首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Dysfunction of the intestinal barrier function occurs in hepatic injury, but the specific mechanisms responsible are largely unknown. Recently, NOD-like receptor 3 (NLRP3) inflammasome functions in impairing endothelial barrier function. In this study, we test the hypothesis that TXNIP–NLRP3 axis repression prevents against intestinal barrier function disruption in nonalcoholic steatohepatitis (NASH). First, lipopolysaccharide (LPS)-induced alterations in expression of ZO-1 and occludin, myeloperoxidase (MPO) activity, reactive oxygen species (ROS) level, and transepithelial electric resistance (TEER) in intestinal epithelial cells (IECs) isolated from C57BL/6 wild-type (WT) and TXNIP−/− mice were evaluated. The underlying regulatory mechanisms of TXNIP knockout in vivo were investigated with the detection of expressions of TXNIP, NLRP3 and ZO-1, and occludin, the interaction of TXNIP–NLRP3, MPO activity, ROS level, permeability of intestinal mucosa, levels of inflammatory factors in serum, and LPS concentration. We identified that TXNIP knockout promoted ZO-1 and occludin expression, yet reduced MPO activity, ROS level, and cell permeability in IECs, indicating restored the intestinal barrier function. However, LPS upregulated TXNIP and NLRP3 expression, as well as contributed to the interaction between TXNIP and NLRP3 in vitro. Furthermore, TXNIP was significantly upregulated in the intestinal mucosa of NASH mice and its knockout repaired the intestinal barrier disrupt, inhibited expression of inflammatory factors, and reduced LPS concentration as well as hepatic injury in vivo. Taken together, our findings demonstrated that inhibited the activation of the TXNIP–NLRP3 axis reduced MPO activity and oxidative stress and thus restoring the intestinal barrier function in NASH. TXNIP–NLRP3 axis may be a promising therapeutic strategy for the NASH treatment.  相似文献   

3.
It has been hypothesized that oxidative stress plays a key role in aging. In order to elucidate the role of the antioxidant network — including α-tocopherol (αT) and αT transfer protein — in aging in vivo, α-tocopherol transfer protein knockout (αTTP?/?) mice were fed a vitamin-E-depleted diet, and wild-type (WT) mice were fed a diet containing 0.002 wt.% αT from the age of 3 months to 1 1/2 years. The lipid oxidation markers total hydroxyoctadecadienoic acid (tHODE) and 8-iso-prostaglandin F2α, and antioxidant levels in the blood, liver and brain were measured at 3, 6, 12 and 18 months. tHODE levels in the plasma of αTTP?/? mice were elevated at 6 months compared to 3 months, and were significantly higher those in WT mice, although they decreased thereafter. On the other hand, tHODE levels in the liver and brain were constantly higher in αTTP?/? mice than in WT mice. Motor activities decreased with aging in both mouse types; however, those in the αTTP?/? mice were lower than those in the WT mice. It is intriguing to note that motor activities were significantly correlated with the stereoisomer ratio (Z,E/E,E) of HODE, which is a measure of antioxidant capacity in vivo, in the plasma, in the liver and even in the brain, but not with other factors such as antioxidant levels.In summary, using the biomarker tHODE and its stereoisomer ratio, we demonstrated that αT depletion was associated with a decrease in motor function, and that this may be primarily attributable to a decrease in the total antioxidant capacity in vivo.  相似文献   

4.
5.
One of the neuropathological hallmarks of Alzheimer's disease (AD)—causing neurodegeneration and consequent memory deterioration, and eventually, cognitive decline—is amyloid-β (Aβ) aggregation forming amyloid plaques. Our previous study showed the potential of a tocotrienol-rich fraction—a mixture of naturally occurring of vitamin E analogs—to inhibit Aβ aggregation and restore cognitive function in an AD mouse model. The current study examined the effect of three vitamin E analogs—α-tocopherol (α-TOC), α-tocotrienol (α-T3), and γ-tocotrienol (γ-T3)—on Aβ aggregation, disaggregation, and oligomerization in vitro. Thioflavin T (ThT) assay showed α-T3 reduced Aβ aggregation at 10 μM concentration. Furthermore, both α-T3 and γ-T3 demonstrated Aβ disaggregation, as shown by the reduction of ThT fluorescence. However, α-TOC showed no significant effect. We confirmed the results for ThT assays with scanning electron microscopy imaging. Further investigation in photo-induced cross-linking of unmodified protein assay indicated a reduction in Aβ oligomerization by γ-T3. The present study thus revealed the individual effect of each tocotrienol analog in reducing Aβ aggregation and oligomerization as well as disaggregating preformed fibrils.  相似文献   

