首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cortical neuron specification: it has its time and place   总被引:3,自引:0,他引:3  
Campbell K 《Neuron》2005,46(3):373-376
Cortical neurogenesis is a highly stereotyped process in which progenitor cells generate neurons destined for specific cortical layers depending on the timing of cell cycle exit. Previous work has shown that during corticogenesis, progenitors become progressively restricted in their developmental potential. Recent work has uncovered some of the intrinsic mechanisms that underlie this fate restriction. In addition to timing, new studies suggest that the location of cell cycle exit in the cortical germinal zone may also contribute to cortical neuron specification.  相似文献   

2.
Different types of sense organs are present on the larva of Drosophila. Several genes that specify the type of sense organ that will form at a particular position have been recently identified. Here we review the functional and molecular analyses of these genes, and summarize the evidence which supports a role in the choice of which type of organ will be formed. Most or all of these genes are required for the appropriate specification of adult as well as larval sense organs, suggesting that the larval and adult systems share many gene requirements. Interestingly, the specifying genes identified so far in the peripheral nervous system are also expressed in subsets of cells in the central nervous system, where they might have similar roles.  相似文献   

3.
Z Chen  X Li  C Desplan 《Neuron》2012,75(5):739-742
There are two views on vertebrate retinogenesis: a deterministic model dependent on fixed lineages and a stochastic model in which choices of division modes and cell fates cannot be predicted. In this issue of Neuron, He et?al. (2012) address this question in zebrafish using live imaging and mathematical modeling.  相似文献   

4.
5.
6.
The vertebrate nervous system performs the most complex functions of any organ system. This feat is mediated by dedicated assemblies of neurons that must be precisely connected to one another and to peripheral tissues during embryonic development. Motor neurons, which innervate muscle and regulate autonomic functions, form an integral part of this neural circuitry. The first part of this review describes the remarkable progress in our understanding of motor neuron differentiation, which is arguably the best understood model of neuronal differentiation to date. During development, the coordinate actions of inductive signals from adjacent non-neural tissues initiate the differentiation of distinct motor neuron subclasses, with specific projection patterns, at stereotypical locations within the neural tube. Underlying this specialisation is the expression of specific homeodomain proteins, which act combinatorially to confer motor neurons with both their generic and subtype-specific properties. Ensuring that specific motor neuron subtypes innervate the correct target structure, however, requires precise motor axon guidance mechanisms. The second half of this review focuses on how distinct motor neuron subtypes pursue highly specific projection patterns by responding differentially to spatially discrete attractive and repulsive molecular cues. The tight link between motor neuron specification and axon pathfinding appears to be established by the dominant role of homeodomain proteins in dictating the ways that navigating motor axons interpret the plethora of guidance cues impinging on growth cones.  相似文献   

7.
Positional information is an important determinant in the establishment of cellular identity in plants. It is established during pattern formation and is maintained in growing organs. Cells maintain the ability to respond to changes in positional information during development indicating that the mechanism for perceiving such information must remain intact until relatively late in development. Once positional cues are perceived they set in motion a number of cascades resulting in the differentiation of particular cell types in defined locations. The circuitry underpinning these later events is being teased out using genetics. Evidence is emerging for the existence of an array of both positive and negative genetic regulators from studies in a number of diverse plant model systems Copyright 1999 Academic Press.  相似文献   

8.
We have investigated the development of segmental diversity in an identified leech neuron, the Retzius cell. Retzius cells in the genital segments differ from those in other segments in lacking central axons and contacting different peripheral targets: the genitalia. These differences are not apparent during initial axon outgrowth, when all Retzius cells follow the same morphogenetic pattern. Rather, they first appear about the time the peripheral axons of the genital segment Retzius cells contact the genital primordia. This suggests that the pattern of central and peripheral axonal outgrowth may be modified by an interaction with peripheral targets.  相似文献   

9.
Cell type specification during sea urchin development   总被引:8,自引:0,他引:8  
Recent discoveries indicate that cell lineages and fates play a key role in the establishment of spatially restricted gene expression during sea urchin development. Unique sets of founder cells generate five territories of gene expression by means of an invariant pattern of complete cleavage. Cell lineage analysis demonstrates that the second embryonic axis, the oral-aboral axis, is specified with reference to the first cleavage plane. In the undisturbed embryo, clones that contribute to one territory or another begin to appear at the third cleavage, and founder cell segregation to all five territories is completed by the sixth cleavage. Founder cell segregation is a key feature of mechanisms that establish the spatially defined gene activity of sea urchin embryogenesis.  相似文献   

