首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Wang  Wenyi  Yuan  Jumao  Jiang  Changan 《Plant molecular biology》2021,105(1-2):43-53
Key message

Present review summarizes the current applications of nanobodies in plant science and biotechnology, including plant expression of nanobodies, plant biotechnological applications, nanobody-based immunodetection, and nanobody-mediated resistance against plant pathogens.

Abstract

Nanobodies (Nbs) are variable domains of heavy chain-only antibodies (HCAbs) isolated from camelids. In spite of their single domain structure, nanobodies display many unique features, such as small size, high stability, and cryptic epitopes accessibility, which make them ideal for sophisticated applications in plants and animals. In this review, we summarize the current applications of nanobodies in plant science and biotechnology, focusing on nanobody expression in plants, plant biotechnological applications, determination of plant toxins and pathogens, and nanobody-mediated resistance against plant pathogens. Prospects and challenges of nanobody applications in plants are also discussed.

  相似文献   

2.
3.
Microparticle bombardment technology has evolved as a method for delivering exogenous nucleic acids into plant cells and is a commonly employed technique in plant science. Desired genetic material is precipitated onto micron-sized metal particles and placed within one of a variety of devices designed to accelerate these "microcarriers" to velocities required to penetrate the plant cell wall. In this manner, transgenes can be delivered into the cell's genome or plastome. Since the late 1980s microparticle bombardment has become a powerful tool for the study of gene expression and production of stably transformed tissues and whole transgenic plants for experimental purposes and agricultural applications. This paper reviews development and application of the technology, including the protocols and mechanical systems employed as delivery systems, and the types of plant cells and culture systems employed to generate effective "targets" for receiving the incoming genetic material. Current understanding of how the exogenous DNA becomes integrated into the plant's native genetic background are assessed as are methods for improving the efficiency of this process. Pros and cons of particle bombardment technologies compared to alternative direct gene transfer methods and Agrobacterium based transformation systems are discussed.  相似文献   

4.
Microencapsulation in food science and biotechnology   总被引:5,自引:0,他引:5  
Microencapsulation can represent an excellent example of microtechnologies applied to food science and biotechnology. Microencapsulation can be successfully applied to entrap natural compounds, like essential oils or vegetal extracts containing polyphenols with well known antimicrobial properties to be used in food packaging. Microencapsulation preserves lactic acid bacteria, both starters and probiotics, in food and during the passage through the gastrointestinal tract, and may contribute to the development of new functional foods.  相似文献   

5.
Regulatory science in forest biotechnology   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
Analysis of the plant proteome   总被引:14,自引:0,他引:14  
  相似文献   

8.
褚鑫  王力为  许虹  张燕飞 《生物工程学报》2022,38(11):4019-4026
随着石化资源逐步消耗,气候问题日益凸显,工业生物技术被认为是解决能源和资源供给、应对气候变化、实现绿色可持续发展的重要方向。得益于理论突破、技术变革和学科交叉,工业生物技术主要经历了由生命科学突破性成就、多学科技术理念交汇融合和产业应用导向推动的3个阶段。本文回顾总结了工业生物技术的发展历程及近年来取得的重要突破,并展望了其未来发展方向。  相似文献   

9.
Due to their low cytotoxicity, controllable size, and unique architecture, cyclodextrin (CD)-based polyrotaxanes and polypseudorotaxanes have inspired interesting exploitation as novel biomaterials. This review will update the recent progress in the studies on the structures of polyrotaxanes and polypseudorotaxanes based on different CDs and polymers, followed by summarizing their potential applications in life science and biotechnology, such as drug delivery, gene delivery, and tissue engineering. CD-based biodegradable polypseudorotaxane hydrogels could be used as promising injectable drug delivery systems for sustained and controlled drug release. Polyrotaxanes with drug or ligand-conjugated CDs threaded on polymer chain with biodegradable end group could be useful for controlled and multivalent targeting delivery. Cationic polyrotaxanes consisting of multiple oligoethylenimine-grafted CDs threaded on a block copolymer chain were attractive non-viral gene carries due to the strong DNA-binding ability, low cytotoxicity, and high gene transfection efficiency. Cytocleavable end caps were also introduced in the polyrotaxane systems in order to ensure efficient endosomal escape for intracellular trafficking of DNA. Finally, hydrolyzable polyrotaxane hydrogels with cross-linked α-CDs could be a desirable scaffold for cartilage and bone tissue engineering.  相似文献   