6.
A diet high in fructose (HFr) induces insulin resistance in animals. Free radicals are involved in the pathogenesis of HFr-induced insulin resistance. Carnosine (CAR) is a dipeptide with antioxidant properties. We investigated the effect of CAR alone or in combination with α-tocopherol (CAR?+?TOC) on HFr-induced insulin-resistant rats. Rats fed with HFr containing 60 % fructose received CAR (2 g/L in drinking water) with/without TOC (200 mg/kg, i.m. twice a week) for 8 weeks. Insulin resistance, serum lipids, inflammation markers, hepatic lipids, lipid peroxides, and glutathione (GSH) levels together with glutathione peroxidase (GSH-Px) and superoxide dismutase 1 (CuZnSOD; SOD1) activities and their protein expressions were measured. Hepatic histopathological examinations were performed. HFr was observed to cause insulin resistance, inflammation and hypertriglyceridemia, and increased triglyceride and lipid peroxide levels in the liver. GSH-Px activity and expression decreased, but GSH levels and SOD1 activity and expression did not alter in HFr rats. Hepatic marker enzyme activities in serum increased and marked macro- and microvesicular steatosis were seen in the liver. CAR treatment did not alter insulin resistance and hypertriglyceridemia, but it decreased steatosis and lipid peroxidation without any change in the antioxidant system of the liver. However, CAR?+?TOC treatment decreased insulin resistance, inflammation, hepatic steatosis, and lipid peroxidation and increased GSH-Px activity and expression in the liver. Our results may indicate that CAR?+?TOC treatment is more effective to decrease HFr-induced insulin resistance, inflammation, hepatic steatosis, and dysfunction and pro-oxidant status in rats than CAR alone.  相似文献   

7.
Vitamin E (as α-tocopherol, α-T) is proposed to alleviate glia-mediated inflammation in neurological diseases, but such a role in epilepsy is still elusive. This study investigated the effect of α-T supplementation on glial activation, neuronal cell death and oxidative stress of rat brain exposed to kainate-induced seizures. Animals were fed for 2 weeks with a α-T-enriched diet (estimated intake of 750 mg/kg/day) before undergoing status epilepticus. Compliance to supplementation was demonstrated by the remarkable increase in brain α-T. Four days after seizure, brain α-T returned to baseline and lipid peroxidation markers decreased as compared to non-supplemented rats. Status epilepticus induced a lower up-regulation of astrocytic and microglial antigens (GFAP and MHC II, respectively) and production of pro-inflammatory cytokines (IL-1β and TNF-α) in supplemented than in non-supplemented animals. This anti-inflammatory effect was associated with a lower neuronal cell death. In conclusion, α-T dietary supplementation prevents oxidative stress, neuroglial over-activation and cell death occurring after kainate-induced seizures. This evidence paves the way to an anti-inflammatory and neuroprotective role of α-T interventions in epilepsy.  相似文献   

8.
Carbon irradiation due to its higher biological effectiveness relative to photon radiation is a concern for toxicity to proliferative normal gastrointestinal (GI) tissue after radiotherapy and long-duration space missions such as mission to Mars. Although radiation-induced oxidative stress is linked to chronic diseases such as cancer, effects of carbon irradiation on normal GI tissue have not been fully understood. This study assessed and compared chronic oxidative stress in mouse intestine and colon after different doses of carbon and γ radiation, which are qualitatively different. Mice (C57BL/6J) were exposed to 0.5 or 1.3?Gy of γ or carbon irradiation, and intestinal and colonic tissues were collected 2 months after irradiation. While part of the tissues was used for isolating epithelial cells, tissue samples were also fixed and paraffin embedded for 4 µm thick sections as well as frozen for biochemical assays. In isolated epithelial cells, reactive oxygen species and mitochondrial status were studied using fluorescent probes and flow cytometry. We assessed antioxidant enzymes and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in tissues and formalin-fixed tissue sections were stained for 4-hydroxynonenal, a lipid peroxidation marker. Data show that mitochondrial deregulation, increased NADPH oxidase activity, and decreased antioxidant activity were major contributors to carbon radiation-induced oxidative stress in mouse intestinal and colonic cells. When considered along with higher lipid peroxidation after carbon irradiation relative to γ-rays, our data have implications for functional changes in intestine and carcinogenesis in colon after carbon radiotherapy as well as space travel.  相似文献   