10.
Pyramidal neurons of the neocortex can be subdivided into two major groups: deep- (DL) and upper-layer (UL) neurons. Here we report that the expression of the AT-rich DNA-binding protein Satb2 defines two subclasses of UL neurons: UL1 (Satb2 positive) and UL2 (Satb2 negative). In the absence of Satb2, UL1 neurons lose their identity and activate DL- and UL2-specific genetic programs. UL1 neurons in Satb2 mutants fail to migrate to superficial layers and do not contribute to the corpus callosum but to the corticospinal tract, which is normally populated by DL axons. Ctip2, a gene required for the formation of the corticospinal tract, is ectopically expressed in all UL1 neurons in the absence of Satb2. Satb2 protein interacts with the Ctip2 genomic region and controls chromatin remodeling at this locus. Satb2 therefore is required for the initiation of the UL1-specific genetic program and for the inactivation of DL- and UL2-specific genes.  相似文献   

11.
The dopaminergic neurons of the basal ganglia play critical roles in CNS function and human disease, but specification of dopamine neuron phenotype is poorly understood in vertebrates. We performed an in vivo screen in zebrafish to identify dopaminergic neuron enhancers, in order to facilitate studies on the specification of neuronal identity, connectivity, and function in the basal ganglia. Based primarily on identification of conserved non-coding elements, we tested 54 DNA elements from four species (zebrafish, pufferfish, mouse, and rat), that included 21 genes with known or putative roles in dopaminergic neuron specification or function. Most elements failed to drive CNS expression or did not express specifically in dopaminergic neurons. However, we did isolate a discrete enhancer from the otpb gene that drove specific expression in diencephalic dopaminergic neurons, although it did not share sequence conservation with regulatory regions of otpa or other dopamine-specific genes. For the otpb enhancer, regulation of expression in dopamine neurons requires multiple elements spread across a large genomic area. In addition, we compared our in vivo testing with in silico analysis of genomic regions for genes involved in dopamine neuron function, but failed to find conserved regions that functioned as enhancers. We conclude that regulation of dopaminergic neuron phenotype in vertebrates is regulated by dispersed regulatory elements.  相似文献   

12.
We investigated the role of retrograde signals in the regulation of short-term synaptic depression and facilitation by characterizing the form of plasticity expressed at novel synapses on four giant interneurons in the cricket cercal sensory system. We induced the formation of novel synapses by transplanting a mesothoracic leg and its associated sensory neurons to the cricket terminal abdominal segment. Axons of ectopic leg sensory neurons regenerated and innervated the host terminal abdominal ganglion forming monosynaptic connections with the medial giant interneuron (MGI), lateral giant interneuron (LGI), and interneurons 7-1a and 9-2a. The plasticity expressed by these synapses was characterized by stimulating a sensory neuron with pairs of stimuli at various frequencies or with trains of 10 stimuli delivered at 100 Hz and measuring the change in excitatory postsynaptic potential amplitude recorded in the postsynaptic neuron. Novel synapses of a leg tactile hair on 7-1a depressed, as did control synapses of cercal sensory neurons on this interneuron. Novel synapses of leg campaniform sensilla (CS) sensory neurons on MGI, like MGI's control synapses, always facilitated. The form of plasticity expressed by novel synapses is thus consistent with that observed at control synapses. Leg CS synapses with 9-2a also facilitated; however, the plasticity expressed by these sensory neurons is dependent on the identity of the postsynaptic cell since the synapses these same sensory neurons formed with LGI always depressed. We conclude that the form of plasticity expressed at these synaptic connections is determined retrogradely by the postsynaptic cell. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 700–714, 1998  相似文献   

13.
14.
Motor neuron differentiation has been studied intensively in both invertebrates and vertebrates in recent years. These studies have led to the identification of several key regulatory genes acting to generate motor neurons and to specify their subclass identities. By comparing findings from Caenorhabditis elegans, Drosophila and vertebrate model systems, it is apparent that both evolutionarily conserved and non-conserved mechanisms are used.  相似文献   

15.
16.
17.
18.
19.
Journal of Mathematical Biology - We use conductance based neuron models, and the mathematical modeling of optogenetics to define controlled neuron models and we address the minimal time control of...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号