10.
11.
12.
Plant biotechnology has recently become the focus of heated controversy and media attention, particularly in the UK. The most obvious concerns have centred upon the possible effects of the technology on the environment and on human health, but a broader and more fundamental set of considerations has also been evident in much of the debate, these are usually referred to as 'moral' or 'ethical' concerns.  相似文献   

13.
Trehalose, a nonreducing disaccharide of glucose, is one of the most effective osmoprotectants. Several strategies leading to its accumulation have been envisaged in both model and crop plants using genes of bacterial, yeast and, more recently, plant origin. Significant levels of trehalose accumulation have been shown to cause abiotic stress tolerance in transgenic plants. In this review, we describe the most biologically relevant features of trehalose: chemical and biological properties; occurrence and metabolism in organisms with special reference to plants; protective role in stabilizing molecules; physiological role in plants with special reference to carbohydrate metabolism. The emphasis of this review, however, will be on manipulation of trehalose metabolism to improve abiotic stress tolerance in plants.  相似文献   

14.
15.
16.
The tremendous functional, spatial, and temporal diversity of the plant proteome is regulated by multiple factors that continuously modify protein abundance, modifications, interactions, localization, and activity to meet the dynamic needs of plants. Dissecting the proteome complexity and its underlying genetic variation is attracting increasing research attention. Mass spectrometry (MS)-based proteomics has become a powerful approach in the global study of protein functions and their relationships on a systems level. Here, we review recent breakthroughs and strategies adopted to unravel the diversity of the proteome, with a specific focus on the methods used to analyze posttranslational modifications (PTMs), protein localization, and the organization of proteins into functional modules. We also consider PTM crosstalk and multiple PTMs temporally regulating the life cycle of proteins. Finally, we discuss recent quantitative studies using MS to measure protein turnover rates and examine future directions in the study of the plant proteome.  相似文献   

17.
The plant mitochondrial proteome   总被引:2,自引:0,他引:2  
The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid chromatography linked on-line with tandem mass spectrometry, have identified >400 mitochondrial proteins, including subunits of mitochondrial respiratory complexes, supercomplexes, phosphorylated proteins and oxidized proteins. The results also highlight a range of new mitochondrial proteins, new mitochondrial functions and possible new mechanisms for regulating mitochondrial metabolism. More than 70 identified proteins in Arabidopsis mitochondrial samples lack similarity to any protein of known function. In some cases, unknown proteins were found to form part of protein complexes, which allows a functional context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants.  相似文献   

18.
In this review, we present the use of proteomics to advanceknowledge in the field of environmental biotechnology, includingstudies of bacterial physiology, metabolism and ecology. Bacteriaare widely applied in environmental biotechnology for theirability to catalyze dehalogenation, methanogenesis, denitrificationand sulfate reduction, among others. Their tolerance to radiationand toxic compounds is also of importance. Proteomics has animportant role in helping uncover the pathways behind thesecellular processes. Environmental samples are often highly complex,which makes proteome studies in this field especially challenging.Some of these challenges are the lack of genome sequences forthe vast majority of environmental bacteria, difficulties inisolating bacteria and proteins from certain environments, andthe presence of complex microbial communities. Despite thesechallenges, proteomics offers a unique dynamic view into cellularfunction. We present examples of environmental proteomics ofmodel organisms, and then discuss metaproteomics (microbialcommunity proteomics), which has the potential to provide insightsinto the function of a community without isolating organisms.Finally, the environmental proteomics literature is summarizedas it pertains to the specific application areas of wastewatertreatment, metabolic engineering, microbial ecology and environmentalstress responses.   相似文献   

19.
20.
模式植物蛋白质组研究进展   总被引:2,自引:1,他引:2  
蛋白质组学是后基因组时代研究的热点,而植物蛋白质组是此研究领域的一块奇葩。这主要归功于模式植物蛋白质组的成就。本文综述了模式植物拟南芥、大豆、水稻、大麦、小麦、玉米蛋白质组的研究进展,并简要介绍了本实验室的工作.最后展望了植物蛋白质组学今后的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号