9.
Liposomes have been used for the delivery of antioxidants to different tissues and organs for the treatment of oxidative stress-induced injuries. In this study, the acute toxicity of a single dose of intravenously (i.v.) administered liposomal antioxidant formulation, containing N-acetylcysteine (NAC) with or without α-tocopherol (α-T) or γ-tocopherol (γ-T), in rats was examined. Each group consisted of 5 male and 5 female Sprague-Dawley rats, with a control group receiving empty dipalmitoylphosphatidylcholine (DPPC) liposomes (660 mg/kg) and test groups receiving DPPC liposomes (660 mg/kg) entrapped with 1) NAC (200 mg/kg), 2) NAC (200 mg/kg) and α-T (83.3 mg/kg), and 3) NAC (200 mg/kg) and γ-T (71.4 mg/kg). These dose levels were determined from the dose-range-finding study and were considered to be the maximum feasible dose (MFD) levels, based on the volume of 10 mL/kg and physical properties and viscosity of the test articles that could be safely administered to rats by an i.v. injection. Two weeks after treatment (day 15), rats in the control group and three test groups exhibited no clinical signs of toxicity during the dosing period or during the 14-day post-treatment period. Weight gain and food consumption in all animals was appropriate for the age and sex of animals. Clinical pathology findings (e.g., hematology, coagulation, clinical chemistry, and urinalysis) were unremarkable in all rats and in all groups. In conclusion, the results of this study showed no treatment-related toxicity in rats at the MFD level by a single bolus i.v. administration.  相似文献   

10.
11.
Radiation exposure is known to produce many harmful effects in biological systems, and these effects are often mediated by oxygen free radicals. Because blueberries are rich in antioxidant compounds such as anthocyanins and phenolic acids, we divided forty adult rats into four treatment groups of 10 (G1–4) as follows: G1 rats were used as a control, G2 rats were irradiated with 8?Gy at 2?Gy/week at a dose rate of 0.5?Gy/min, G3 rats were administered blueberry extract (200?mg/kg) and G4 rats were administered blueberry extract during the same irradiation period. In subsequent determinations, γ-irradiated rats had increased levels of cholesterol, triglyceride, high density lipoprotein (HDL) and low density lipoprotein (LDL), and significantly elevated liver enzyme activities, including alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP), and total bilirubin. In contrast, significant reductions in albumin, total protein and globulin were observed, whereas gamma irradiation decreased activities of the antioxidant enzymes glutathione (GSH), catalase (CAT), xanthine dehydrogenase (XDH) and superoxide dismutase (SOD). We also observed incremental increases in DNA fragmentation percentages and histopathological changes in liver tissues. Serum pro-inflammatory cytokine levels (IL-6, IL-10 and TNF-α) were significantly elevated and hepatic NF-кB was upregulated. In G4 rats, treatments with blueberry extract restored liver pro-oxidant status, reduced cytokine levels, ameliorated histopathological parameters and reduced DNA damage. In conclusion, γ-radiation exerts toxic effects in the rat livers, and blueberry extract is protective against these.  相似文献   

12.
《Mutation Research Letters》1989,225(3):131-136
Unscheduled DNA synthesis (UDS) and lipid peroxidation (LPO) were measured in human peripheral lymphocytes from healthy volunteers. These processes were induced by the catalytic system Fe2+-sodium ascorbate. The degree of induced LPO was measured spectrophotometrically by the thiobarbituric acid assay. UDS was detected by scintillometric measurement of the incorporation of 3H-thymidine into DNA. The protective action by fat-soluble vitamin E (d,l-α-tocopherol) and the artificial antioxidant pyritinol on UDS and LPO was also investigated.The system Fe2+ (2 μmole/1)-sodium ascorbate (30 μmole/1) increased the LPO level in healthy volunteers approximately 2.5 times and the incorporation of 3H-thymidine by 60–70%. α-Tocopherol (0.2 mmole/1) very efficiently suppressed LPO processes (p < 0.01) and the oxidative damage of DNA measured as UDS was also significantly diminished (p < 0.05). Pyritinol had no effect on LPO and UDS under our experimental conditions.  相似文献   

13.
14.
《Cytotherapy》2019,21(6):671-682
The pathogenesis of Alzheimer's disease (AD) is associated with an increased inflammatory response via activated microglia and astrocytes. In the present study, we investigated whether treatment with the anti–tumor necrosis factor alpha (TNF-α) monoclonal antibody adalimumab can improve cognitive function and reduce AD pathology in Aβ1-40-injected animal models of AD, as well as the mechanisms underlying the effects of treatment. Aβ1-40-injected mice treated with adalimumab exhibited significant improvements in memory relative to mice injected with Aβ1-40 alone, as well as decreases in beta secretase-1 (BACE1) protein expression and Aβ1-40 plaques. In addition, adalimumab treatment significantly attenuated neuronal damage and neuroinflammation in Aβ1-40-injected mice. Aβ1-40-induced decreases in brain-derived neurotrophic factor (BDNF) expression were also attenuated by treatment with adalimumab. Our experiments further verified that the effects of adalimumab are mediated by nuclear factor kappa B (NF-κB) p65 signalling. Serine 536 residues of NF-κB p65, which is phosphorylated by TNF-α, increased along with the degradation of inhibitor of κB (IκB) in the hippocampus of Aβ-injected mice, although these effects were again attenuated by adalimumab. Furthermore, Aβ1-40-induced increases in TNF-α and interleukin (IL)-6 expression were decreased by treatment with adalimumab. Our results indicate that adalimumab may be clinically useful in human patients with AD.  相似文献   

