-NPA-induced oxidative dysfunctions and depletion of reduced glutathione and thiol levels. The activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase, thioredoxin reductase), Na(+),K(+)-ATPase, and citric acid cycle enzymes in the striatum discernible among 3-NPA mice were significantly restored with BME prophylaxis. Interestingly, BME offered protection against 3-NPA-induced mitochondrial dysfunctions as evidenced by the restoration of the activities of ETC enzymes (NADH:ubiquinone oxidoreductase, NADH:cytochrome c reductase, succinate-ubiquinone oxidoreductase, and cytochrome c oxidase) and mitochondrial viability. We hypothesize that the neuroprotective effects of BME may be wholly or in part related to its propensity to scavenge free radicals, maintain redox status, and upregulate antioxidant machinery in striatal mitochondria.  相似文献   

15.
Targeting antioxidants to mitochondria: a new therapeutic direction   总被引:12,自引:0,他引:12  
Mitochondria play an important role in controlling the life and death of a cell. Consequently, mitochondrial dysfunction leads to a range of human diseases such as ischemia-reperfusion injury, sepsis, and diabetes. Although the molecular mechanisms responsible for mitochondria-mediated disease processes are not fully elucidated yet, the oxidative stress appears to be critical. Accordingly, strategies are being developed for the targeted delivery of antioxidants to mitochondria. In this review, we shall briefly discuss cellular reactive oxygen species metabolism and its role in pathophysiology; the currently existing antioxidants and possible reasons why they are not effective in ameliorating oxidative stress-mediated diseases; and recent developments in mitochondrially targeted antioxidants and their future promise for disease treatment.  相似文献   

16.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

17.
Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of cross talk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the cell and play an important role in the maintenance of cellular redox status, thereby acting as an ROS and redox sink and limiting NADPH oxidase activity. Mitochondria, however, are not only a target for ROS produced by NADPH oxidase but also a significant source of ROS, which under certain conditions may stimulate NADPH oxidases. This cross talk between mitochondria and NADPH oxidases, therefore, may represent a feed-forward vicious cycle of ROS production, which can be pharmacologically targeted under conditions of oxidative stress. It has been demonstrated that mitochondria-targeted antioxidants break this vicious cycle, inhibiting ROS production by mitochondria and reducing NADPH oxidase activity. This may provide a novel strategy for treatment of many pathological conditions including aging, atherosclerosis, diabetes, hypertension, and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. It is conceivable that the use of mitochondria-targeted treatments would be effective in these conditions.  相似文献   

18.
Mitochondrial catalase and oxidative injury   总被引:2,自引:0,他引:2  
Mitochondria dysfunction induced by reactive oxygen species (ROS) is related to many human diseases and aging. In physiological conditions, the mitochondrial respiratory chain is the major source of ROS. ROS could be reduced by intracellular antioxidant enzymes including superoxide dismutase, glutathione peroxidase and catalase as well as some antioxidant molecules like glutathione and vitamin E. However, in pathological conditions, these antioxidants are often unable to deal with the large amount of ROS produced. This inefficiency of antioxidants is even more serious in mitochondria, because mitochondria in most cells lack catalase. Therefore, the excessive production of hydrogen peroxide in mitochondria will damage lipid, proteins and mDNA, which can then cause cells to die of necrosis or apoptosis. In order to study the important role of mitochondrial catalase in protecting cells from oxidative injury, a HepG2 cell line overexpressing catalase in mitochondria was developed by stable transfection of a plasmid containing catalase cDNA linked with a mitochondria leader sequence which would encode a signal peptide to lead catalase into the mitochondria. Mitochondria catalase was shown to protect cells from oxidative injury induced by hydrogen peroxide and antimycin A. However, it increased the sensitivity of cells to tumor necrosis factor-alpha-induced apoptosis by changing the redox-oxidative status in the mitochondria. Therefore, the antioxidative effectiveness of catalase when expressed in the mitochondrial compartment is dependent upon the oxidant and the locus of ROS production.  相似文献   

19.
We have studied the effect of aging on brain glutathione redox ratio, on brain mitochondrial DNA damage and on motor co-ordination in mice and the possible protective role of late onset administration of sulphur-containing antioxidants. Glutathione redox ratios change to a more oxidized state in whole brain with aging but the changes are much more pronounced when this ratio is measured in brain mitochondria. The levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine in mitochondrial DNA are much higher in the brain of old animals than in those of young ones. Late onset oral administration of sulphur-containing antioxidants partially prevents oxidation of mitochondrial glutathione and DNA. There is an inverse relationship between age-associated oxidative damage to mitochondrial DNA and motor co-ordination in old mice.  相似文献   

20.
We have studied the effect of aging on brain glutathione redox ratio, on brain mitochondrial DNA damage and on motor co-ordination in mice and the possible protective role of late onset administration of sulphur-containing antioxidants. Glutathione redox ratios change to a more oxidized state in whole brain with aging but the changes are much more pronounced when this ratio is measured in brain mitochondria. The levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in mitochondrial DNA are much higher in the brain of old animals than in those of young ones. Late onset oral administration of sulphur-containing antioxidants partially prevents oxidation of mitochondrial glutathione and DNA. There is an inverse relationship between age-associated oxidative damage to mitochondrial DNA and motor co-ordination in old mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号