15.
Anti-inflammatory actions of the vitamin E fragment tocotrienol have not been described for microglia. Here, we screened palm α-, γ- and δ-tocotrienol isoforms and Tocomin® 50% (contains spectrum of tocotrienols and tocopherols) for their ability to limit nitric oxide (NO) production by BV2 microglia. Microglia were treated with varying doses of tocotrienols for 24 h and stimulated with 1 μg/ml lipopolysaccharide (LPS). All tocotrienol isoforms reduced NO release by LPS-stimulated microglia, with 50 μM being the most potent tocotrienol dose. Of the isoforms tested, δ-tocotrienol lowered NO levels the most, reducing NO by approximately 50% at 48 h post-LPS treatment (p < .05). None of the tocotrienol doses tested affected microglia viability.  相似文献   

16.
Amino Acids - Differentiation of a human aggressive PC-3 cancer cell line was obtained, in a previous investigation, by the synergic effect of α-tocopherol (α-TOC) and naringenin (NG)....  相似文献   

17.
This study investigated the involvement of advanced glycation end products (AGEs) that may be nonenzymatically linked to α-synuclein accumulation in the chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced C57BL/6 mouse model of parkinsonism. MPTP (20 mg/kg) was intraperitoneally administrated once daily for 30 days to the MPTP group while a saline only solution was administered to the control group. Results show that the immunoreactivities of the tyrosine hydroxylase and dopamine transporter significantly decreased in the striatum and the substantia nigra (SN) in the MPTP model compared to the subjects in the control group. α-synuclein was co-localized with N?-(carboxymethyl)lysine (CML) and N?-(carboxyethyl)lysine (CEL), which are well-known AGEs, in tyrosine hydroxylase-positive dopaminergic neurons in the MPTP brains. α-synuclein was also shown to be deposited in the CD11b-positive activated microglia. Some AGEs-modified proteins (CML-, CEL-, pentosidine-, or pyrraline-modified proteins) and an oligomeric form of α-synuclein appear to have almost the same molecular weight, specifically between 50 and 75 kDa; in addition, these formations were more strongly deposited in the SN region of the MPTP brains than in the control brains. Moreover, the oligomeric form of α-synuclein was modified with CML in the SNs of both the control and MPTP brains. This study, for the first time, shows that chronic dopaminergic neurodegeneration by MPTP can lead to the depositing of an oligomeric form of α-synuclein, CML-linked α-synuclein, and CEL-, pentosidine-, or pyrraline-linked proteins between 50 and 75 kDa. It is thus suggested that CML, especially a CML-linked α-synuclein oligomer between 50 and 75 kDa, may be, at least in part, involved in the aggregation of the α-synuclein induced by MPTP intoxication.  相似文献   

18.
19.
Zhang  Lan  Luo  Yanzhong  Liu  Bin  Zhang  Liang  Zhang  Wei  Chen  Rumei  Wang  Lei 《Transgenic research》2020,29(1):95-104
Transgenic Research - The vitamin E family includes tocopherols and tocotrienols, which are essential lipid-soluble antioxidants necessary for human and livestock health. The seeds of many plant...  相似文献   

20.
One of the most widely used animal models of Parkinson’s disease (PD) involves injecting 6-hydroxydopamine (6-OHDA) directly into the substantia nigra (SN). Some recent reports speculated that dopaminergic drugs may exert brain antioxidant activity, which could explain some of their protective actions. In this way, the aim of the present study was to examine the effects of low-dose pergolide on memory deficits and brain oxidative stress in a 6-OHDA-induced rat model of PD. Right-unilateral lesions of the SN were produced with 6-OHDA. Two weeks after neurosurgery, pergolide (0.3 mg/kg/day) was injected intraperitoneally in the 6-OHDA + pergolide and sham-operated + pergolide groups, while sham-operated and 6-OHDA alone groups received saline. Radial-8-arm maze and Y-maze were used for memory assessment. We also determined some enzymatic antioxidant defenses like superoxide dismutase or glutathione peroxidase and a lipid peroxidation marker [malondialdehyde (MDA)], from the temporal lobe. A reduced number of working/reference memory errors was observed in 6-OHDA + pergolide group, compared to sham-operated rats. Additionally, post hoc analysis showed significant differences between 6-OHDA and 6-OHDA + pergolide groups in both Y-maze and radial-arm-maze tasks. We also noted a significant decrease of MDA level in the 6-OHDA + pergolide group, compared to sham-operated rats. Significant correlations were also found between behavioral parameters and MDA levels. Our data suggest that pergolide facilitates spatial memory and improves brain oxidative balance, after a 6-OHDA-induced model of PD. This could be useful for further investigations and clinical applications of pergolide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号